1
|
D'Amico F, Lugarà C, Luppino G, Giuffrida C, Giorgianni Y, Patanè EM, Manti S, Gambadauro A, La Rocca M, Abbate T. The Influence of Neurotrophins on the Brain-Lung Axis: Conception, Pregnancy, and Neonatal Period. Curr Issues Mol Biol 2024; 46:2528-2543. [PMID: 38534776 DOI: 10.3390/cimb46030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Neurotrophins (NTs) are four small proteins produced by both neuronal and non-neuronal cells; they include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). NTs can exert their action through both genomic and non-genomic mechanisms by interacting with specific receptors. Initial studies on NTs have identified them only as functional molecules of the nervous system. However, recent research have shown that some tissues and organs (such as the lungs, skin, and skeletal and smooth muscle) as well as some structural cells can secrete and respond to NTs. In addition, NTs perform several roles in normal and pathological conditions at different anatomical sites, in both fetal and postnatal life. During pregnancy, NTs are produced by the mother, placenta, and fetus. They play a pivotal role in the pre-implantation process and in placental and embryonic development; they are also involved in the development of the brain and respiratory system. In the postnatal period, it appears that NTs are associated with some diseases, such as sudden infant death syndrome (SIDS), asthma, congenital central hypoventilation syndrome (CCHS), and bronchopulmonary dysplasia (BPD).
Collapse
Affiliation(s)
- Federica D'Amico
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Cecilia Lugarà
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Giovanni Luppino
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Carlo Giuffrida
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Ylenia Giorgianni
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Eleonora Maria Patanè
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Mariarosaria La Rocca
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Tiziana Abbate
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| |
Collapse
|
2
|
Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, Prakash YS, Pabelick CM. Nicotinic receptors in airway disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L149-L163. [PMID: 38084408 PMCID: PMC11280694 DOI: 10.1152/ajplung.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Steven Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
3
|
Borkar NA, Thompson MA, Bartman CM, Sathish V, Prakash YS, Pabelick CM. Nicotine affects mitochondrial structure and function in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L803-L818. [PMID: 37933473 PMCID: PMC11068407 DOI: 10.1152/ajplung.00158.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Exposure to cigarette smoke and e-cigarettes, with nicotine as the active constituent, contributes to increased health risks associated with asthma. Nicotine exerts its functional activity via nicotinic acetylcholine receptors (nAChRs), and the alpha7 subtype (α7nAChR) has recently been shown to adversely affect airway dynamics. The mechanisms of α7nAChR action in airways, particularly in the context of airway smooth muscle (ASM), a key cell type in asthma, are still under investigation. Mitochondria have garnered increasing interest for their role in regulating airway tone and adaptations to cellular stress. Here mitochondrial dynamics such as fusion versus fission, and mitochondrial Ca2+ ([Ca2+]m), play an important role in mitochondrial homeostasis. There is currently no information on effects and mechanisms by which nicotine regulates mitochondrial structure and function in ASM in the context of asthma. We hypothesized that nicotine disrupts mitochondrial morphology, fission-fusion balance, and [Ca2+]m regulation, with altered mitochondrial respiration and bioenergetics in the context of asthmatic ASM. Using human ASM (hASM) cells from nonasthmatics, asthmatics, and smokers, we examined the effects of nicotine on mitochondrial dynamics and [Ca2+]m. Fluorescence [Ca2+]m imaging of hASM cells with rhod-2 showed robust responses to 10 μM nicotine, particularly in asthmatics and smokers. In both asthmatics and smokers, nicotine increased the expression of fission proteins while decreasing fusion proteins. Seahorse analysis showed blunted oxidative phosphorylation parameters in response to nicotine in these groups. α7nAChR