1
|
Hyam JA, Aziz TZ, Green AL. Control of the lungs via the human brain using neurosurgery. PROGRESS IN BRAIN RESEARCH 2014; 209:341-66. [PMID: 24746057 DOI: 10.1016/b978-0-444-63274-6.00018-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurosurgery can alter cardiorespiratory performance via central networks and includes deep brain stimulation (DBS), a routinely employed therapy for movement disorders and chronic pain syndromes. We review the established cardiovascular effects of DBS and the presumed mechanism by which they are produced via the central autonomic network. We then review the respiratory effects of DBS, including modulation of respiratory rate and lung function indices, and the mechanisms via which these may occur. We conclude by highlighting the potential future therapeutic applications of DBS for intractable airway diseases.
Collapse
Affiliation(s)
- Jonathan A Hyam
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK; Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| | - Tipu Z Aziz
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK; Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alexander L Green
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK; Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
The ventral hippocampus NMDA receptor/nitric oxide/guanylate cyclase pathway modulates cardiovascular responses in rats. Auton Neurosci 2013; 177:244-52. [PMID: 23735844 DOI: 10.1016/j.autneu.2013.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022]
Abstract
The hippocampus is a limbic structure that is involved in the expression of defensive reactions and autonomic changes in rats. The injection of L-glutamate (L-glu) into the ventral hippocampus (VH) decreases blood pressure and heart rate in anesthetized rats. Activation of NMDA receptors in the VH increases the production of nitric oxide (NO), leading to guanylate cyclase activation. The hypothesis of the present study was that a local NMDA receptor-NO-guanylate cyclase interaction mediates the cardiovascular effects of microinjection of L-glu into the VH. Microinjection of increasing doses of L-glu (30, 60 and 200 nmol/200 nL) into the VH of conscious rats caused dose-related pressor and tachycardiac responses. The cardiovascular effects of L-glu were abolished by local pretreatment with: the glutamate receptor antagonist AP-7 (0.4 nmol); the selective neuronal NO synthase (nNOS) inhibitor N(ω)-Propyl-L-arginine (0.04 nmol); the NO scavenger C-PTIO (2 nmol) or the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolol [4,3-a]quinoxalin-1-one (2 nmol). Moreover, these cardiovascular responses were blocked by intravenous pretreatment with: the ganglionic blocker mecamylamine (2mg/Kg); the nonselective β-adrenergic receptor antagonist propranolol (2mg/Kg); the β1-adrenergic receptor selective antagonist atenolol (1mg/kg). However, pretreatment with the selective α1-adrenergic receptor antagonist prazosin (0,5mg/kg) caused only a small reduction in the pressor response, without affecting the L-glu evoked tachycardia. In conclusion, our results suggest that cardiovascular responses caused by L-glu microinjection into the VH are mediated by NMDA glutamate receptors and involve local nNOS and guanylate cyclase activation. Moreover, these cardiovascular responses are mainly mediated by cardiac sympathetic nervous system activation, with a small involvement of the vascular sympathetic nervous system.
