1
|
Busnelli M, Colombo A, Manzini S, Franchi E, Chiesa G. The transcriptome profiling of diseased mouse aortas discloses a dysregulation of the sympathetic neurotransmission in atherosclerosis. Heliyon 2024; 10:e31852. [PMID: 38841495 PMCID: PMC11152669 DOI: 10.1016/j.heliyon.2024.e31852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Previous reports suggest an association between the development of atherosclerosis and alterations in the aortic sympathetic nervous system, but there is no agreement on whether atherosclerotic plaques are accompanied by increased or decreased sympathetic innervation in the arterial wall. In the present study, the aortic transcriptional profile of mice with different predisposition to atherosclerosis was investigated to clarify how the expression of genes involved in sympathetic neurotransmission varied. Eight-week-old C57Bl/6J control mice, Apoe knockout mice (EKO), EKO mice overexpressing human apoA-I (EKO/hA-I) and double Apoe/Apoa1 knockout mice (DKO) mice were fed either a standard rodent diet or a Western-type diet for 22 weeks. Atherosclerosis was quantified, and the aortic transcriptome was analyzed by RNAseq. Western-type diet administration deeply modified the aortic transcriptome. In the genetically modified atherosclerosis-prone mouse lines, an upregulated expression of genes associated with the immunomodulatory response was observed, paralleled by a downregulated expression of the genes related to sympathetic nervous system. Functional enrichment analysis indicated that the presence of advanced atherosclerosis was accompanied by reduced neuronal generation, modulation of synapse chemical transmission, and catecholamine biosynthesis, supporting a relationship between atherosclerosis, dyslipidemia, and sympathetic neurotransmission.
Collapse
Affiliation(s)
| | | | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Italy
| |
Collapse
|
2
|
Feriani A, Tir M, Hachani R, Allagui MS, Tlili N, Nahdi S, Alwasel S, Harrath AH. Permethrin induced arterial retention of native and oxidized LDL in rats by promoting inflammation, oxidative stress and affecting LDL receptors, and collagen genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111269. [PMID: 32911180 DOI: 10.1016/j.ecoenv.2020.111269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
This study is the first to examine the possible mechanism by which long-term exposure to permethrin (PER) can promote arterial retention of proatherogenic lipid and lipoproteins and related vascular dysfunction in rats. Experimental animals were administered two doses of oral PER, PER-1 (2.5 mg/kg/bw) and PER-2 (5 mg/kg/bw), for 90 consecutive days. The results indicated that both PER-1 and PER-2 increased plasmatic and aortic total cholesterol, low-density lipoprotein cholesterol (LDL-C), apo B-100, and oxidized LDL together with arterial scavenger LDL receptors (CD36) but markedly reduced plasmatic and hepatic high-density lipoprotein cholesterol and native LDL receptors in aortic and hepatic tissue. The levels of malondialdehyde, protein carbonyl, and reactive oxygen species were significantly higher, and glutathione content as well as catalase, superoxide dismutase, and glutathione peroxidase activities were suppressed in the aorta of the PER-1 and PER-2 groups. The arterial oxidative damage possibly caused by PER was clearly demonstrated by hematoxylin and eosin histological analysis. Moreover, PER treatment aggravated the inflammatory responses through enhancement of the production of proinflammatory cytokines (tumor necrosis factor-α, interleukin-2, and interleukin-6) in both plasma and aorta. Furthermore, PER-1 and PER-2 potentiated the dysregulation of the aortic extracellular matrix (ECM) content by increasing mRNA activation of collagens I and III. The abundant histological collagen deposition observed in the media and adventitia of intoxicated rats using Masson's trichrome staining corroborates the observed change in ECM. These data showed that oxidative stress related to PER exposure increases the arterial accumulation of lipoprotein biomarkers, likely by actions on both LDL and CD36 receptors, together with the disruption of the aortic ECM.
Collapse
Affiliation(s)
- Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia
| | - Meriam Tir
- Laboratoire des Sciences de L'Environnement, Biologie et Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092, Tunis, Tunisia
| | - Rafik Hachani
- Université de Carthage, Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, 7021, Jarzouna, Tunisia; Laboratoire D'Etude de La Microcirculation (EA 3509), Faculté de Médecine Lariboisière-St. Louis, Université Paris VII, France
| | | | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de L'Environnement, Université de Carthage, Tunisia
| | - Saber Nahdi
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia.