siRNA blunted nicotine effects, rescuing [Ca2+]m, changes in mitochondrial structural proteins, and mitochondrial dysfunction. These data highlight mitochondria as a target of nicotine effects on ASM, where mitochondrial disruption and impaired buffering could permit downstream effects of nicotine in the context of asthma.NEW & NOTEWORTHY Asthma is a major healthcare burden, which is further exacerbated by smoking. Recognizing the smoking risk of asthma, understanding the effects of nicotine on asthmatic airways becomes critical. Surprisingly, the mechanisms of nicotine action, even in normal and especially asthmatic airways, are understudied. Accordingly, the goal of this research is to investigate how nicotine influences asthmatic airways in terms of mitochondrial structure and function, via the a7nAChR.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
4
|
Khalfaoui L, Mukhtasimova N, Kelley B, Wells N, Teske JJ, Roos BB, Borkar NA, Zhang EY, Sine SM, Prakash YS, Pabelick CM. Functional α7 nicotinic receptors in human airway smooth muscle increase intracellular calcium concentration and contractility in asthmatics. Am J Physiol Lung Cell Mol Physiol 2023; 325:L17-L29. [PMID: 37192375 PMCID: PMC10292984 DOI: 10.1152/ajplung.00260.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/18/2023] Open
Abstract
Although nicotinic acetylcholine receptors (nAChRs) are commonly associated with neurons in the brain and periphery, recent data indicate that they are also expressed in non-neuronal tissues. We recently found the alpha7 (α7nAChR) subunit is highly expressed in human airway smooth muscle (hASM) with substantial increase in asthmatics, but their functionality remains unknown. We investigated the location and functional role of α7nAChRs in hASM cells from normal versus mild-moderate asthmatic patients. Immunostaining and protein analyses showed α7nAChR in the plasma membrane including in asthmatics. In asthmatic hASM, patch-clamp recordings revealed significantly higher functional homomeric α7nAChR channels. Real-time fluorescence imaging showed nicotine, via α7nAChR, increases intracellular Ca2+ ([Ca2+]i) independent of ACh effects, particularly in asthmatic hASM, while cellular traction force microscopy showed nicotine-induced contractility including in asthmatics. These results indicate functional homomeric and heteromeric nAChRs that are increased in asthmatic hASM, with pharmacology that likely differ owing to different subunit interfaces that form the orthosteric sites. nAChRs may represent a novel target in alleviating airway hyperresponsiveness in asthma.NEW & NOTEWORTHY Cigarette smoking and vaping exacerbate asthma. Understanding the mechanisms of nicotine effects in asthmatic airways is important. This study demonstrates that functional alpha7 nicotinic acetylcholine receptors (α7nAChRs) are expressed in human airway smooth muscle, including from asthmatics, and enhance intracellular calcium and contractility. Although a7nAChRs are associated with neuronal pathways, α7nAChR in smooth muscle suggests inhaled nicotine (e.g., vaping) can directly influence airway contractility. Targeting α7nAChR may represent a novel approach to alleviating airway hyperresponsiveness in asthma.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Nuriya Mukhtasimova
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Brian Kelley
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Natalya Wells
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Emily Y Zhang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
5
|
Borkar NA, Roos B, Prakash YS, Sathish V, Pabelick CM. Nicotinic α7 acetylcholine receptor (α7nAChR) in human airway smooth muscle. Arch Biochem Biophys 2021; 706:108897. [PMID: 34004182 DOI: 10.1016/j.abb.2021.108897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022]
Abstract
