1
|
Austelle CW, Sege CT, Kahn AT, Gregoski MJ, Taylor DL, McTeague LM, Short EB, Badran BW, George MS. Transcutaneous Auricular Vagus Nerve Stimulation Attenuates Early Increases in Heart Rate Associated With the Cold Pressor Test. Neuromodulation 2024; 27:1227-1233. [PMID: 37642625 PMCID: PMC11218682 DOI: 10.1016/j.neurom.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Transcutaneous auricular vagus nerve stimulation (taVNS) may be useful in treating disorders characterized by chronic parasympathetic disinhibition. Acute taVNS decreases resting heart rate in healthy individuals, but little is known regarding the effects of taVNS on the cardiac response to an acute stressor. To investigate effects on the acute stress response, we investigated how taVNS affected heart rate changes during a cold pressor test (CPT), a validated stress induction technique that reliably elicits a sympathetic stress response with marked increases in heart rate, anxiety, stress, and pain. MATERIALS AND METHODS We recruited 24 healthy adults (ten women, mean age = 29 years) to participate in this randomized, crossover, exploratory trial. Each subject completed two taVNS treatments (one active, one sham) paired with CPTs in the same session. Order of active versus sham stimulation was randomized. Heart rate, along with ratings of anxiety, stress, and pain, was collected before, during, and after each round of taVNS/sham + CPT. RESULTS In both stimulation conditions, heart rate was elevated from baseline in response to the CPT. Analyses also revealed a difference between active and sham taVNS during the first 40 seconds of the CPT (Δ heart rate [HR] = 12.75 ± 7.85 in the active condition; Δ HR = 16.09 ± 11.43 in the sham condition, p = 0.044). There were no significant differences in subjective ratings between active and sham taVNS. CONCLUSIONS In this randomized, sham-controlled study, taVNS attenuated initial increases in HR in response to the CPT. Future studies are needed to investigate the effects of various taVNS doses and parameters on the CPT, in addition to other forms of stress induction. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT00113453.
Collapse
Affiliation(s)
| | - Christopher T Sege
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Alex T Kahn
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Mathew J Gregoski
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Danielle L Taylor
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Lisa M McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Edward Baron Short
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Bashar W Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
2
|
Nagai M, Rommel KP, Po SS, Dasari TW. Autonomic neuromodulation for cardiomyopathy associated with metabolic syndrome - Prevention of precursors for heart failure with preserved ejection fraction. Hypertens Res 2024:10.1038/s41440-024-01886-2. [PMID: 39261699 DOI: 10.1038/s41440-024-01886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Metabolic syndrome (MetS) induces a systemic inflammatory state which can lead to cardiomyopathy, manifesting clinically as heart failure (HF) with preserved ejection fraction (HFpEF). MetS components are intricately linked to the pathophysiologic processes of myocardial remodeling. Increased sympathetic nervous system activity, which is noted as an upstream factor of MetS, has been linked to adverse myocardial structural changes. Since renal denervation and vagus nerve stimulation have a sympathoinhibitory effect, attention has been paid to the cardioprotective effects of autonomic neuromodulation. In this review, the pathophysiology underlying the relationship between MetS and HF is elucidated, and the evidence regarding autonomic neuromodulation in HFpEF is summarized.
Collapse
Affiliation(s)
- Michiaki Nagai
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan.
