1
|
Yamanashi K, Wang A, Bellissimo CA, Siebiger G, Oliveira P, Zhang Y, Montagne J, Garza G, Furie N, Pal P, Liu M, Goligher EC, Keshavjee S, Cypel M. Protective effects of 10 °C preservation on donor lungs with lipopolysaccharide-induced acute lung injury. J Thorac Cardiovasc Surg 2025; 169:e74-e87. [PMID: 39321867 DOI: 10.1016/j.jtcvs.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES Hypothermic lung preservation at 10 °C has been recently shown to enhance quality of healthy donor lungs during ischemia. This study aims to show generalizability of the 10 °C lung preservation using an endotoxin-induced lung injury with specific focus on the benefits of post-transplant lung function and mitochondrial preservation. METHODS Lipopolysaccharide (3 mg/kg) was injected intratracheally in rats to induce lung injury. Injured lungs were flushed with preservation solution and allocated to 3 groups (n = 6 each): minimum cold storage, 6-hour storage on ice (ice), and 6-hour storage at 10 °C (10 °C). Left lungs were transplanted and reperfused for 2 hours. After storage, lung tissue was used to evaluate the effects of hypothermic storage on the mitochondrial function: mitochondrial membrane potential was assessed by JC-1 staining; mitochondrial oxygen consumption was assessed using high-resolution respirometry. RESULTS Two hours after reperfusion, the oxygen tension/inspired oxygen fraction ratio from the graft was significantly greater in the 10 °C group than in the Ice group (P = .015), whereas the wet-to-dry weight ratio was significantly lower (P = .041). Levels of interleukin-8 in lung tissues were significantly lower in the 10 °C group than in the Ice group (P = .004). Mechanistically, we noted greater mitochondrial membrane potential and elevated state III respiration in the 10 °C group than in the Ice group (P = .015 and P = .002, respectively), implying higher metabolic activities may be maintained during 10 °C preservation. CONCLUSIONS Favorable metabolism during 10 °C preservation prevented ischemia-induced mitochondrial damages in injured lungs, leading to better post-transplant outcomes.
Collapse
Affiliation(s)
- Keiji Yamanashi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Thoracic and Cardio-Vascular Surgery, Nara Medical University School of Medicine, Kashihara, Japan
| | - Aizhou Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Catherine A Bellissimo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Gabriel Siebiger
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paolo Oliveira
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coração, Faculdade de Medicina HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Yu Zhang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Juan Montagne
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Guillermo Garza
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nadav Furie
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Prodipto Pal
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ewan C Goligher
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Schuster L, Zaradzki M, Janssen H, Gallenstein N, Etheredge M, Hofmann I, Weigand MA, Immenschuh S, Larmann J. Heme oxygenase-1 modulates CD62E-dependent endothelial cell-monocyte interactions and mitigates HLA-I-induced transplant vasculopathy in mice. Front Immunol 2025; 16:1447319. [PMID: 40124367 PMCID: PMC11925954 DOI: 10.3389/fimmu.2025.1447319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
The main risk factor for developing transplant vasculopathy (TV) after solid organ transplantation is de-novo production of donor-specific antibodies (DSAs) binding to endothelial cells (ECs) within the graft's vasculature. Diverse leukocyte populations recruited into the vessel wall via activated ECs contribute to vascular inflammation. Subsequent smooth muscle cell proliferation results in intima hyperplasia, the pathophysiological correlate of TV. We demonstrated that incubating aortic EC with anti-HLA-I antibodies led to increased monocyte adhesion to and transmigration across an EC monolayer. Both occurred in a CD62E-dependent fashion and were sensitive toward the anti-inflammatory enzyme heme oxygenase (HO)-1 modulation. Using a murine heterotopic aortic transplantation model, we demonstrated that anti-MHC I antibody-induced TV is ameliorated by pharmacologically induced HO-1 and the application of anti-CD62E antibodies results in a deceleration of developing TV. HO-1 modulation is a promising therapeutic approach to prevent leukocyte recruitment and subsequent intima hyperplasia in TV and thus precludes organ failure.
