1
|
Maslinska M, Kostyra-Grabczak K. Immunoglobulin G4 in primary Sjögren's syndrome and IgG4-related disease - connections and dissimilarities. Front Immunol 2024; 15:1376723. [PMID: 39364411 PMCID: PMC11446744 DOI: 10.3389/fimmu.2024.1376723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease, with B cell hyperactivation and autoantibody production as its immunological hallmarks. Although the distinction between immunoglobulin G4-related disease (IgG4-RD) and pSS, based on the presence or absence of certain autoantibodies, seems easy to make, possibility of elevated serum IgG4 concentration and often similar organ involvement may lead to a misdiagnosis. The increased serum concentration of IgG4 in IgG4-RD is not clearly linked to the pathogenesis of IgG-RD and it has been suggested that it may constitute just an epiphenomenon. The aim of this article is to discuss the presence of IgG4 in pSS and IgG4-RD and its potential significance for these two diseases.
Collapse
Affiliation(s)
- Maria Maslinska
- Early Arthritis Clinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Kinga Kostyra-Grabczak
- Early Arthritis Clinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
2
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
3
|
Zhang JM, Huang H, Li XQ, Li SP, Zhou LX, Song SY, Zhu ZJ. FLT3 + DC inhibits immune rejection via interaction with Treg in liver transplantation. Int Immunopharmacol 2024; 137:112289. [PMID: 38889505 DOI: 10.1016/j.intimp.2024.112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase (RTK) primarily expressed in hematopoietic stem cells and dendritic cells (DCs). While FLT3 plays a critical role in the proliferation, development and maintenance of DCs, thus influencing immune responses under both normal and pathological conditions, there also exists some evidence that FLT3+DC may be involved with immune responses in liver transplantation (LT). In this study, results from single-cell sequencing data analysis revealed a clear relationship between FLT3+DCs and Regulatory T cells (Tregs) in liver tissue of LT recipients. In peripheral blood samples of LT patients, levels of FLT3+DCs were decreased post-LT-surgery, while Tregs were increased. In a LT mouse model, levels of FLT3+DCs in the liver and bone marrow exhibited an initial time-dependent decrease followed by an increase after LT surgery. Results as obtained with co-culture experiments using mature BMDCs and CD4+ T cells revealed fluctuations in Tregs in response to FLT3 inhibitors and the FLT3 ligand. These findings suggest that FLT3+DCs could emerge as a novel target for mitigating immune rejection in LT.
Collapse
Affiliation(s)
- Jin-Ming Zhang
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hao Huang
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xin-Qiang Li
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shi-Peng Li
- Department of Hepatopancreaticobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Liu-Xin Zhou
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | | | - Zhi-Jun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
4
|
Cai H, Wen H, Li J, Lu L, Zhao W, Jiang X, Bai R. Small-molecule agents for treating skin diseases. Eur J Med Chem 2024; 268:116269. [PMID: 38422702 DOI: 10.1016/j.ejmech.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Skin diseases are a class of common and frequently occurring diseases that significantly impact daily lives. Currently, the limited effective therapeutic drugs are far from meeting the clinical needs; most drugs typically only provide symptomatic relief rather than a cure. Developing small-molecule drugs with improved efficacy holds paramount importance for treating skin diseases. This review aimed to systematically introduce the pathogenesis of common skin diseases in daily life, list related drugs applied in the clinic, and summarize the clinical research status of candidate drugs and the latest research progress of candidate compounds in the drug discovery stage. Also, it statistically analyzed the number of publications and global attention trends for the involved skin diseases. This review might provide practical information for researchers engaged in dermatological drugs and further increase research attention to this disease area.
Collapse
Affiliation(s)
- Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Liuxin Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenxuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
5
|
Yasuda K, Noma H, Mimura T, Nonaka R, Sasaki S, Ofusa A, Shimura M. Role of Novel Inflammatory Factors in Central Retinal Vein Occlusion with Macular Edema. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:4. [PMID: 38276038 PMCID: PMC10817650 DOI: 10.3390/medicina60010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Background and Objectives: To investigate associations among the aqueous humor levels of novel inflammatory factors, including FMS-related tyrosine kinase 3 ligand (Flt-3L), fractalkine, CXC chemokine ligand 16 (CXCL-16), and endocan-1; the severity of macular edema in central retinal vein occlusion (CRVO); and the prognosis of CRVO with macular edema after antivascular endothelial growth factor (VEGF) therapy. Materials and Methods: Aqueous humor was obtained during anti-VEGF treatment with intravitreal ranibizumab injection (IRI) in patients with CRVO and macular edema (n = 19) and during cataract surgery in patients with cataracts (controls, n = 20), and the levels of VEGF and novel inflammatory factors were measured. Macular edema was evaluated by central macular thickness (CMT) and neurosensory retinal thickness (TNeuro), and improvement was evaluated by calculating the percentage change in CMT and TNeuro from before to 1 month after IRI. Results: The levels of VEGF and the novel inflammatory factors were significantly higher in the CRVO group, and the levels of Flt-3L, CXCL-16, and endocan-1 were significantly correlated with each other and with the aqueous flare value. Baseline levels of Flt-3L, CXCL-16, and endocan-1 had a significantly negative correlation with the change in CMT, and the baseline level of CXCL-16 was significantly negatively correlated with the change in TNeuro. Conclusions: Relations among novel inflammatory factors should be further investigated. These findings may help improve understanding of macular edema in CRVO patients and aid the development of new treatments targeting novel inflammatory factors.