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia; University of Tunis El Manar, Higher Institute of Applied Biological Sciences of Tunis, 2092, Tunis, Tunisia.
| |
Collapse
|
3
|
Simonnet É, Brunet I. [The functions of arterial sympathetic innervation: from development to pathology]. Med Sci (Paris) 2019; 35:643-650. [PMID: 31532376 DOI: 10.1051/medsci/2019131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arterial sympathetic innervation (ASI) is a complex biological process requiring a fine axonal guidance by arteries. Its physiological impact has remained unknown for decades but recently started to be better understood and recognized. ASI is a key element of the adaptive response of the cardiovascular system to challenging situations (exposure to cold, exercise…) as ASI controls the diameter of resistance arteries, thus blood supply to organs and systemic arterial blood pressure via arterial tone modulation. Defaults in ASI can lead to diseases, acting as a main cause or as an aggravating factor. Its impact is actively studied in cardiovascular diseases representing major public health issues, like hypertension, but ASI could also play a role in aging and many more pathological processes including cancer.
Collapse
Affiliation(s)
- Émilie Simonnet
- Centre Interdisciplinaire de Recherche en Biologie (CIRB), Collège de France, Inserm U1050, CNRS UMR 7241, 11, place Marcelin Berthelot, 75005 Paris, France
| | - Isabelle Brunet
- Centre Interdisciplinaire de Recherche en Biologie (CIRB), Collège de France, Inserm U1050, CNRS UMR 7241, 11, place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
4
|
Cen Y, Liu J, Qin Y, Liu R, Wang H, Zhou Y, Wang S, Hu Z. Denervation in Femoral Artery-Ligated Hindlimbs Diminishes Ischemic Recovery Primarily via Impaired Arteriogenesis. PLoS One 2016; 11:e0154941. [PMID: 27175510 PMCID: PMC4866779 DOI: 10.1371/journal.pone.0154941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/21/2016] [Indexed: 12/03/2022] Open
Abstract
Aims Multiple factors regulate arteriogenesis. Peripheral nerves play a crucial role in vascular remodeling, but the function of peripheral nerves during arteriogenesis is obscure. Our study investigated the contribution of denervation to arteriogenesis during post-ischemic recovery from hindlimb femoral artery ligation. Methods and Results Sprague-Dawley rats were randomly allocated into four groups of normal control (NC), hindlimb ischemia (HI), hindlimb ischemia with denervation (HID) and hindlimb simple denervation (HD). Hindlimb ischemic recovery was assessed by clinical assessment and tibialis anterior muscle remodeling on day 28 post-surgery. Blood flow was determined by laser Doppler imaging on day 0, 3, 7, 14 and 28 post-surgery. Collateral number of hindlimb was observed by angiography and gracilis muscles were tested by immunostaining on day 7 and 28 post-surgery. Angiogenesis was accessed by counting CD31 positive capillaries in tibialis anterior muscles on day 28 post-surgery. Group HID showed impaired ischemic recovery compared with the other 3 groups and impaired blood flow recovery compared with group HI on day 28 post-surgery. The collateral number and capillary density of group HID were lower than group HI. The collateral diameter of both group HID and group HI significantly increased compared with group NC. However, the lumen diameter was much narrower and the vessel wall was much thicker in group HID than group HI. We also demonstrated that the thickened neointima of collaterals in group HID comprised of smooth muscle cells and endothelial cells. Conclusions Denervation of the ligated femoral artery in the hindlimb impairs ischemic recovery via impaired perfusion. The possible mechanisms of impaired perfusion are lower collateral number, lower capillary density and most likely narrower lumen, which damage ischemic recovery. This study illustrates the crucial role of peripheral nerves in arteriogenesis using a model combined ischemia with denervation in hindlimb.