Collapse
|
3
|
Pelosi GG, Busnardo C, Tavares RF, Corrêa FMA. Cardiovascular responses to glutamate microinjection in the dorsomedial periaqueductal gray of unanesthetized rats. J Neurosci Res 2012; 90:2193-200. [DOI: 10.1002/jnr.23094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/23/2012] [Accepted: 05/07/2012] [Indexed: 11/07/2022]
|
4
|
DeSantana JM, Da Silva LFS, De Resende MA, Sluka KA. Transcutaneous electrical nerve stimulation at both high and low frequencies activates ventrolateral periaqueductal grey to decrease mechanical hyperalgesia in arthritic rats. Neuroscience 2009; 163:1233-41. [PMID: 19576962 DOI: 10.1016/j.neuroscience.2009.06.056] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/24/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
Abstract
Transcutaneous electric nerve stimulation (TENS) is widely used for the treatment of pain. TENS produces an opioid-mediated antinociception that utilizes the rostroventromedial medulla (RVM). Similarly, antinociception evoked from the periaqueductal grey (PAG) is opioid-mediated and includes a relay in the RVM. Therefore, we investigated whether the ventrolateral or dorsolateral PAG mediates antinociception produced by TENS in rats. Paw and knee joint mechanical withdrawal thresholds were assessed before and after knee joint inflammation (3% kaolin/carrageenan), and after TENS stimulation (active or sham). Cobalt chloride (CoCl(2); 5 mM) or vehicle was microinjected into the ventrolateral periaqueductal grey (vlPAG) or dorsolateral periaqueductal grey (dlPAG) prior to treatment with TENS. Either high (100 Hz) or low (4 Hz) frequency TENS was then applied to the inflamed knee for 20 min. Active TENS significantly increased withdrawal thresholds of the paw and knee joint in the group microinjected with vehicle when compared to thresholds prior to TENS (P<0.001) or to sham TENS (P<0.001). The increases in withdrawal thresholds normally observed after TENS were prevented by microinjection of CoCl(2) into the vlPAG, but not the dlPAG prior to TENS and were significantly lower than controls treated with TENS (P<0.001). In a separate group of animals, microinjection of CoCl(2) into the vlPAG temporarily reversed the decreased mechanical withdrawal threshold suggesting a role for the vlPAG in the facilitation of joint pain. No significant difference was observed for dlPAG. We hypothesize that the effects of TENS are mediated through the vlPAG that sends projections through the RVM to the spinal cord to produce an opioid-mediated analgesia.
Collapse
Affiliation(s)
- J M DeSantana
- Department of Physical Therapy, Federal University of Sergipe, Cidade Universitária Professor José Aloísio de Campos. Av. Marechal Rondon s/n, Jardim Rosa Else, São Cristóvão/Sergipe, Brazil.
| | | | | | | |
Collapse
|
5
|
Comparison of ketanserin, buspirone and propranolol on arousal, pupil size and autonomic function in healthy volunteers. Psychopharmacology (Berl) 2009; 205:1-9. [PMID: 19288084 DOI: 10.1007/s00213-009-1508-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
Abstract
RATIONALE The human pupil may be a suitable physiological test system for the assessment of excessive daytime sleepiness (EDS), but pupillometric assessment could be confounded by medication for comorbid hypertension and mood disorders. OBJECTIVES We examined the profile of the 5HT-2/alpha1/H1 antagonist ketanserin, the 5HT1a agonist buspirone and the beta adrenoceptor antagonist propranolol on pupillary and other measures of arousal. MATERIALS AND METHODS Ketanserin (20 mg), buspirone (10 mg) and propranolol (40 mg) were administered in three independent experiments according to a crossover, placebo-controlled, double-blind design. Resting pupil diameter (RPD) was sampled over 5-min in darkness with infrared pupillometry. Tests also included critical flicker fusion frequency (CFFF), visual analogue scales (VAS), the pupillary light reflex and heart rate/blood pressure. RESULTS Ketanserin reduced RPD, CFFF, VAS-rated arousal and blood pressure and increased the light reflex amplitude. Buspirone reduced RPD and blood pressure. Propranolol reduced heart rate but had no effects on pupillary functions or any arousal measure. CONCLUSIONS Ketanserin but not propranolol had a fully sedative profile and may confound pupillometric assessment of EDS. Beta adrenergic receptors do not appear to participate in arousal and pupillary functions, while 5HT1a receptors reduce pupil size without affecting arousal. Pupil size may not be used unequivocally as an index of the level of alertness in the case of drug-induced changes, when drugs interfere with the central pupil control mechanism in ways that are unrelated to their effects on arousal.