Collapse
Affiliation(s)
- Kanako Yasuda
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji 193-0998, Japan; (K.Y.); (R.N.); (S.S.); (A.O.); (M.S.)
| | - Hidetaka Noma
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji 193-0998, Japan; (K.Y.); (R.N.); (S.S.); (A.O.); (M.S.)
| | - Tatsuya Mimura
- Department of Ophthalmology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8606, Japan;
| | - Ryota Nonaka
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji 193-0998, Japan; (K.Y.); (R.N.); (S.S.); (A.O.); (M.S.)
| | - Shotaro Sasaki
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji 193-0998, Japan; (K.Y.); (R.N.); (S.S.); (A.O.); (M.S.)
| | - Akemi Ofusa
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji 193-0998, Japan; (K.Y.); (R.N.); (S.S.); (A.O.); (M.S.)
| | - Masahiko Shimura
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji 193-0998, Japan; (K.Y.); (R.N.); (S.S.); (A.O.); (M.S.)
| |
Collapse
|
6
|
Nian X, Zhang J, Huang S, Duan K, Li X, Yang X. Development of Nasal Vaccines and the Associated Challenges. Pharmaceutics 2022; 14:1983. [PMID: 36297419 PMCID: PMC9609876 DOI: 10.3390/pharmaceutics14101983] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2024] Open
Abstract
Viruses, bacteria, fungi, and several other pathogenic microorganisms usually infect the host via the surface cells of respiratory mucosa. Nasal vaccination could provide a strong mucosal and systemic immunity to combat these infections. The intranasal route of vaccination offers the advantage of easy accessibility over the injection administration. Therefore, nasal immunization is considered a promising strategy for disease prevention, particularly in the case of infectious diseases of the respiratory system. The development of a nasal vaccine, particularly the strategies of adjuvant and antigens design and optimization, enabling rapid induction of protective mucosal and systemic responses against the disease. In recent times, the development of efficacious nasal vaccines with an adequate safety profile has progressed rapidly, with effective handling and overcoming of the challenges encountered during the process. In this context, the present report summarizes the most recent findings regarding the strategies used for developing nasal vaccines as an efficient alternative to conventional vaccines.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
7
|
Lolansen SD, Rostgaard N, Barbuskaite D, Capion T, Olsen MH, Norager NH, Vilhardt F, Andreassen SN, Toft-Bertelsen TL, Ye F, Juhler M, Keep RF, MacAulay N. Posthemorrhagic hydrocephalus associates with elevated inflammation and CSF hypersecretion via activation of choroidal transporters. Fluids Barriers CNS 2022; 19:62. [PMID: 35948938 PMCID: PMC9367104 DOI: 10.1186/s12987-022-00360-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Posthemorrhagic hydrocephalus (PHH) often develops following hemorrhagic events such as intraventricular hemorrhage (IVH) and subarachnoid hemorrhage (SAH). Treatment is limited to surgical diversion of the cerebrospinal fluid (CSF) since no efficient pharmacological therapies are available. This limitation follows from our incomplete knowledge of the molecular mechanisms underlying the ventriculomegaly characteristic of PHH. Here, we aimed to elucidate the molecular coupling between a hemorrhagic event and the subsequent PHH development, and reveal the inflammatory profile of the PHH pathogenesis. METHODS CSF obtained from patients with SAH was analyzed for inflammatory markers using the proximity extension assay (PEA) technique. We employed an in vivo rat model of IVH to determine ventricular size, brain water content, intracranial pressure, and CSF secretion rate, as well as for transcriptomic analysis. Ex vivo radio-isotope assays of choroid plexus transport were employed to determine the direct effect of choroidal exposure to blood and inflammatory markers, both with acutely isolated choroid plexus and after prolonged exposure obtained with viable choroid plexus kept in tissue culture conditions. RESULTS The rat model of IVH demonstrated PHH and associated CSF hypersecretion. The Na+/K+-ATPase activity was enhanced in choroid plexus isolated from IVH rats, but not directly stimulated by blood components. Inflammatory markers that were elevated in SAH patient CSF acted on immune receptors upregulated in IVH rat choroid plexus and caused Na+/K+/2Cl- cotransporter 1 (NKCC1) hyperactivity in ex vivo experimental conditions. CONCLUSIONS CSF hypersecretion may contribute to PHH development, likely due to hyperactivity of choroid plexus transporters. The hemorrhage-induced inflammation detected in CSF and in the choroid plexus tissue may represent the underlying pathology. Therapeutic targeting of such pathways may be employed in future treatment strategies towards PHH patients.