| | - Karl-Philipp Rommel
- Department of Cardiology, University Medical Center Mainz and German Center for Cardiovascular Research, Mainz, Germany
| | - Sunny S Po
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA
| | - Tarun W Dasari
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
| |
Collapse
|
3
|
Petersen JCG, Becker R, Petersen LG. Transcutaneous vagal nerve stimulation during lower body negative pressure. Auton Neurosci 2024; 254:103192. [PMID: 38896931 DOI: 10.1016/j.autneu.2024.103192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Para-sympathetic vagal activation has profound influence on heart rate and other cardiovascular parameters. We tested the hypothesis that transcutaneous Vagal Nerve Stimulation (tVNS) through the auricular branch of the vagus nerve would attenuate the normal sympathetic response to central blood volume reduction by lower body negative pressure (LBNP). METHOD 10 healthy volunteers (6 female; age 21 ± 2 years; weight 62 ± 13 kg; height 167 ± 12 cm) were included in this cross-over design trial. After 15 min rest in supine position, subjects underwent three 15-min periods of 30 mmHg LBNP intervention with and without cyclic tVNS stimulation. Continuous cardiovascular parameters (Nexfin) were recorded. RESULTS Overall tVNS did not convincingly attenuate sympathetic response to central hypovolemia. Deactivation of the tVNS during LBNP resulted in increased MAP at 2.3 ± 0.5 mmHg (P < 0.001). Comparing the cyclic actual active stimulation periods to periods with pause during tVNS intervention showed a decrease in HR by 72.9 ± 11.2 to 70.2 ± 11.6 bpm (mean ± SD; P < 0.05), and concomitant increases in SV (86.0 ± 12.1 to 87.2 ± 12.6 mL; P < 0.05), MAP (82.9 ± 6.3 to 84.0 ± 6.2 mmHg; P < 0.05) and TPR (1116.0 ± 111.1 to 1153 ± 104.8 dyn*s/cm5; P < 0.05). CONCLUSION tVNS in 30 s cycles during LBNP can selectively attenuate HR, prompting a compensatory augmented sympathetic response. It would appear the method used in this study at least, has an isolated cardiac inhibitory effect probably mediated by augmented vagal activity on the sinoatrial or atrio-ventricular node, possibly in combination with reduced activity in the sympathetic cardiac nerve.
Collapse
Affiliation(s)
| | | | - Lonnie G Petersen
- Harvard Medical School, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA; University of Copenhagen, Denmark
| |
Collapse
|
4
|
Percin A, Ozden AV, Yenisehir S, Pehlivanoglu BE, Yılmaz RC. The Effect of In-Ear and Behind-Ear Transcutaneous Auricular Vagus Nerve Stimulation on Autonomic Function: A Randomized, Single-Blind, Sham-Controlled Study. J Clin Med 2024; 13:4385. [PMID: 39124651 PMCID: PMC11312612 DOI: 10.3390/jcm13154385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: Transcutaneous auricular vagus nerve stimulation (TaVNS) is a non-invasive method of electrical stimulation used to autonomic neuromodulation. Position and form of the electrodes are important for the effectiveness of autonomic modulation. This study was aimed to investigate the effect of TaVNS in-ear and behind-ear on autonomic variables. Methods: A total of 76 healthy participants (male: 40, female: 36) were randomized into four groups as in-ear TaVNS, behind-ear TaVNS, in-ear sham, and behind-ear sham. The TaVNS protocol included bilateral auricular stimulation for 20 min, 25 hertz frequency, a pulse width of 250 μs, and a suprathreshold current (0.13-50 mA). Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), and heart rate variability (HRV) were measured baseline and after stimulation. The parameters RMSSD (root mean square of consecutive differences between normal heartbeats), LF power (low-frequency), and HF power (high-frequency) were assessed in the HRV analysis. Results: HR decreased in the in-ear TaVNS after intervention (p < 0.05), but did not change in behind-ear TaVNS and sham groups compared to baseline (p > 0.05). SBP and DBP decreased and RMSSD increased in the in-ear and behind-ear TaVNS groups (p < 0.05), but did not change in sham groups compared to baseline (p > 0.05). There was no significant difference in LF and HF power after TaVNS compared to baseline in all groups (p > 0.05). SBP was lower and RMSSD was higher in-ear TaVNS than behind-ear TaVNS after intervention (p < 0.05). Conclusions: In-ear TaVNS appears to be more effective than behind-ear TaVNS in modulating SBP and RMSSD, but this needs to be studied in larger populations.