Collapse
Affiliation(s)
- Laura Schuster
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marcin Zaradzki
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Henrike Janssen
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadia Gallenstein
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Melanie Etheredge
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Anesthesiology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Ilse Hofmann
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Immenschuh
- Department of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Anesthesiology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| |
Collapse
|
3
|
Tsao T, Qiu L, Bharti R, Shemesh A, Hernandez AM, Cleary SJ, Greenland NY, Santos J, Shi R, Bai L, Richardson J, Dilley K, Will M, Tomasevic N, Sputova T, Salles A, Kang J, Zhang D, Hays SR, Kukreja J, Singer JP, Lanier LL, Looney MR, Greenland JR, Calabrese DR. CD94 + natural killer cells potentiate pulmonary ischaemia-reperfusion injury. Eur Respir J 2024; 64:2302171. [PMID: 39190789 DOI: 10.1183/13993003.02171-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/30/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Pulmonary ischaemia-reperfusion injury (IRI) is a major contributor to poor lung transplant outcomes. We recently demonstrated a central role of airway-centred natural killer (NK) cells in mediating IRI; however, there are no existing effective therapies for directly targeting NK cells in humans. METHODS We hypothesised that a depleting anti-CD94 monoclonal antibody (mAb) would provide therapeutic benefit in mouse and human models of IRI based on high levels of KLRD1 (CD94) transcripts in bronchoalveolar lavage samples from lung transplant patients. RESULTS We found that CD94 is highly expressed on mouse and human NK cells, with increased expression during IRI. Anti-mouse and anti-human mAbs against CD94 showed effective NK cell depletion in mouse and human models and blunted lung damage and airway epithelial killing, respectively. In two different allogeneic orthotopic lung transplant mouse models, anti-CD94 treatment during induction reduced early lung injury and chronic inflammation relative to control therapies. Anti-CD94 did not increase donor antigen-presenting cells that could alter long-term graft acceptance. CONCLUSIONS Lung transplant induction regimens incorporating anti-CD94 treatment may safely improve early clinical outcomes.
Collapse
Affiliation(s)
- Tasha Tsao
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- T. Tsao and L. Qiu contributed equally
| | - Longhui Qiu
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- T. Tsao and L. Qiu contributed equally
| | - Reena Bharti
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Avishai Shemesh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy San Francisco, San Francisco, CA, USA
| | - Alberto M Hernandez
- Parker Institute for Cancer Immunotherapy San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Simon J Cleary
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Nancy Y Greenland
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Jesse Santos
- Department of Surgery, University of California San Francisco - East Bay, Oakland, CA, USA
| | | | - Lu Bai
- Dren Bio, Foster City, CA, USA
| | | | | | | | | | | | | | | | - Dongliang Zhang
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven R Hays
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jasleen Kukreja
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan P Singer
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lewis L Lanier
- Parker Institute for Cancer Immunotherapy San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Mark R Looney
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John R Greenland
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Daniel R Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
4
|
Cerier E, Manerikar A, Kandula V, Toyoda T, Thomae B, Yagi Y, Patino DMA, Lung K, Garza-Castillon R, Bharat A, Kurihara C. Postreperfusion Pulmonary Artery Pressure Indicates Primary Graft Dysfunction After Lung Transplant. Ann Thorac Surg 2024; 117:206-212. [PMID: 36521520 PMCID: PMC10258214 DOI: 10.1016/j.athoracsur.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Primary graft dysfunction is a risk factor of early mortality after lung transplant. Models identifying patients at high risk for primary graft dysfunction are limited. We hypothesize high postreperfusion systolic pulmonary artery pressure is a clinical marker for primary graft dysfunction. METHODS This is a retrospective review of 158 consecutive lung transplants performed at a single academic center from January 2020 through July 2022. Only bilateral lung transplants were included and patients with pretransplant extracorporeal life support were excluded. RESULTS Primary graft dysfunction occurred in 42.3% (n = 30). Patients with primary graft dysfunction had higher postreperfusion systolic pulmonary artery pressure (41 ± 9.1 mm Hg) than those without (31.5 ± 8.8 mm Hg) (P < .001). Logistic regression showed postreperfusion systolic pulmonary artery pressure is a predictor for primary graft dysfunction (odds ratio 1.14, 95% CI 1.06-1.24, P < .001). Postreperfusion systolic pulmonary artery pressure of 37 mm Hg was optimal for predicting primary graft dysfunction by Youden index. The receiver operating characteristic curve of postreperfusion systolic pulmonary artery pressure at 37 mm Hg (sensitivity 0.77, specificity 0.78, area under the curve 0.81), was superior to the prereperfusion pressure curve at 36 mm Hg (sensitivity 0.77, specificity 0.39, area under the curve 0.57) (P < .01). CONCLUSIONS Elevated postreperfusion systolic pulmonary artery pressure after lung transplant is predictive of primary graft dysfunction. Postreperfusion systolic pulmonary artery pressure is more indicative of primary graft dysfunction than prereperfusion systolic pulmonary artery pressure. Using postreperfusion systolic pulmonary artery pressure as a positive signal of primary graft dysfunction allows earlier intervention, which could improve outcomes.