Collapse
Affiliation(s)
- Sara Diana Lolansen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Nina Rostgaard
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Dagne Barbuskaite
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Tenna Capion
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Nicolas H Norager
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Norge Andreassen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Marianne Juhler
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
8
|
Lolansen SD, Rostgaard N, Andreassen SN, Simonsen AH, Juhler M, Hasselbalch SG, MacAulay N. Elevated CSF inflammatory markers in patients with idiopathic normal pressure hydrocephalus do not promote NKCC1 hyperactivity in rat choroid plexus. Fluids Barriers CNS 2021; 18:54. [PMID: 34863228 PMCID: PMC8645122 DOI: 10.1186/s12987-021-00289-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic normal pressure hydrocephalus (iNPH) is a potentially reversible neurological condition of unresolved etiology characterized by a clinical triad of symptoms; gait disturbances, urinary incontinence, and cognitive deterioration. In the present study, we aimed to elucidate the molecular coupling between inflammatory markers and development of iNPH and determine whether inflammation-induced hyperactivity of the choroidal Na+/K+/2Cl- cotransporter (NKCC1) that is involved in cerebrospinal fluid (CSF) secretion could contribute to the iNPH pathogenesis. METHODS Lumbar CSF samples from 20 iNPH patients (10 with clinical improvement upon CSF shunting, 10 without clinical improvement) and 20 elderly control subjects were analyzed with the novel proximity extension assay technique for presence of 92 different inflammatory markers. RNA-sequencing was employed to delineate choroidal abundance of the receptors for the inflammatory markers found elevated in the CSF from iNPH patients. The ability of the elevated inflammatory markers to modulate choroidal NKCC1 activity was determined by addition of combinations of rat version of these in ex vivo experiments on rat choroid plexus. RESULTS 11 inflammatory markers were significantly elevated in the CSF from iNPH patients compared to elderly control subjects: CCL28, CCL23, CCL3, OPG, CXCL1, IL-18, IL-8, OSM, 4E-BP1, CXCL6, and Flt3L. One inflammatory marker, CDCP1, was significantly decreased in iNPH patients compared to control subjects. None of the inflammatory markers differed significantly when comparing iNPH patients with and without clinical improvement upon CSF shunting. All receptors for the elevated inflammatory markers were expressed in the rat and human choroid plexus, except CCR4 and CXCR1, which were absent from the rat choroid plexus. None of the elevated inflammatory markers found in the CSF from iNPH patients modulated the choroidal NKCC1 activity in ex vivo experiments on rat choroid plexus. CONCLUSION The CSF from iNPH patients contains elevated levels of a subset of inflammatory markers. Although the corresponding inflammatory receptors are, in general, expressed in the choroid plexus of rats and humans, their activation did not modulate the NKCC1-mediated fraction of choroidal CSF secretion ex vivo. The molecular mechanisms underlying ventriculomegaly in iNPH, and the possible connection to inflammation, therefore remains to be elucidated.