Diseases such as asthma are exacerbated by inflammation, cigarette smoke and even nicotine delivery devices such as e-cigarettes. However, there is currently little information on how nicotine affects airways, particularly in humans, and changes in the context of inflammation or asthma. Here, a longstanding assumption is that airway smooth muscle (ASM) that is key to bronchoconstriction has muscarinic receptors while nicotinic receptors (nAChRs) are only on airway neurons. In this study, we tested the hypothesis that human ASM expresses α7nAChR and explored its profile in inflammation and asthma using ASM of non-asthmatics vs. mild-moderate asthmatics. mRNA and western analysis showed the α7 subunit is most expressed in ASM cells and further increased in asthmatics and smokers, or by exposure to nicotine, cigarette smoke or pro-inflammatory cytokines TNFα and IL-13. In these effects, signaling pathways relevant to asthma such as NFκB, AP-1 and CREB are involved. These novel data demonstrate the expression of α7nAChR in human ASM and suggest their potential role in asthma pathophysiology in the context of nicotine exposure.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Benjamin Roos
- Department of Anesthesiology and Perioperative Medicine, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Hou L, Bellingham MC, Huang Y, Zhang P, Zhou X, Zhang M. Central inspiratory activity rhythmically activates synaptic currents of airway vagal preganglionic neurons in neonatal rats. Neurosci Lett 2018; 694:231-237. [PMID: 30458215 DOI: 10.1016/j.neulet.2018.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/18/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
The airway vagal preganglionic neurons (AVPNs) in the external formation of the nucleus ambiguus (eNA) can be separated into inspiratory-activated AVPNs (IA-AVPNs) and inspiratory-inhibited AVPNs (II-AVPNs). IA-AVPNs are activated by excitatory presynaptic inputs during inspiratory bursts, but the composition and the roles of these excitatory inputs still remain obscure. II-AVPNs are inhibited by inhibitory presynaptic inputs but whether these inhibitory inputs are regulated by excitatory inputs is also unclear. In the current study, AVPNs were retrogradely fluorescent labeled. The IA-AVPNs were discriminated from II-AVPNs by their different synaptic inputs during inspiratory bursts. The excitatory inputs to IA-AVPNs and the presynaptic regulation of II-AVPNs were examined by whole-cell patch clamping. Topical application of 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) to the recorded IA-AVPNs almost abolished the tonic EPSCs during inspiratory intervals, inhibited the phasic excitatory currents during inspiratory bursts and attenuated the phasic inspiratory inward currents (PIICs) driven by central inspiratory activity. Blockade of α4β2 and α7 nicotinic acetylcholine receptors (nAChRs) respectively inhibited PIICs in some IA-AVPNs. Carbenoxolone, a gap junction uncoupler, partly inhibited the PIICs of IA-AVPNs. Focal application of CNQX to the II-AVPNs significantly inhibited the frequency, peak amplitude and area of the phasic inspiratory outward currents (PIOCs). These findings demonstrated that glutamatergic non-NMDA receptors played a predominant role in the excitatory drive to the IA-AVPNs, and that α4β2, α7 nAChRs and gap junctions were also rhythmically activated by central inspiratory activity. Additionally, glycinergic neurons making inhibitory inputs to the II-AVPNs were pre-synaptically facilitated by excitatory glutamatergic synaptic inputs.
Collapse
Affiliation(s)
- Lili Hou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yong Huang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengyu Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Saracino L, Zorzetto M, Inghilleri S, Pozzi E, Stella GM. Non-neuronal cholinergic system in airways and lung cancer susceptibility. Transl Lung Cancer Res 2015; 2:284-94. [PMID: 25806244 DOI: 10.3978/j.issn.2218-6751.2013.06.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/11/2023]
Abstract
In the airway tract acetylcholine (ACh) is known to be the mediator of the parasympathetic nervous system. However ACh is also synthesized by a large variety of non-neuronal cells. Strongest expression is documented in neuroendocrine and in epithelial cells (ciliated, basal and secretory elements). Growing evidence suggests that a cell-type specific Ach expression and release do exist and act with local autoparacrine loop in the non-neuronal airway compartment. Here we review the molecular mechanism by which Ach is involved in regulating various aspects of innate mucosal defense, including mucociliary clearance, regulation of macrophage activation as well as in promoting epithelial cells proliferation and conferring susceptibility to lung carcinoma onset. Importantly this non-neuronal cholinergic machinery is differently regulated than the neuronal one and could be specifically therapeutically targeted.