Collapse
Affiliation(s)
- Emily Cerier
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Adwaiy Manerikar
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Viswajit Kandula
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Takahide Toyoda
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Benjamin Thomae
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yuriko Yagi
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Diego Mauricio Avella Patino
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kalvin Lung
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rafael Garza-Castillon
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Chitaru Kurihara
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
5
|
Yamanashi K, Ohsumi A, Oda H, Tanaka S, Yamada Y, Nakajima D, Date H. Reduction of donor mononuclear phagocytes with clodronate-liposome during ex vivo lung perfusion attenuates ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2023; 165:e181-e203. [PMID: 36404143 DOI: 10.1016/j.jtcvs.2022.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Clodronate-liposome is used for depleting mononuclear phagocytes associated with ischemia-reperfusion injury. We hypothesized that administration of clodronate-liposome into the perfusate during ex vivo lung perfusion could reduce mononuclear phagocytes and attenuate ischemia-reperfusion injury. METHODS First, the number of mononuclear phagocytes in flushed grafts (minimum cold ischemic time, 6-hour cold ischemic time, 15-hour cold ischemic time, and 18-hour cold ischemic time; n = 6 each) was determined using flow cytometry. Second, grafts (15-hour cold ischemic time) were allocated to control or clodronate (n = 5 each). In the clodronate group, clodronate-liposome is administered into the perfusate. After 4 hours of ex vivo lung perfusion, the number of mononuclear phagocytes in the perfusate and lung tissues was measured. Third, grafts (15-hour cold ischemic time) were allocated to control or clodronate (n = 6 each). After 4 hours of ex vivo lung perfusion, the left lungs were transplanted and reperfused for 2 hours. Lung function was evaluated, and samples were analyzed. RESULTS First, mononuclear phagocytes remain in flushed grafts after prolonged cold ischemia. Second, the number of mononuclear phagocytes in lung tissues after ex vivo lung perfusion was significantly reduced in the clodronate group (P = .008). Third, lung compliance and vascular resistance during ex vivo lung perfusion were significantly improved in the clodronate group (P < .001 for both). Blood oxygenation and pulmonary edema were significantly improved in the clodronate group after 2 hours of reperfusion (P = .015 and P = .026, respectively). Histological findings showed reduced lung injury in the clodronate group (P = .013). CONCLUSIONS Administration of clodronate-liposome into the perfusate during ex vivo lung perfusion resulted in a significant reduction of mononuclear phagocytes in donor lungs, leading to attenuation of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Keiji Yamanashi
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hiromi Oda
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Bonneau S, Landry C, Bégin S, Adam D, Villeneuve L, Clavet-Lanthier MÉ, Dasilva A, Charles E, Dumont BL, Neagoe PE, Brochiero E, Menaouar A, Nasir B, Stevens LM, Ferraro P, Noiseux N, Sirois MG. Correlation between Neutrophil Extracellular Traps (NETs) Expression and Primary Graft Dysfunction Following Human Lung Transplantation. Cells 2022; 11:3420. [PMID: 36359815 PMCID: PMC9656095 DOI: 10.3390/cells11213420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 09/08/2023] Open
Abstract
Primary graft dysfunction (PGD) is characterized by alveolar epithelial and vascular endothelial damage and inflammation, lung edema and hypoxemia. Up to one-third of recipients develop the most severe form of PGD (Grade 3; PGD3). Animal studies suggest that neutrophils contribute to the inflammatory process through neutrophil extracellular traps (NETs) release (NETosis). NETs are composed of DNA filaments decorated with granular proteins contributing to vascular occlusion associated with PGD. The main objective was to correlate NETosis in PGD3 (n = 9) versus non-PGD3 (n = 27) recipients in an exploratory study. Clinical data and blood samples were collected from donors and recipients pre-, intra- and postoperatively (up to 72 h). Inflammatory inducers of NETs' release (IL-8, IL-6 and C-reactive protein [CRP]) and components (myeloperoxidase [MPO], MPO-DNA complexes and cell-free DNA [cfDNA]) were quantified by ELISA. When available, histology, immunohistochemistry and immunofluorescence techniques were performed on lung biopsies from donor grafts collected during the surgery to evaluate the presence of activated neutrophils and NETs. Lung biopsies from donor grafts collected during transplantation presented various degrees of vascular occlusion including neutrophils undergoing NETosis. Additionally, in recipients intra- and postoperatively, circulating inflammatory (IL-6, IL-8) and NETosis biomarkers (MPO-DNA, MPO, cfDNA) were up to 4-fold higher in PGD3 recipients compared to non-PGD3 (p = 0.041 to 0.001). In summary, perioperative elevation of NETosis biomarkers is associated with PGD3 following human lung transplantation and these biomarkers might serve to identify recipients at risk of PGD3 and initiate preventive therapies.