Collapse
|
6
|
Holden JE, Pizzi JA, Jeong Y. An NK1 receptor antagonist microinjected into the periaqueductal gray blocks lateral hypothalamic-induced antinociception in rats. Neurosci Lett 2009; 453:115-9. [PMID: 19356605 PMCID: PMC3463133 DOI: 10.1016/j.neulet.2009.01.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/23/2009] [Accepted: 01/31/2009] [Indexed: 12/22/2022]
Abstract
Substantial data are accumulating that implicate the lateral hypothalamus (LH) as part of the descending pain modulatory system. The LH modifies nociception in the spinal cord dorsal horn partly through connections with the periaqueductal gray (PAG), an area known to play a central role in brainstem modulation of nociception. Early work demonstrated a putative substance P connection between the LH and the PAG, but the connection is not fully defined. To determine whether LH-induced antinociception mediated by the PAG is neurokinin1 (NK1) receptor-dependent, we conducted behavioral experiments in which the cholinergic agonist carbachol (125 nmol) was microinjected into the LH of lightly anesthetized female Sprague-Dawley rats (250-350 g) and antinociception was obtained on the tail flick or foot withdrawal tests. Cobalt chloride (100 nM), which reversibly blocks synaptic activation, blocked LH-induced antinociception. In another set of experiments, the specific NK1 receptor antagonist L-703,606 (5 microg) was microinjected in the PAG following LH stimulation with carbachol abolished LH-induced antinociception as well. Microinjection of cobalt chloride or L-703,606 in the absence of LH stimulation had no effect. These behavioral experiments coupled with earlier work provide converging evidence to support the hypothesis that antinociception produced by activating neurons in the LH is mediated in part by the subsequent activation of neurons in the PAG by NK1 receptors.
Collapse
Affiliation(s)
- Janean E Holden
- Division of Acute, Critical and Long-Term Care Programs, School of Nursing, The University of Michigan, Ann Arbor, MI 48109-5482, USA.
| | | | | |
Collapse
|
7
|
Holden JE, Pizzi JA. Lateral hypothalamic-induced antinociception may be mediated by a substance P connection with the rostral ventromedial medulla. Brain Res 2008; 1214:40-9. [PMID: 18457815 PMCID: PMC2483309 DOI: 10.1016/j.brainres.2008.03.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 11/17/2022]
Abstract
Stimulation of the lateral hypothalamus (LH) produces antinociception modified by intrathecal serotonergic receptor antagonists. Spinally-projecting serotonergic neurons in the LH have not been identified, suggesting that the LH innervates brainstem serotonergic neurons in the rostral ventromedial medulla (RVM), known to modify nociception in the spinal cord dorsal horn. To determine whether substance P (SP) plays a role in LH-induced antinociception mediated by the RVM, we conducted an anatomical experiment using retrograde tract tracing combined with double label immunocytochemistry and found that neuron profiles immunoreactive for SP in the LH project to the RVM. To further identify a functional connection between SP neurons in the LH and the RVM, the cholinergic agonist carbachol (125 nmol) was microinjected into the LH of female Sprague-Dawley rats (250-350 g) and antinociception was obtained on the tail flick or foot withdrawal tests. Cobalt chloride (100 nM) was then microinjected in the RVM to block synaptic activation of spinally-projecting RVM neurons. Within 5 min of the cobalt chloride injection, the antinociceptive effect of carbachol stimulation was blocked. In another set of experiments, the specific NK1 receptor antagonist L-703,606 (5 microg) was microinjected in the RVM following LH stimulation with carbachol and abolished LH-induced antinociception as well. Microinjection of cobalt chloride or L-703,606 in the absence of LH stimulation had no effect. These anatomical and behavioral experiments provide converging evidence to support the hypothesis that antinociception produced by activating neurons in the LH is mediated in part by the subsequent activation of spinally-projecting neurons in the RVM.
Collapse
Affiliation(s)
- Janean E Holden
- Department of Medical-Surgical Nursing, College of Nursing, University of Illinois at Chicago, 845 South Damen Avenue, Chicago, IL 60612-7350, USA.