Collapse
Affiliation(s)
- Alper Percin
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Avrasya University, 61080 Trabzon, Turkey
| | - Ali Veysel Ozden
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bahcesehir University, 34330 Istanbul, Turkey; (A.V.O.); (B.E.P.)
| | - Semiha Yenisehir
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Mus Alparslan University, 49250 Mus, Turkey;
| | - Berkay Eren Pehlivanoglu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bahcesehir University, 34330 Istanbul, Turkey; (A.V.O.); (B.E.P.)
| | - Ramazan Cihad Yılmaz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Igdır University, 76000 Igdır, Turkey;
| |
Collapse
|
5
|
Menekseoglu AK, Korkmaz MD, Is EE, Basoglu C, Ozden AV. Acute Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Hand Tremor in Parkinson's Disease: A Pilot Study of Case Series. SISLI ETFAL HASTANESI TIP BULTENI 2023; 57:513-519. [PMID: 38268660 PMCID: PMC10805042 DOI: 10.14744/semb.2023.77200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/03/2023] [Indexed: 01/26/2024]
Abstract
Objectives The aim of this study is to investigate the effects of non-invasive vagus nerve stimulation (VNS) on tremor in Parkinson's disease (PD). Methods This single-center, prospective, and implementation study with before-after design included five participants diagnosed with PD. Auricular VNS was applied to each participant 3 times on different days. VNS was applied to the participants as the right ear, left ear, and bilateral ear. The cardiovascular parameters of the participants were evaluated with Kubios HRV Standard and tremor with UPDRS tremor subscale and smartphone application before and after the intervention. Results Significant decrease in diastolic blood pressure (p=0.043) was found in participants who underwent bilateral auricular VNS. Although there was no significant change in the UPDRS tremor subscale, decreases in the maximum tremor amplitude in the x (p=0.043) and y (0.014) planes were detected in the measurements made with the smartphone application. Conclusion In this study, a decrease in the tremor amplitude measured in the 3D plane with auricular VNS was found in patients with PD.
Collapse
Affiliation(s)
- Ahmet Kivanc Menekseoglu
- Department of Physical Medicine and Rehabilitation, University of Health Sciences Türkiye, Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Türkiye
| | - Merve Damla Korkmaz
- Department of Physical Medicine and Rehabilitation, University of Health Sciences Türkiye, Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Türkiye
| | - Enes Efe Is
- Department of Physical Medicine and Rehabilitation, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Ceyhun Basoglu
- Department of Physical Medicine and Rehabilitation, Acibadem Mehmet Ali Aydinlar University Atakent Hospital, Istanbul, Türkiye
| | - Ali Veysel Ozden
- Department of Physical Medicine and Rehabilitation, BHT Clinic Istanbul Tema Hospital, Istanbul, Türkiye
| |
Collapse
|
6
|
Soltani D, Azizi B, Sima S, Tavakoli K, Hosseini Mohammadi NS, Vahabie AH, Akbarzadeh-Sherbaf K, Vasheghani-Farahani A. A systematic review of the effects of transcutaneous auricular vagus nerve stimulation on baroreflex sensitivity and heart rate variability in healthy subjects. Clin Auton Res 2023; 33:165-189. [PMID: 37119426 DOI: 10.1007/s10286-023-00938-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/27/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE This systematic review aimed to evaluate the effect of transcutaneous auricular vagus nerve stimulation on heart rate variability and baroreflex sensitivity in healthy populations. METHOD PubMed, Scopus, the Cochrane Library, Embase, and Web of Science were systematically searched for controlled trials that examined the effects of transcutaneous auricular vagus nerve stimulation on heart rate variability parameters and baroreflex sensitivity in apparently healthy individuals. Two independent researchers screened the search results, extracted the data, and evaluated the quality of the included studies. RESULTS From 2458 screened studies, 21 were included. Compared with baseline measures or the comparison group, significant changes in the standard deviation of NN intervals, the root mean square of successive RR intervals, the proportion of consecutive RR intervals that differ by more than 50 ms, high-frequency power, low-frequency to high-frequency ratio, and low-frequency power were found in 86%, 75%, 69%, 47%, 36%, and 25% of the studies evaluating the effects of transcutaneous auricular vagus nerve stimulation on these indices, respectively. Baroreflex sensitivity was evaluated in six studies, of which a significant change was detected in only one. Some studies have shown that the worse the basic autonomic function, the better the response to transcutaneous auricular vagus nerve stimulation. CONCLUSION The results were mixed, which may be mainly attributable to the heterogeneity of the study designs and stimulation delivery dosages. Thus, future studies with comparable designs are required to determine the optimal stimulation parameters and clarify the significance of autonomic indices as a reliable marker of neuromodulation responsiveness.