Collapse
Affiliation(s)
- Steven Bonneau
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
| | - Caroline Landry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Stéphanie Bégin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Louis Villeneuve
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
| | | | - Ariane Dasilva
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
| | - Elcha Charles
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Benjamin L. Dumont
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Paul-Eduard Neagoe
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Ahmed Menaouar
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
| | - Basil Nasir
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Louis-Mathieu Stevens
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Pasquale Ferraro
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Nicolas Noiseux
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Martin G. Sirois
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
7
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
8
|
Querrey M, Chiu S, Lecuona E, Wu Q, Sun H, Anderson M, Kelly M, Ravi S, Misharin AV, Kreisel D, Bharat A, Budinger GS. CD11b suppresses TLR activation of nonclassical monocytes to reduce primary graft dysfunction after lung transplantation. J Clin Invest 2022; 132:157262. [PMID: 35838047 PMCID: PMC9282933 DOI: 10.1172/jci157262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/25/2022] [Indexed: 02/03/2023] Open
Abstract
Primary graft dysfunction (PGD) is the leading cause of postoperative mortality in lung transplant recipients and the most important risk factor for development of chronic lung allograft dysfunction. The mechanistic basis for the variability in the incidence and severity of PGD between lung transplant recipients is not known. Using a murine orthotopic vascularized lung transplant model, we found that redundant activation of Toll-like receptors 2 and 4 (TLR2 and -4) on nonclassical monocytes activates MyD88, inducing the release of the neutrophil attractant chemokine CXCL2. Deletion of Itgam (encodes CD11b) in nonclassical monocytes enhanced their production of CXCL2 and worsened PGD, while a CD11b agonist, leukadherin-1, administered only to the donor lung prior to lung transplantation, abrogated CXCL2 production and PGD. The damage-associated molecular pattern molecule HMGB1 was increased in peripheral blood samples from patients undergoing lung transplantation after reperfusion and induced CXCL2 production in nonclassical monocytes via TLR4/MyD88. An inhibitor of HMGB1 administered to the donor and recipient prior to lung transplantation attenuated PGD. Our findings suggest that CD11b acts as a molecular brake to prevent neutrophil recruitment by nonclassical monocytes following lung transplantation, revealing an attractive therapeutic target in the donor lung to prevent PGD in lung transplant recipients.
Collapse
Affiliation(s)
- Melissa Querrey
- Division of Pulmonary and Critical Care Medicine and,Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephen Chiu
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Emilia Lecuona
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Qiang Wu
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Haiying Sun
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan Anderson
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan Kelly
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sowmya Ravi
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ankit Bharat
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine and,Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Interobserver variability in the evaluation of primary graft dysfunction after lung transplantation: impact of radiological training and analysis of discordant cases. Radiol Med 2021; 127:145-153. [PMID: 34905128 DOI: 10.1007/s11547-021-01438-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Radiologic criteria for the diagnosis of primary graft dysfunction (PGD) after lung transplantation are nonspecific and can lead to misinterpretation. The primary aim of our study was to assess the interobserver agreement in the evaluation of chest X-rays (CXRs) for PGD diagnosis and to establish whether a specific training could have an impact on concordance rates. Secondary aim was to analyze causes of interobserver discordances. MATERIAL AND METHODS We retrospectively enrolled 164 patients who received bilateral lung transplantation at our institution, between February 2013 and December 2019. Three radiologists independently reviewed postoperative CXRs and classified them as suggestive or not for PGD. Two of the Raters performed a specific training before the beginning of the study. A senior thoracic radiologist subsequently analyzed all discordant cases among the Raters with the best agreement. Statistical analysis to calculate interobserver variability was percent agreement, Cohen's kappa and intraclass correlation coefficient. RESULTS A total of 473 CXRs were evaluated. A very high concordance among the two trained Raters, 1 and 2, was found (K = 0.90, ICC = 0.90), while a poorer agreement was found in the other two pairings (Raters 1 and 3: K = 0.34, ICC = 0.40; Raters 2 and 3: K = 0.35, ICC = 0.40). The main cause of disagreement (52.4% of discordant cases) between Raters 1 and 2 was the overestimation of peribronchial thickening in the absence of unequivocal bilateral lung opacities or the incorrect assessment of unilateral alterations. CONCLUSION To properly identify PGD, it is recommended for radiologists to receive an adequate specific training.