Collapse
Affiliation(s)
- Laura Saracino
- Laboratory of Biochemistry & Genetics, Division of Pneumology, University and Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Michele Zorzetto
- Laboratory of Biochemistry & Genetics, Division of Pneumology, University and Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Simona Inghilleri
- Laboratory of Biochemistry & Genetics, Division of Pneumology, University and Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Ernesto Pozzi
- Policlinico di Monza, University of Pavia, Monza 20025, Italy
| | - Giulia Maria Stella
- Laboratory of Biochemistry & Genetics, Division of Pneumology, University and Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| |
Collapse
|
8
|
Respiratory function after selective respiratory motor neuron death from intrapleural CTB-saporin injections. Exp Neurol 2014; 267:18-29. [PMID: 25476493 DOI: 10.1016/j.expneurol.2014.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/26/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3-28days after intrapleural injections of: 1) CTB-SAP (25 and 50μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB+SAP). CTB-SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7days post-25μg CTB-SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36±7%; intercostal: 56±10% of controls; n=9; p<0.05). CTB-SAP caused minimal cell death in other brainstem or spinal cord regions. CTB-SAP 1) increased CD11b fractional area in the phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7days post-25μg, CTB-SAP 0.3±0.07V; CTB+SAP: 1.5±0.3; n=9; p<0.05). Intrapleural CTB-SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss.
Collapse
|
9
|
Zakharova EI, Germanova EL, Kopaladze RA, Dudchenko AM. Central cholinergic systems in the mechanisms of hypoxic preconditioning: Diverse pathways of synaptic reorganization in vivo. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Neuronal expression of bitter taste receptors and downstream signaling molecules in the rat brainstem. Brain Res 2012; 1475:1-10. [PMID: 22836012 DOI: 10.1016/j.brainres.2012.07.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that molecules of the taste transduction pathway may serve as biochemical markers for chemoreceptive cells in respiratory and gastrointestinal tracts. In this study, we tested the hypothesis that brainstem neurons contain signaling molecules similar to those in taste buds which may sense the chemical composition of brain extracellular fluids. We used the reverse transcription polymerase chain reaction (RT-PCR), Western blot and immunohistochemical techniques to evaluate presence of different bitter-responsive type 2 taste receptors (T2Rs), their associated G-protein α-gustducin, the downstream signaling molecules phospholipase C isoform β2 (PLC-β2) and transient receptor potential melastatin 5 (TRPM5) in the brainstem of rats. RT-PCR confirmed the mRNA coding for α-gustducin, PLC-β2, TRPM5 and rT2R1 but not that of rT2R16, rT2R26 and rT2R38 in the medulla oblongata. Western blotting confirmed the presence of α-gustducin at the protein level in rat brainstem. Immunohistochemistry identified cells expressing α-gustducin and PLC-β2 at multiple cardiorespiratory and CO(2)/H(+) chemosensory sites, including rostral ventral medulla, facial, parapyramidal, solitary tract, hypoglossal and raphe nuclei. In the medullary raphe, α-gustducin and PLC-β2 were colocalized with a subpopulation of tryptophan hydroxylase (TPH)-immunoreactive serotonergic neurons, a subset of which has respiratory CO(2)/H(+) chemosensitivity. Presence of the T2R1 gene and other genes and proteins of the bitter taste transduction pathway in the brainstem implies additional functions for taste receptors and their effector molecules apart from their gustatory function.
Collapse
|
11
|
Zhou X, Chen Y, Ge D, Yuan W, Wang J. Nicotine enhances both excitatory and inhibitory synaptic inputs to inspiratory-activated airway vagal preganglionic neurons. Exp Physiol 2012; 98:67-80. [PMID: 22750421 DOI: 10.1113/expphysiol.2012.066589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The airway vagal preganglionic neurons (AVPNs) supply the essential excitatory drive to the postganglionic neurons and dominate the neural control of the airway both physiologically and pathophysiologically. The AVPNs express multiple subunits of nicotinic acetylcholine receptors (nAChRs), but the influences of exogenous nicotine and endogenous acetylcholine are unknown. This study examined the effects of nicotine and endogenous acetylcholine on retrogradely labelled, functionally identified inspiratory-activated AVPNs (IA-AVPNs) using the patch-clamp technique. Nicotine (10 μmol l(-1)) significantly increased the frequency and amplitude of the spontaneous EPSCs of IA-AVPNs, and these effects were insensitive to methyllycaconitine (MLA, 100 nmol l(-1)), an antagonist of the α7 type of nAChR, but was prevented by dihydro-β-erythroidine (DHβE, 3 μmol l(-1)), an antagonist of the α4β2 type of nAChR. Nicotine caused a tonic inward current in IA-AVPNs, which was reduced by MLA or DHβE alone, but was not abolished by co-application of MLA and DHβE. Nicotine caused a significant increase in the frequency of GABAergic and glycinergic spontaneous IPSCs and significantly increased the amplitude of glycinergic spontaneous IPSCs, all of which were prevented by DHβE. Nicotine had no effects on the miniature EPSCs or miniature IPSCs following pretreatment with TTX. Under current clamp, nicotine caused depolarization and increased the firing rate of IA-AVPNs during inspiratory intervals. Neostigmine (10 μmol l(-1)), an acetylcholinesterase inhibitor, mimicked the effects of nicotine. These results demonstrate that nicotine and endogenous ACh enhance the excitatory and inhibitory synaptic inputs of IA-AVPNs and cause a postsynaptic excitatory current and that the nicotinic effects are mediated presynaptically by activation of the α4β2 type of nAChR and postsynaptically by activation of multiple nAChRs, including α7 and α4β2 types.