Collapse
Affiliation(s)
- Danesh Soltani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Sima
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Kiarash Tavakoli
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Sadat Hosseini Mohammadi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Hossein Vahabie
- Control and Intelligent Processing Center of Excellence (CIPCE), Cognitive Systems Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Kaveh Akbarzadeh-Sherbaf
- Department of Computer Engineering and Information Technology, Imam Reza International University, Mashhad, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Nagai M, Dote K, Kato M, Sasaki S, Oda N, Förster CY. Afterload reduction after non-invasive vagus nerve stimulation in acute heart failure. Front Hum Neurosci 2023; 17:1149449. [PMID: 37033910 PMCID: PMC10076847 DOI: 10.3389/fnhum.2023.1149449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction While central blood pressure (BP) has been recognized as a major indicator of left ventricular (LV) afterload, the reduction of central pressure decreases LV afterload and may prevent heart failure (HF) decompensation. Non-invasive transcutaneous vagus nerve stimulation (tVNS) was shown to improve cardiac function in HF patients. In this study, the relationship between active tVNS and reduction of central BP was investigated in patients with acute HF (AHF). Methods The 22 patients hospitalized for AHF after initial stabilization (median 80 yrs, males 60%) were randomly assigned to active or sham group. For 1 h daily over 5 days, low-level transcutaneous electrical stimulation (LLTS) (20 Hz, 1 mA) was performed after attaching an ear clip to the tragus (active group) or the earlobe (sham control group). Before and after stimulation, central aortic systolic pressure (CASP), brachial systolic BP (SBP), diastolic BP (DBP) as well as heart rate (HR) were noninvasively measured. Results No significant differences in baseline characteristics were observed between the active and sham groups. In the active group, CASP, SBP, DBP, and HR each decreased significantly after stimulation (all p < 0.05), whereas in the sham group, CASP, SBP, DBP, and HR each increased significantly after stimulation (all p < 0.05). All the changes in CASP, SBP, DBP and HR before and after stimulation were also significantly different between active and sham groups (all p < 0.01). There were no device-related side effects. Conclusion In this study, the left tragus tVNS resulted in an acute afterload reduction in the elderly AHF patients. Non-invasive LLTS may be useful and safe for reducing afterload in AHF. Clinical trial registration ClinicalTrials.gov, identifier UMIN000044121.