Collapse
|
10
|
Kurihara C, Lecuona E, Wu Q, Yang W, Núñez-Santana FL, Akbarpour M, Liu X, Ren Z, Li W, Querrey M, Ravi S, Anderson ML, Cerier E, Sun H, Kelly ME, Abdala-Valencia H, Shilatifard A, Mohanakumar T, Budinger GRS, Kreisel D, Bharat A. Crosstalk between nonclassical monocytes and alveolar macrophages mediates transplant ischemia-reperfusion injury through classical monocyte recruitment. JCI Insight 2021; 6:147282. [PMID: 33621212 PMCID: PMC8026186 DOI: 10.1172/jci.insight.147282] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Primary graft dysfunction (PGD) is the predominant cause of early graft loss following lung transplantation. We recently demonstrated that donor pulmonary intravascular nonclassical monocytes (NCM) initiate neutrophil recruitment. Simultaneously, host-origin classical monocytes (CM) permeabilize the vascular endothelium to allow neutrophil extravasation necessary for PGD. Here, we show that a CCL2-CCR2 axis is necessary for CM recruitment. Surprisingly, although intravital imaging and multichannel flow cytometry revealed that depletion of donor NCM abrogated CM recruitment, single cell RNA sequencing identified donor alveolar macrophages (AM) as predominant CCL2 secretors. Unbiased transcriptomic analysis of murine tissues combined with murine KOs and chimeras indicated that IL-1β production by donor NCM was responsible for the early activation of AM and CCL2 release. IL-1β production by NCM was NLRP3 inflammasome dependent and inhibited by treatment with a clinically approved sulphonylurea. Production of CCL2 in the donor AM occurred through IL-1R-dependent activation of the PKC and NF-κB pathway. Accordingly, we show that IL-1β-dependent paracrine interaction between donor NCM and AM leads to recruitment of recipient CM necessary for PGD. Since depletion of donor NCM, IL-1β, or IL-1R antagonism and inflammasome inhibition abrogated recruitment of CM and PGD and are feasible using FDA-approved compounds, our findings may have potential for clinical translation.
Collapse
Affiliation(s)
| | | | - Qiang Wu
- Division of Thoracic Surgery and
| | | | | | | | | | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Wenjun Li
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | | | | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ankit Bharat
- Division of Thoracic Surgery and.,Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
11
|
Akbarpour M, Lecuona E, Chiu SF, Wu Q, Querrey M, Fernandez R, Núñez-Santana FL, Sun H, Ravi S, Kurihara C, Walter JM, Joshi N, Ren Z, Roberts SC, Hauser A, Kreisel D, Li W, Chandel NS, Misharin AV, Mohanakumar T, Budinger GRS, Bharat A. Residual endotoxin induces primary graft dysfunction through ischemia/reperfusion-primed alveolar macrophages. J Clin Invest 2021; 130:4456-4469. [PMID: 32692317 DOI: 10.1172/jci135838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the widespread use of antibiotics, bacterial pneumonias in donors strongly predispose to the fatal syndrome of primary graft dysfunction (PGD) following lung transplantation. We report that bacterial endotoxin persists in human donor lungs after pathogen is cleared with antibiotics and is associated with neutrophil infiltration and PGD. In mouse models, depletion of tissue-resident alveolar macrophages (TRAMs) attenuated neutrophil recruitment in response to endotoxin as shown by compartmental staining and intravital imaging. Bone marrow chimeric mice revealed that neutrophils were recruited by TRAM through activation of TLR4 in a MyD88-dependent manner. Intriguingly, low levels of endotoxin, insufficient to cause donor lung injury, promoted TRAM-dependent production of CXCL2, increased neutrophil recruitment, and led to PGD, which was independent of donor NCMs. Reactive oxygen species (ROS) increased in human donor lungs starting from the warm-ischemia phase and were associated with increased transcription and translocation to the plasma membrane of TLR4 in donor TRAMs. Consistently, scavenging ROS or inhibiting their production to prevent TLR4 transcription/translocation or blockade of TLR4 or coreceptor CD14 on donor TRAMs prevented neutrophil recruitment in response to endotoxin and ameliorated PGD. Our studies demonstrate that residual endotoxin after successful treatment of donor bacterial pneumonia promotes PGD through ischemia/reperfusion-primed donor TRAMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nikita Joshi
- Division of Pulmonary and Critical Care Medicine, and
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, and
| | - Scott C Roberts
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alan Hauser
- Division of Pulmonary and Critical Care Medicine, and.,Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Department of Surgery and.,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | | - Ankit Bharat
- Division of Thoracic Surgery.,Division of Pulmonary and Critical Care Medicine, and
| |
Collapse
|
12
|
Calabrese DR, Aminian E, Mallavia B, Liu F, Cleary SJ, Aguilar OA, Wang P, Singer JP, Hays SR, Golden JA, Kukreja J, Dugger D, Nakamura M, Lanier LL, Looney MR, Greenland JR. Natural killer cells activated through NKG2D mediate lung ischemia-reperfusion injury. J Clin Invest 2021; 131:137047. [PMID: 33290276 PMCID: PMC7852842 DOI: 10.1172/jci137047] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary ischemia-reperfusion injury (IRI) is a clinical syndrome of acute lung injury that occurs after lung transplantation or remote organ ischemia. IRI causes early mortality and has no effective therapies. While NK cells are innate lymphocytes capable of recognizing injured cells, their roles in acute lung injury are incompletely understood. Here, we demonstrated that NK cells were increased in frequency and cytotoxicity in 2 different IRI mouse models. We showed that NK cells trafficked to the lung tissue from peripheral reservoirs and were more mature within lung tissue. Acute lung ischemia-reperfusion injury was blunted in a NK cell-deficient mouse strain but restored with adoptive transfer of NK cells. Mechanistically, NK cell NKG2D receptor ligands were induced on lung endothelial and epithelial cells following IRI, and antibody-mediated NK cell depletion or NKG2D stress receptor blockade abrogated acute lung injury. In human lung tissue, NK cells were increased at sites of ischemia-reperfusion injury and activated NK cells were increased in prospectively collected human bronchoalveolar lavage in subjects with severe IRI. These data support a causal role for recipient peripheral NK cells in pulmonary IRI via NK cell NKG2D receptor ligation. Therapies targeting NK cells may hold promise in acute lung injury.