Collapse
Affiliation(s)
- Xujiao Zhou
- The State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University Shanghai Medical College, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
12
|
Zakharova EI, Dudchenko AM, Germanova EL. Effects of preconditioning on the resistance to acute hypobaric hypoxia and their correction with selective antagonists of nicotinic receptors. Bull Exp Biol Med 2012; 151:179-82. [PMID: 22238744 DOI: 10.1007/s10517-011-1283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hypobaric hypoxic preconditioning increased the resistance of low resistant and highly resistant rats to acute hypobaric hypoxia at a critical height. Intergroup differences in the resistance of rats to acute hypobaric hypoxia were not observed after hypobaric hypoxia and one variational series with a wide range of resistance (4.5-24.5 min) appeared. Methyllycaconitine, an antagonist of subtype α(7) nicotinic cholinergic receptors, abolished the influence of hypobaric hypoxia on low resistant rats, but had no effect on highly resistant animals. Mecamylamine, a preferential antagonist of subtype α(4)β(2) and α(3)-containing cholinergic receptors, did not modulate the effect of hypobaric hypoxia. By contrast, hypobaric hypoxia abolished the effect of mecamylamine on the resistance of rats that were not trained under conditions of hypobaric hypoxia (low resistant and highly resistant animals with low sensitivity to hypobaric hypoxia). We conclude that the same effect of hypobaric hypoxia is mediated by various mechanisms, which involve different nicotinic cholinergic receptors. They differ from the resistance mechanisms in non-trained rats.
Collapse
Affiliation(s)
- E I Zakharova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | |
Collapse
|
13
|
Co-expression of nAChRs and molecules of the bitter taste transduction pathway by epithelial cells of intrapulmonary airways. Life Sci 2010; 86:281-8. [DOI: 10.1016/j.lfs.2009.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/16/2009] [Accepted: 12/28/2009] [Indexed: 11/23/2022]
|
14
|
Lu J, Wu DM, Hu B, Cheng W, Zheng YL, Zhang ZF, Ye Q, Fan SH, Shan Q, Wang YJ. Chronic administration of troxerutin protects mouse brain against d-galactose-induced impairment of cholinergic system. Neurobiol Learn Mem 2010; 93:157-64. [DOI: 10.1016/j.nlm.2009.09.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/09/2009] [Accepted: 09/12/2009] [Indexed: 01/24/2023]
|
15
|
Dehkordi O, Rose JE, Balan KV, Kc P, Millis RM, Jayam-Trouth A. Neuroanatomical relationships of substance P-immunoreactive intrapulmonary C-fibers and nicotinic cholinergic receptors. J Neurosci Res 2009; 87:1670-8. [DOI: 10.1002/jnr.21967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Kohn AZ, Hoxha Z, Balan KV, Martin RJ, Haxhiu MA, Wilson CG, Mayer CA, Kc P. Developmental changes in brainstem neurons regulating lower airway caliber. Pediatr Res 2009; 65:509-13. [PMID: 19190536 PMCID: PMC2761216 DOI: 10.1203/pdr.0b013e31819da270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Premature infants are at risk for lower airway obstruction; however, maturation of reflex pathways regulating lower airway patency is inadequately studied. We hypothesized that postnatal maturation causes developmental change in brainstem efferent airway-related vagal preganglionic neurons (AVPNs) within the rostral nucleus ambiguus (rNA) that project to the airways and in pulmonary afferent fibers that terminate in the nucleus tractus solitarius (NTS). Ferrets aged 7, 14, 21, and 42 d received intrapulmonary injection of cholera