Collapse
Affiliation(s)
- Yinghuan Cen
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junfeng Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuansen Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruiming Liu
- Laboratory of Department of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huijin Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Zhou
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shenming Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zuojun Hu
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
5
|
Adeoye OO, Silpanisong J, Williams JM, Pearce WJ. Role of the sympathetic autonomic nervous system in hypoxic remodeling of the fetal cerebral vasculature. J Cardiovasc Pharmacol 2015; 65:308-16. [PMID: 25853949 PMCID: PMC4391294 DOI: 10.1097/fjc.0000000000000192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fetal hypoxia triggers compensatory angiogenesis and remodeling through mechanisms not fully elucidated. In response to hypoxia, hypoxia-inducible factor drives expression of cytokines that exert multiple effects on cerebral structures. Among these, the artery wall is composed of a heterogeneous cell mix and exhibits distinct patterns of cellular differentiation and reactivity. Governing these patterns are the vascular endothelium, smooth muscle (SM), adventitia, sympathetic perivascular nerves (SPN), and the parenchyma. Although an extensive literature details effects of nonneuronal factors on cerebral arteries, the trophic role of perivascular nerves remains unclear. Hypoxia increases sympathetic innervation with subsequent release of norepinephrine (NE), neuropeptide-Y (NPY), and adenosine triphosphate, which exert motor and trophic effects on cerebral arteries and influence dynamic transitions among SM phenotypes. Our data also suggest that the cerebrovasculature reacts very differently to hypoxia in fetuses and adults, and we hypothesize that these differences arise from age-related differences in arterial SM phenotype reactivity and proximity to trophic factors, particularly of neural origin. We provide an integration of recent literature focused on mechanisms by which SPN mediate hypoxic remodeling. Our recent findings suggest that trophic effects of SPN on cerebral arteries accelerate functional maturation through shifts in SM phenotype in an age-dependent manner.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Adult
- Age Factors
- Animals
- Cerebrovascular Circulation
- Fetal Hypoxia/complications
- Fetal Hypoxia/metabolism
- Fetal Hypoxia/physiopathology
- Humans
- Hypoxia, Brain/complications
- Hypoxia, Brain/metabolism
- Hypoxia, Brain/physiopathology
- Muscle, Smooth, Vascular/innervation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/physiopathology
- Neuropeptide Y/metabolism
- Norepinephrine/metabolism
- Sympathetic Nervous System/metabolism
- Sympathetic Nervous System/physiopathology
- Vascular Remodeling
Collapse
Affiliation(s)
- Olayemi O Adeoye
- Divisions of Physiology, Pharmacology, and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA
| | | | | | | |
Collapse
|
6
|
Extracellular matrix presentation modulates vascular smooth muscle cell mechanotransduction. Matrix Biol 2014; 41:36-43. [PMID: 25448408 DOI: 10.1016/j.matbio.2014.11.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/12/2023]
Abstract
The development of atherosclerosis involves phenotypic changes among vascular smooth muscle cells (VSMCs) that correlate with stiffening and remodeling of the extracellular matrix (ECM). VSMCs are highly sensitive to the composition and mechanical state of the surrounding ECM, and ECM remodeling during atherosclerosis likely contributes to pathology. We hypothesized that ECM mechanics and biochemistry are interdependent in their regulation of VSMC behavior and investigated the effect of ligand presentation on certain stiffness-mediated processes. Our findings demonstrate that substrate stiffening is not a unidirectional stimulus-instead, the influence of mechanics on cell behavior is highly conditioned on ligand biochemistry. This "stiffness-by-ligand" effect was evident for VSMC adhesion, spreading, cytoskeletal polymerization, and focal adhesion assembly, where VSMCs cultured on fibronectin (Fn)-modified substrates showed an augmented response to increasing stiffness, whereas cells on laminin (Ln) substrates showed a dampened response. By contrast, cells on Fn substrates showed a decrease in myosin light chain (MLC) phosphorylation and elongation with increasing stiffness, whereas Ln supported an increase in MLC phosphorylation and no change in cell shape with increasing stiffness. Taken together, these findings show that identical cell populations exhibit opposing responses to substrate stiffening depending on ECM presentation. Our results also suggest that the shift in VSMC phenotype in a developing atherosclerotic lesion is jointly regulated by stromal mechanics and biochemistry. This study highlights the complex influence of the blood vessel wall microenvironment on VSMC phenotype and provides insight into how cells may integrate ECM biochemistry and mechanics during normal and pathological tissue function.