Collapse
Affiliation(s)
- Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, California
- Medical Service, Veterans Affairs Health Care System, San Francisco, California
| | - Emily Aminian
- Department of Medicine, University of California, San Francisco, California
| | - Benat Mallavia
- Department of Medicine, University of California, San Francisco, California
| | - Fengchun Liu
- Department of Medicine, University of California, San Francisco, California
| | - Simon J. Cleary
- Department of Medicine, University of California, San Francisco, California
| | - Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Ping Wang
- Department of Medicine, University of California, San Francisco, California
| | - Jonathan P. Singer
- Department of Medicine, University of California, San Francisco, California
| | - Steven R. Hays
- Department of Medicine, University of California, San Francisco, California
| | - Jeffrey A. Golden
- Department of Medicine, University of California, San Francisco, California
| | - Jasleen Kukreja
- Department of Surgery, University of California, San Francisco, California
| | - Daniel Dugger
- Medical Service, Veterans Affairs Health Care System, San Francisco, California
| | - Mary Nakamura
- Department of Medicine, University of California, San Francisco, California
- Medical Service, Veterans Affairs Health Care System, San Francisco, California
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Mark R. Looney
- Department of Medicine, University of California, San Francisco, California
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, California
- Medical Service, Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
13
|
Therapeutic Potential of Heme Oxygenase-1 and Carbon Monoxide in Acute Organ Injury, Critical Illness, and Inflammatory Disorders. Antioxidants (Basel) 2020; 9:antiox9111153. [PMID: 33228260 PMCID: PMC7699570 DOI: 10.3390/antiox9111153] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible stress protein that catalyzes the oxidative conversion of heme to carbon monoxide (CO), iron, and biliverdin (BV), the latter of which is converted to bilirubin (BR) by biliverdin reductase. HO-1 has been implicated as a cytoprotectant in various models of acute organ injury and disease (i.e., lung, kidney, heart, liver). Thus, HO-1 may serve as a general therapeutic target in inflammatory diseases. HO-1 may function as a pleiotropic modulator of inflammatory signaling, via the removal of heme, and generation of its enzymatic degradation-products. Iron release from HO activity may exert pro-inflammatory effects unless sequestered, whereas BV/BR have well-established antioxidant properties. CO, derived from HO activity, has been identified as an endogenous mediator that can influence mitochondrial function and/or cellular signal transduction programs which culminate in the regulation of apoptosis, cellular proliferation, and inflammation. Much research has focused on the application of low concentration CO, whether administered in gaseous form by inhalation, or via the use of CO-releasing molecules (CORMs), for therapeutic benefit in disease. The development of novel CORMs for their translational potential remains an active area of investigation. Evidence has accumulated for therapeutic effects of both CO and CORMs in diseases associated with critical care, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS), mechanical ventilation-induced lung injury, pneumonias, and sepsis. The therapeutic benefits of CO may extend to other diseases involving aberrant inflammatory processes such as transplant-associated ischemia/reperfusion injury and chronic graft rejection, and metabolic diseases. Current and planned clinical trials explore the therapeutic benefit of CO in ARDS and other lung diseases.