toxin (CT)-beta subunit, a transganglionic retrograde tracer. Five days later, their brainstem was processed for dual immunolabeling of CT-beta and the cholinergic marker, choline acetyl transferase. CT-beta-labeled AVPNs and CT-beta-labeled afferent fiber optical density (OD) were analyzed. There was a significantly higher CT-beta-labeled cell number within the rNA at the youngest compared with older ages. All efferent CT-beta-labeled cells expressed choline acetyl transferase. OD of CT-beta-labeled afferent fibers was also higher at 7 d compared with 14 d. We conclude that the number of efferent AVPNs and afferent fiber OD both diminish over the second postnatal week. We speculate that exposure to injurious agents in early postnatal life may inhibit natural remodeling and thereby enhance later vulnerability to airway hyperreactivity.
Collapse
Affiliation(s)
- Amitai Z Kohn
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies and Children's Hospital, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sartelet H, Maouche K, Totobenazara JL, Petit J, Burlet H, Monteau M, Tournier JM, Birembaut P. Expression of nicotinic receptors in normal and tumoral pulmonary neuroendocrine cells (PNEC). Pathol Res Pract 2008; 204:891-8. [PMID: 18667281 DOI: 10.1016/j.prp.2008.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 05/28/2008] [Accepted: 05/30/2008] [Indexed: 12/14/2022]
Abstract
Neuroendocrine (NE) tumors of the lung represent a wide spectrum of phenotypically distinct entities, with differences in tumor progression and aggressiveness, which include carcinoid tumor (CT) and small-cell lung carcinoma (SCLC). Approximately 20-40% of patients with both typical and atypical CT are non-smokers, while virtually all patients with SCLC are cigarette smokers. Cigarette smoke contains numerous molecules which have been identified as carcinogens. The real impact of nicotine in the development of tumors is not well known. Recent studies show that nicotine upregulates factors of transcription through the nicotinic receptors. The aim of our work was to study the expression of the nicotinic receptors in normal and neoplastic pulmonary NE cells. An immunohistochemical study was carried out with antibodies against NE markers and subunits alpha7 and beta2 of nicotinic receptors in 7 normal lungs, 10 CT (8 typical and 2 atypical) and 10 SCLC fixed in formalin and embedded in paraffin. This study was completed with reverse transcription-polymerase chain reactions (RT-PCR) detection of alpha7-subunit nicotinic receptor mRNA expression. Our data showed that beta2-subunit of nicotinic receptors is never expressed in normal NE cells of lungs and very rarely in NE tumors. In contrast, alpha7-subunit is constantly found in NE cells in normal lungs. In tumors, its expression is significantly higher in SCLC than in CT (p=0.009). Thus, alpha7 subunit nicotinic receptor in a context of chronic nicotinic intoxication seems to be associated with an aggressive phenotype in the spectrum of the NE tumors.
Collapse
Affiliation(s)
- Hervé Sartelet
- Department of Pathology, CHU Sainte Justine, Université de Montréal 3175, Côte Sainte-Catherine, Montréal, QC, Canada H3T1C5.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dehkordi O, Millis RM, Dennis GC, Jazini E, Williams C, Hussain D, Jayam-Trouth A. Expression of alpha-7 and alpha-4 nicotinic acetylcholine receptors by GABAergic neurons of rostral ventral medulla and caudal pons. Brain Res 2007; 1185:95-102. [DOI: 10.1016/j.brainres.2007.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/17/2022]
|