| | | |
Collapse
|
8
|
Buspirone induced acute and chronic changes of neural activation in the periaqueductal gray of rats. Neuroscience 2008; 155:164-73. [PMID: 18588948 DOI: 10.1016/j.neuroscience.2008.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 11/28/2022]
Abstract
5-HT(1A) modulation within the midbrain periaqueductal gray (PAG) is closely associated with anxiety- or panic-like behavior. Several findings have demonstrated that the properties of buspirone (a 5-HT(1A) partial agonist) would function as either anxiolytic or panicolytic in both clinical and laboratory animal research. In this study, we have investigated the neuronal activity occurring within the different regions of the PAG induced by buspirone treatment. Twenty-eight albino Wistar rats (350-400 g) were injected with either acute or chronic saline/buspirone (each, n=7), respectively. Our results show that buspirone treatment reduced locomotor activity, body weight and fecal boli, particularly in the chronic buspirone group. Two-way ANOVA revealed a significant decrease of c-Fos-immunoreactive (ir) cells expression in all regions of the rostral PAG after both acute and chronic buspirone (acute buspirone (AB) and chronic buspirone (CB), respectively) treatment. However, no effects on c-Fos-ir were detected in the caudal lateral periaqueductal gray (lPAG) and ventrolateral periaqueductal gray (vlPAG) in both the AB and CB groups, and in the dorsolateral periaqueductal gray (dlPAG) of the CB group. Interestingly, c-Fos-ir cells in the dorsomedial periaqueductal gray (dmPAG) column were reduced consistently in both the rostral and caudal PAG in both AB and CB groups. Besides, in all regions the number of c-Fos-ir cells was higher in the AB than in the CB group with exception of the rostral lPAG. In conclusion, the main anxiolytic effect of buspirone was specifically localized in all regions of the rostral PAG and in the caudal dmPAG. However, the caudal dlPAG, lPAG and vlPAG were found to be ineffective to buspirone treatment, probably due to their distinctive function in mediating higher level of anxiety in defensive behavior. This indicates that the longitudinal anatomical structure of the PAG possesses a different level of receptor sensitivity of 5-HT(1A) in the pathophysiology of anxiety and panic disorder.
Collapse
|
9
|
Deolindo M, Pelosi GG, Tavares RF, Aguiar Corrêa FM. The ventrolateral periaqueductal gray is involved in the cardiovascular response evoked by l-glutamate microinjection into the lateral hypothalamus of anesthetized rats. Neurosci Lett 2008; 430:124-9. [DOI: 10.1016/j.neulet.2007.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/08/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
|
10
|
Pelosi GG, Tavares RF, Antunes-Rodrigues J, Corrêa FMA. Cardiovascular responses to noradrenaline microinjection in the ventrolateral periaqueductal gray of unanesthetized rats. J Neurosci Res 2008; 86:712-9. [PMID: 17893924 DOI: 10.1002/jnr.21515] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The periaqueductal gray area (PAG) is a mesencephalic area involved in cardiovascular modulation. Noradrenaline (NA), a neurotransmitter involved in central blood pressure control, is present in the rat PAG. We report here on the cardiovascular effects caused by NA microinjection into the ventrolateral PAG (vlPAG) of unanesthetized rats and the peripheral mechanism involved in their mediation. NA microinjection in the vlPAG of unanesthetized rats evoked dose-related pressor and bradycardiac responses. No significant cardiovascular responses were observed in urethane-anesthetized rats. The pressor response was potentiated by pretreatment with the ganglion blocker pentolinium (5 or 10 mg/kg, intravenously). Pretreatment with the vasopressin antagonist dTyr(CH2)5 (Me)AVP (50 microg/kg, intravenously) blocked the pressor response evoked by the NA microinjection into the vlPAG. Additionally, circulating vasopressin content was found to be significantly increased after NA microinjection in the vlPAG. The results suggest that activation of noradrenergic synapses within the vlPAG modulates vasopressin release in unanesthetized rats.
Collapse
Affiliation(s)
- Gislaine Garcia Pelosi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
11
|
Green AL, Wang S, Bittar RG, Owen SLF, Paterson DJ, Stein JF, Bain PG, Shlugman D, Aziz TZ. Deep brain stimulation: a new treatment for hypertension? J Clin Neurosci 2007; 14:592-5. [PMID: 17430783 DOI: 10.1016/j.jocn.2006.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/18/2006] [Accepted: 04/22/2006] [Indexed: 11/20/2022]
Abstract
We report a 61-year-old hypertensive man who underwent deep brain stimulation of the periventricular/periaqueductal grey area for the relief of chronic neuropathic pain affecting his oral cavity and soft palate. During intraoperative stimulation, we were able to modulate his blood pressure up or down, depending on electrode location. This is the first evidence that hypertension could be effectively treated with electrical stimulation of the midbrain.