Collapse
|
14
|
Frye CC, Bery AI, Kreisel D, Kulkarni HS. Sterile inflammation in thoracic transplantation. Cell Mol Life Sci 2020; 78:581-601. [PMID: 32803398 DOI: 10.1007/s00018-020-03615-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The life-saving benefits of organ transplantation can be thwarted by allograft dysfunction due to both infectious and sterile inflammation post-surgery. Sterile inflammation can occur after necrotic cell death due to the release of endogenous ligands [such as damage-associated molecular patterns (DAMPs) and alarmins], which perpetuate inflammation and ongoing cellular injury via various signaling cascades. Ischemia-reperfusion injury (IRI) is a significant contributor to sterile inflammation after organ transplantation and is associated with detrimental short- and long-term outcomes. While the vicious cycle of sterile inflammation and cellular injury is remarkably consistent amongst different organs and even species, we have begun understanding its mechanistic basis only over the last few decades. This understanding has resulted in the developments of novel, yet non-specific therapies for mitigating IRI-induced graft damage, albeit with moderate results. Thus, further understanding of the mechanisms underlying sterile inflammation after transplantation is critical for identifying personalized therapies to prevent or interrupt this vicious cycle and mitigating allograft dysfunction. In this review, we identify common and distinct pathways of post-transplant sterile inflammation across both heart and lung transplantation that can potentially be targeted.
Collapse
Affiliation(s)
- C Corbin Frye
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA.
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA
| |
Collapse
|
15
|
Snyder ME, Finlayson MO, Connors TJ, Dogra P, Senda T, Bush E, Carpenter D, Marboe C, Benvenuto L, Shah L, Robbins H, Hook JL, Sykes M, D'Ovidio F, Bacchetta M, Sonett JR, Lederer DJ, Arcasoy S, Sims PA, Farber DL. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci Immunol 2020; 4:4/33/eaav5581. [PMID: 30850393 DOI: 10.1126/sciimmunol.aav5581] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Tissue-resident memory T cells (TRM) maintain immunity in diverse sites as determined in mouse models, whereas their establishment and role in human tissues have been difficult to assess. Here, we investigated human lung TRM generation, maintenance, and function in airway samples obtained longitudinally from human leukocyte antigen (HLA)-disparate lung transplant recipients, where donor and recipient T cells could be localized and tracked over time. Donor T cells persist specifically in the lungs (and not blood) of transplant recipients and express high levels of TRM signature markers including CD69, CD103, and CD49a, whereas lung-infiltrating recipient T cells gradually acquire TRM phenotypes over months in vivo. Single-cell transcriptome profiling of airway T cells reveals that donor T cells comprise two TRM-like subsets with varying levels of expression of TRM-associated genes, whereas recipient T cells comprised non-TRM and similar TRM-like subpopulations, suggesting de novo TRM generation. Transplant recipients exhibiting higher frequencies of persisting donor TRM experienced fewer adverse clinical events such as primary graft dysfunction and acute cellular rejection compared with recipients with low donor TRM persistence, suggesting that monitoring TRM dynamics could be clinically informative. Together, our results provide spatial and temporal insights into how human TRM develop, function, persist, and affect tissue integrity within the complexities of lung transplantation.
Collapse
Affiliation(s)
- Mark E Snyder
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael O Finlayson
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas J Connors
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Pranay Dogra
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Takashi Senda
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Erin Bush
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Dustin Carpenter
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Charles Marboe
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | - Luke Benvenuto
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Lori Shah
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hilary Robbins
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaime L Hook
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Megan Sykes
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Frank D'Ovidio
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthew Bacchetta
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Joshua R Sonett
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - David J Lederer
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Selim Arcasoy
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA. .,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
16
|
Wilkey BJ, Abrams BA. Mitigation of Primary Graft Dysfunction in Lung Transplantation: Current Understanding and Hopes for the Future. Semin Cardiothorac Vasc Anesth 2019; 24:54-66. [DOI: 10.1177/1089253219881980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary graft dysfunction (PGD) is a form of acute lung injury that develops within the first 72 hours after lung transplantation. The overall incidence of PGD is estimated to be around 30%, and the 30-day mortality for grade 3 PGD around 36%. PGD is also associated with the development of bronchiolitis obliterans syndrome, a specific form of chronic lung allograft dysfunction. In this article, we will discuss perioperative strategies for PGD prevention as well as possible future avenues for prevention and treatment.