Collapse
|
7
|
Hypercholesterolemic diet induces vascular smooth muscle cell apoptosis in sympathectomized rats via intrinsic pathway. Auton Neurosci 2014; 183:49-57. [PMID: 24708922 DOI: 10.1016/j.autneu.2014.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/19/2014] [Accepted: 02/26/2014] [Indexed: 11/21/2022]
Abstract
In this study, we intend to investigate the role of hypercholesterolemic diet, a high risk factor for atherosclerosis, on vascular cell apoptosis in rats that have been previously sympathectomized. Thus, newborn male Wistar rats received injections of guanethidine for sympathectomy. Sham received injections of vehicle. The two groups were fed 1% cholesterol diet for 3months. Sympathectomy alone group was also exploited. Apoptosis in abdominal aortic tissue was identified by TUNEL method and conventional agarose gel electrophoresis to detect specific DNA fragmentation. Caspases 3 and 9, Bcl-2, Bax and cytochrome c were examined by immunoblotting. Oil Red O staining was used to reveal lipid in the arterial wall. Vascular smooth muscle cells (VSMCs) and macrophages were identified by immunostaining for α-smooth muscle actin and rat macrophage marker (ED1), respectively. The efficacy of sympathectomy was evaluated by analysis of perivascular sympathetic fibers. Our study showed that hypercholesterolemic diet, when performed in rats with neonatal sympathectomy, 1) increased aortic TUNEL-positive cells compared to sham and sympathectomy alone groups, 2) illustrated a typical apoptotic DNA ladder on agarose gel electrophoresis, 3) induced Bax translocation from cytosol to mitochondria, 4) enhanced cytochrome c release from mitochondria to cytosol, 5) increased expression of active caspases 3 and 9, and 6) decreased Bcl-2 expression. VSMCs are identified as the major cell type exhibiting apoptosis in this model. Taken together, it can be concluded that hypercholesterolemic diet, when performed in rats with neonatal sympathectomy, induces vascular cell apoptosis in an intrinsic pathway.
Collapse
|
8
|
Oberkersch R, Maccari F, Bravo AI, Volpi N, Gazzaniga S, Calabrese GC. Atheroprotective remodelling of vascular dermatan sulphate proteoglycans in response to hypercholesterolaemia in a rat model. Int J Exp Pathol 2014; 95:181-90. [PMID: 24602133 DOI: 10.1111/iep.12072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/14/2014] [Indexed: 01/03/2023] Open
Abstract
Proteoglycan accumulation within the arterial intima has been implicated in atherosclerosis progression in humans. Nevertheless, hypercholesterolaemia is unable to induce intimal thickening and atheroma plaque development in rats. The study was performed to analyse proteoglycans modifications in rats fed with a high-cholesterol diet to understand whether vascular wall remodelling protects against lesions. Sections obtained from rat aortas showed normal features, in intimal-to-media ratio and lipid accumulation. However, focal endothelial hyperplasia and neo-intima rearrangement were observed in high-cholesterol animals. Besides, hypercholesterolaemia induced an inflammatory microenviroment. We determined the expression of different proteoglycans from aortic cells by Western blot and observed a diminished production of decorin and biglycan in high-cholesterol animals compared with control (P < 0.01 and P < 0.05, respectively). Versican was increased in high-cholesterol animals (P < 0.05), whereas perlecan production showed no differences. No modification of the total content of glycosaminoglycans (GAGs) was found between the two experimental groups. In contrast, the chondroitin sulphate/dermatan sulphate ratio was increased in the high-cholesterol group as compared to the control (0.56 and 0.34, respectively). Structural alterations in the disaccharide composition of galactosaminoglycans were also detected by HPLC, as the ratio of 6-sulphate to 4-sulphate disaccharides was increased in high-cholesterol animals (P < 0.05). Our results suggest that attenuation of decorin and biglycan expression might be an effective strategy to inhibit the first step in atherogenesis, although specific GAG structural modification associated with the development of vascular disease took place. Results emphasize the potential application of therapies based on vascular matrix remodelling to treat atherosclerosis.
Collapse
Affiliation(s)
- Roxana Oberkersch
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|