Collapse
Affiliation(s)
- A L Green
- Department of Neurosurgery, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pelosi GG, Resstel LBM, Corrêa FMA. Dorsal periaqueductal gray area synapses modulate baroreflex in unanesthetized rats. Auton Neurosci 2007; 131:70-6. [PMID: 16914391 DOI: 10.1016/j.autneu.2006.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 07/04/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
The dorsal portion of the periaqueductal gray area (dPAG) is involved in behavioral and cardiovascular control. We report the effect of acute and reversible dPAG blockade by local microinjection of either lidocaine or CoCl2 on the baroreflex response of unanesthetized rats. Acute and reversible blockade evoked by lidocaine microinjection into the dPAG did not affect the bradycardic response to mean arterial pressure (MAP) increases evoked by i.v. infusion of phenylephrine. However, lidocaine increased baroreflex gain and tachycardic reflex in response to MAP decreases evoked by i.v. infusion of sodium nitroprusside, thus suggesting an action on the sympathetic component of the baroreflex. The effects of dPAG synapses blockade caused by CoCl2 were similar to those observed after lidocaine microinjection. CoCl2 microinjection also increased baroreflex gain and tachycardiac responses to MAP decreases without affecting the parasympathetic baroreflex component. In conclusion, our data point to a dPAG tonic inhibitory involvement in baroreflex control, specifically modulating the sympathetic baroreflex component. Temporary dPAG ablation by local microinjection of lidocaine increased the sympathetic baroreflex component. Because CoCl2 microinjection had similar effects on the baroreflex, this modulation involves local synaptic neurotransmission within the dPAG.
Collapse
Affiliation(s)
- G G Pelosi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, 14040-900, Ribeirão Preto, São Paulo, Brazil
| | | | | |
Collapse
|
13
|
Pelosi GG, Tavares RF, Corrêa FMA. Rostrocaudal somatotopy in the neural connections between the lateral hypothalamus and the dorsal periaqueductal gray of the rat brain. Cell Mol Neurobiol 2006; 26:635-43. [PMID: 16625431 DOI: 10.1007/s10571-006-9015-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 02/03/2006] [Indexed: 12/24/2022]
Abstract
1. The lateral hypothalamus (LH) and the dorsal periaqueductal gray area (dPAG) are two important brain structures involved in central cardiovascular control. 2. In the present study, we searched for possible rostrocaudal somatotopy in the neural connections from the three subdivisions of the LH (anterior-LHa; tuberal-LHt and posterior-LHp) to the different rostrocaudal portions of the dPAG. 3. The bidirectional neuronal tracer biotinylated-dextran-amine (BDA) was microinjected into different rostrocaudal coordinates of the dPAG (AP 3.4-2.7 mm) of male Wistar rats. One week later, animals were sacrificed and brain slices were processed and analyzed to detect neuronal efferent projections from the LH to the dPAG. 4. Neuronal cell body staining was observed along all the rostrocaudal axis of the LH when BDA was microinjected in more rostral dPAG coordinates. When the BDA was microinjected into more caudal dPAG regions, labeled neurons were observed only in the caudal portion of the LH. 5. Efferent projections from the LHa were directed only to the rostral portion of the dPAG. Projections from the rostral and medial portions of the LHt were also directed to the rostral dPAG, whereas both rostral and caudal dPAG received projections from the caudal portion of the LHt. Efferent projections from the anterior portion of the LHp were directed to both rostral and caudal dPAG, whereas projections from the caudal LHp were only directed to the rostral portion of the dPAG.6. The results suggest a somatotopic correlation in LH projections to the dPAG with main connections to the rostral dPAG, which are efferent from the three divisions of the LH. More caudal regions of the dPAG received afferents only from posterior sites in the LH. 7. Moreover, the results point out to extensive and complex neural somatotopic projections from all LH subdivisions to different rostrocaudal portions of the dPAG, reinforcing the idea of significant functional interactions between the brain structures.
Collapse
Affiliation(s)
- Gislaine G Pelosi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14040-900, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|