Collapse
|
17
|
Krupnick AS, Guo Y. Commentary: Double-negative T cells in the injured lung-evils or angels? J Thorac Cardiovasc Surg 2019; 161:e91. [PMID: 32059929 DOI: 10.1016/j.jtcvs.2019.08.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander Sasha Krupnick
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va; Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Va
| | - Yizhan Guo
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va; Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
18
|
Zaffiri L, Shah RJ, Stearman RS, Rothhaar K, Emtiazjoo AM, Yoshimoto M, Fisher AJ, Mickler EA, Gartenhaus MD, Cohort LTOG, Diamond JM, Geraci MW, Christie JD, Wilkes DS. Collagen type-V is a danger signal associated with primary graft dysfunction in lung transplantation. Transpl Immunol 2019; 56:101224. [PMID: 31325493 DOI: 10.1016/j.trim.2019.101224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Primary graft dysfunction (PGD) is the leading cause of early mortality after lung transplantation. Anti-collagen type-V (col(V)) immunity has been observed in animal models of ischemia-reperfusion injury (IRI) and in PGD. We hypothesized that collagen type-V is an innate danger signal contributing to PGD pathogenesis. METHODS Anti-col(V) antibody production was detected by flow cytometric assay following cultures of murine CD19+ splenic cells with col.(V). Responding murine B cells were phenotyped using surface markers. RNA-Seq analysis was performed on murine CD19+ cells. Levels of anti-col(V) antibodies were measured in 188 recipients from the Lung Transplant Outcomes Group (LTOG) after transplantation. RESULTS Col(V) induced rapid production of anti-col(V) antibodies from murine CD19+ B cells. Subtype analysis demonstrated innate B-1 B cells bound col.(V). Col(V) induced a specific transcriptional signature in CD19+ B cells with similarities to, yet distinct from, B cell receptor (BCR) stimulation. Rapid de novo production of anti-col(V) Abs was associated with an increased incidence of clinical PGD after lung transplant. CONCLUSIONS This study demonstrated that col.(V) is an rapidly recognized by B cells and has specific transcriptional signature. In lung transplants recipients the rapid seroconversion to anti-col(V) Ab is linked to increased risk of grade 3 PGD.
Collapse
Affiliation(s)
- Lorenzo Zaffiri
- Pulmonary, Allergy, and Critical Care Division, University of Indiana, Indianapolis, Indiana Pulmonary, United States of America; Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, NC, United States of America
| | - Rupal J Shah
- Allergy, and Critical Care Division, University of California, San Francisco, CA, United States of America
| | - Robert S Stearman
- Pulmonary, Allergy, and Critical Care Division, University of Indiana, Indianapolis, Indiana Pulmonary, United States of America
| | - Katia Rothhaar
- Pulmonary, Allergy, and Critical Care Division, University of Indiana, Indianapolis, Indiana Pulmonary, United States of America
| | - Amir M Emtiazjoo
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, United States of America
| | - Momoko Yoshimoto
- Pulmonary, Allergy, and Critical Care Division, University of Indiana, Indianapolis, Indiana Pulmonary, United States of America
| | - Amanda J Fisher
- Pulmonary, Allergy, and Critical Care Division, University of Indiana, Indianapolis, Indiana Pulmonary, United States of America
| | - Elizabeth A Mickler
- Pulmonary, Allergy, and Critical Care Division, University of Indiana, Indianapolis, Indiana Pulmonary, United States of America
| | - Matthew D Gartenhaus
- Pulmonary, Allergy, and Critical Care Division, University of Indiana, Indianapolis, Indiana Pulmonary, United States of America
| | - L T O G Cohort
- Lung Transplant Outcomes Group Cohort, Pulmonary, United States of America
| | - Joshua M Diamond
- Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mark W Geraci
- Pulmonary, Allergy, and Critical Care Division, University of Indiana, Indianapolis, Indiana Pulmonary, United States of America
| | - Jason D Christie
- Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - David S Wilkes
- Pulmonary, Allergy, and Critical Care Division, University of Indiana, Indianapolis, Indiana Pulmonary, United States of America; School of Medicine, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
19
|
Akbarpour M, Wu Q, Liu X, Sun H, Lecuona E, Tomic R, Bhorade S, Mohanakumar T, Bharat A. Clinical relevance of lung-restricted antibodies in lung transplantation. Hum Immunol 2019; 80:595-601. [PMID: 31078336 DOI: 10.1016/j.humimm.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022]
Abstract
Lung transplant is a definitive treatment for several end-stage lung diseases. However, the high incidence of allograft rejection limits the overall survival following lung transplantation. Traditionally, alloimmunity directed against human leukocyte antigens (HLA) has been implicated in transplant rejection. Recently, the clinical impact of non-HLA lung-restricted antibodies (LRA) has been recognized and extensive research has demonstrated that they may play a dominant role in the development of lung allograft rejection. The immunogenic lung-restricted antigens that have been identified include amongst others, collagen type I, collagen type V, and k-alpha 1 tubulin. Pre-existing antibodies against these lung-restricted antigens are prevalent in patients undergoing lung transplantation and have emerged as one of the predominant risk factors for primary graft dysfunction which limits short-term survival following lung transplantation. Additionally, LRA have been shown to predispose to chronic lung allograft rejection, the predominant cause of poor long-term survival. This review will discuss ongoing research into the mechanisms of development of LRA as well as the pathogenesis of associated lung allograft injury.
Collapse
Affiliation(s)
- Mahzad Akbarpour
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qiang Wu
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xianpeng Liu
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Haiying Sun
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emilia Lecuona
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rade Tomic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sangeeta Bhorade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|