Collapse
Affiliation(s)
- Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Keigo Dote
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Masaya Kato
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Shota Sasaki
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Noboru Oda
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Carola Y Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Hemodynamic responses to low-level transcutaneous auricular nerve stimulation in young volunteers. IBRO Neurosci Rep 2023; 14:154-159. [PMID: 36824666 PMCID: PMC9941060 DOI: 10.1016/j.ibneur.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/29/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Objectives The aim of this study was to characterize cardiovascular autonomic responses during two constant current intensities below sensory threshold of transcutaneous auricular nerve stimulation (taNS). On this basis, a protocol for taNS with autonomic modulatory potential could be proposed. Subjects and methods We included 26 men and 24 women, mean age 26. Data were collected during three randomly allocated 20-minute right tragus stimulation sessions - a) no-stimulation (sham), b) 90 µA (arbitrary), and c) 130 µA (near the lowest sensory threshold in majority). Stimulation was 20 Hz, rectangular pulse width of 2 ms, duty cycle 2-second on/off. To assess autonomic responses, we continuously recorded ECG, non-invasive arterial blood pressure (BP) and thoracic impedance cardiography data. Ten-minute data were compared. Fast Fourier transform of RR intervals was performed on 10-minute recordings as well. Low frequency and high frequency power spectra were calculated. Friedman test or one-way ANOVA for repeated measurements and Mann-Whitney or Wilcoxon's signed-rank test, or t-test were carried out. P < 0.05 was considered significant. Results At 130 µA stimulation, cardiac output significantly decreased (p < 0.05), driven by significant heart rate drop in women, and stroke volume and contractility drop in men, pointing to a gender-related autonomic responses. We observed no significant changes in BP, or variability parameters. Significantly higher body size and BP were found in men, as expected. Conclusions It seems that tested taNS protocol has a potential for cardiac autonomic modulation in majority of young healthy men as well as women. Further studies are however needed to prove the therapeutic potential of this stimulation protocol in different patient groups.
Collapse
|
9
|
Corrêa FI, Souza PHL, Uehara L, Ritti-Dias RM, Oliveira da Silva G, Segheto W, Pacheco-Barrios K, Fregni F, Corrêa JCF. Transcutaneous Auricular Vagus Nerve Stimulation Improves Inflammation but Does Not Interfere with Cardiac Modulation and Clinical Symptoms of Individuals with COVID-19: A Randomized Clinical Trial. Life (Basel) 2022; 12:life12101644. [PMID: 36295080 PMCID: PMC9604701 DOI: 10.3390/life12101644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Transcranial auricular vagus nerve stimulation (taVNS) has shown effectiveness in reducing inflammation and depression. Thus, this study evaluated its effect on inflammation, cardiac autonomic modulation, and clinical symptoms in individuals affected by COVID-19. Methods: There were 52 randomized participants hospitalized with COVID-19 diagnosis who were to receive active (a-taVNS) or sham taVNS (s-taVNS) for 90 min twice a day for seven consecutive days. Interleukin 6 (IL-6), 10 (IL-10), cortisol, C-reactive protein (CRP), heart rate variability (HRV), and clinical symptoms were assessed before and after seven days of treatment. There were also seven- and fourteen-day follow-ups for clinical symptoms, including anxiety and depression levels, as well as a six-month follow-up for memory and attention levels. Results: There was significant reduction in CRP −23.9%, (95% CI −46.3 to −1.4) and IL-6 −37.7%, (95% CI −57.6 to −17.7) for the a-taVNS group. There were no changes in IL-10, cortisol levels, or in HRV results (p > 0.05) in both groups. There were no changes regarding clinical symptoms, except for a significant decrease in depression level (−2.85, 95% CI −5.44 to −0.27) in the a-taVNS group. Conclusion: taVNS showed effects on CRP, IL-6, and depression levels; however, it did not affect other clinical symptoms.
Collapse
Affiliation(s)
- Fernanda Ishida Corrêa
- Doctoral and Master’s Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo 01525-000, Brazil
- Correspondence: ; Tel.: +55-11-973440380
| | - Paulo Henrique Leite Souza
- Doctoral and Master’s Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo 01525-000, Brazil
| | - Laura Uehara
- Doctoral and Master’s Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo 01525-000, Brazil
| | - Raphael Mendes Ritti-Dias
- Doctoral and Master’s Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo 01525-000, Brazil
| | - Gustavo Oliveira da Silva
- Doctoral and Master’s Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo 01525-000, Brazil
| | - Wellington Segheto
- Doctoral and Master’s Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo 01525-000, Brazil
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Unidad de Investigación para la Generación y Síntesede Evidencias en Salud, Universidad San Ignacio de Loyola, Lima 15024, Peru
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - João Carlos Ferrari Corrêa
- Doctoral and Master’s Programs in Rehabilitation Sciences, Nove de Julho University, São Paulo 01525-000, Brazil
| |
Collapse
|
10
|
Dolphin H, Dukelow T, Finucane C, Commins S, McElwaine P, Kennelly SP. “The Wandering Nerve Linking Heart and Mind” – The Complementary Role of Transcutaneous Vagus Nerve Stimulation in Modulating Neuro-Cardiovascular and Cognitive Performance. Front Neurosci 2022; 16:897303. [PMID: 35784842 PMCID: PMC9245542 DOI: 10.3389/fnins.2022.897303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The vagus nerve is the longest nerve in the human body, providing afferent information about visceral sensation, integrity and somatic sensations to the CNS via brainstem nuclei to subcortical and cortical structures. Its efferent arm influences GI motility and secretion, cardiac ionotropy, chonotropy and heart rate variability, blood pressure responses, bronchoconstriction and modulates gag and cough responses via palatine and pharyngeal innervation. Vagus nerve stimulation has been utilized as a successful treatment for intractable epilepsy and treatment-resistant depression, and new non-invasive transcutaneous (t-VNS) devices offer equivalent therapeutic potential as invasive devices without the surgical risks. t-VNS offers exciting potential as a therapeutic intervention in cognitive decline and aging populations, classically affected by reduced cerebral perfusion by modulating both limbic and frontal cortical structures, regulating cerebral perfusion and improving parasympathetic modulation of the cardiovascular system. In this narrative review we summarize the research to date investigating the cognitive effects of VNS therapy, and its effects on neurocardiovascular stability.
Collapse
Affiliation(s)
- Helena Dolphin
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Helena Dolphin,
| | - Tim Dukelow
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Ciaran Finucane
- Department of Medical Physics, St James’s Hospital, Dublin, Ireland
| | - Sean Commins
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Paul McElwaine
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sean P. Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Transcutaneous auricular vagus nerve stimulation and heart rate variability: Analysis of parameters and targets. Auton Neurosci 2021; 236:102894. [PMID: 34662844 DOI: 10.1016/j.autneu.2021.102894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Transcutaneous auricular vagus nerve stimulation (taVNS) modulates central and peripheral neurophysiology. Specifically, taVNS increases heart rate variability (HRV) indicating a shift in autonomic function towards parasympathetic predominance. However, knowledge on the influence of stimulation parameters and targets is scarce. We hypothesized that the location and charge per phase of taVNS influences HRV. MATERIALS AND METHODS In thirteen healthy subjects, six different stimulation targets were investigated, i.e., cymba conchae, cavum conchae, outer tragus, inner tragus, crus helicis, and fossa triangularis. At each target, 24 parameter combinations were studied: Eight different electrical charges per phase were evaluated by investigating three pulse durations and eight charge-balanced current intensities, i.e., 100 μs (0.250-2 mA in steps of 0.250 mA), 260 μs (0.096-0.769 mA in steps of 0.096 mA), and 500 μs (0.050-0.400 mA in steps of 0.050 mA). In a parallel group design, left and right taVNS were compared to each other. 30 bursts at each parameter combination were applied with a periodicity of 1 Hz. Each burst consisted of five pulses applied at 25 Hz. RESULTS HRV increased in a charge-dependent way with significant differences between the right and left ear. The targets with the strongest effects were the cymba conchae and fossa triangularis, and to a lesser extent the inner tragus. CONCLUSIONS HRV is suitable to define taVNS parameters and targets for research and therapeutic purposes. Bursts of taVNS with a pulse duration of 100 μs and a current intensity of 2 mA are comfortable for the participants and effective in increasing HRV when applied at specific auricular locations. These findings need to be replicated in larger cohorts, and with longer stimulation and off-periods between conditions. Since results may differ in conditions with an impaired autonomic tone, future studies should also consider aged and patient populations.
Collapse
|