Collapse
Affiliation(s)
- Sara Diana Lolansen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Nina Rostgaard
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Søren Norge Andreassen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | | | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
9
|
Effects of yoga in men with prostate cancer on quality of life and immune response: a pilot randomized controlled trial. Prostate Cancer Prostatic Dis 2021; 25:531-538. [PMID: 34815548 PMCID: PMC9124736 DOI: 10.1038/s41391-021-00470-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Background Diagnosis and treatment of prostate cancer is associated with anxiety, fear, and depression in up to one-third of men. Yoga improves health-related quality of life (QoL) in patients with several types of cancer, but evidence of its efficacy in enhancing QoL is lacking in prostate cancer. Methods In this randomized controlled study, 29 men newly diagnosed with localized prostate cancer were randomized to yoga for 6 weeks (n = 14) or standard-of-care (n = 15) before radical prostatectomy. The primary outcome was self-reported QoL, assessed by the Expanded Prostate Index Composite (EPIC), Functional Assessment of Cancer Therapy-Prostate (FACT-P), Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT–F), Functional Assessment of Cancer Therapy-General (FACT-G) at baseline, preoperatively, and 6 weeks postoperatively. Secondary outcomes were changes in immune cell status and cytokine levels with yoga. Results The greatest benefit of yoga on QoL was seen in EPIC-sexual (mean difference, 8.5 points), FACIT-F (6.3 points), FACT-Functional wellbeing (8.6 points), FACT-physical wellbeing (5.5 points), and FACT-Social wellbeing (14.6 points). The yoga group showed increased numbers of circulating CD4+ and CD8+ T-cells, more production of interferon-gamma by natural killer cells, and increased Fc receptor III expression in natural killer cells. The yoga group also showed decreased numbers of regulatory T-cells, myeloid-derived suppressor cells, indicating antitumor activity, and reduction in inflammatory cytokine levels (granulocyte colony-stimulating factor [0.55 (0.05–1.05), p = 0.03], monocyte chemoattractant protein [0.22 (0.01–0.43), p = 0.04], and FMS-like tyrosine kinase-3 ligand [0.91 (−0.01, 1.82), p = 0.053]. Conclusions Perioperative yoga exercise improved QoL, promoted an immune response, and attenuated inflammation in men with prostate cancer. Yoga is feasible in this setting and has benefits that require further investigation. Trial registration clinicaltrials.org (NCT02620033).
Collapse
|
10
|
Tapia LI, Olivares M, Torres JP, De la Maza V, Valenzuela R, Contardo V, Tordecilla J, Álvarez AM, Varas M, Zubieta M, Salgado C, Venegas M, Gutiérrez V, Claverie X, Villarroel M, Santolaya ME. Cytokine and chemokine profiles in episodes of persistent high-risk febrile neutropenia in children with cancer. Cytokine 2021; 148:155619. [PMID: 34134910 DOI: 10.1016/j.cyto.2021.155619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In children with cancer and persistent high-risk febrile neutropenia (HRFN), cytokines/chemokines profiles can guide the differentiation of febrile neutropenia (FN) due to infections and episodes of unknown origin (FN-UO). METHODS A prospective, multicenter study in Santiago, Chile included patients ≤ 18 years with cancer and HRFN. Clinical and microbiological studies were performed according to validated protocols. Serum levels of 38 cytokines/chemokines were determined on day 4 of persistent HRFN. We performed comparisons between i) HRFN episodes with a detected etiological agent (FN-DEA) and FN-UO, and ii) bacterial versus viral infections. ROC curves were used to assess the discriminatory power of the analytes. RESULTS 110 HRFN episodes were enrolled (median age 8 years, 53% female). Eighty-four patients were FN-DEA: 44 bacterial, 32 viral, and 8 fungal infections. Twenty-six cases were categorized as FN-UO. Both groups presented similar clinical and laboratory characteristics. Nineteen out of 38 analytes had higher concentrations in the FN-DEA versus FN-UO group. G-CSF, IL-6, and Flt-3L showed the highest discriminatory power to detect infection (AUC 0.763, 0.741, 0.701). Serum levels of G-CSF differentiated bacterial infections and IP-10 viral agents. A combination of G-CSF, IL-6, Flt-3L, and IP-10 showed an AUC of 0.839, 75% sensitivity, and 81% specificity. CONCLUSION A specific immune response is present on day four of persistent HRFN in children with cancer. We propose a combined measure of serum concentrations of G-CSF, IL-6, IP-10, and Flt-3L, in order to predict the presence of an infectious agent as compared to an episode of FN with unknown origin.
Collapse
Affiliation(s)
- Lorena I Tapia
- Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Pediatrics, Hospital Roberto del Río, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| | - Mauricio Olivares
- Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan P Torres
- Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica De la Maza
- Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Romina Valenzuela
- Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica Contardo
- Department of Pediatrics, Hospital Roberto del Río, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Committee of Infectious Diseases, National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Juan Tordecilla
- Department of Pediatrics, Hospital Roberto del Río, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Committee of Infectious Diseases, National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Ana M Álvarez
- Department of Pediatrics, Hospital San Juan de Dios, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Committee of Infectious Diseases, National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Mónica Varas
- Department of Pediatrics, Hospital San Juan de Dios, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Committee of Infectious Diseases, National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Marcela Zubieta
- Department of Pediatrics, Hospital Exequiel González Cortés, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Committee of Infectious Diseases, National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Carmen Salgado
- Department of Pediatrics, Hospital Exequiel González Cortés, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Committee of Infectious Diseases, National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Marcela Venegas
- Department of Pediatrics, Hospital San Borja Arriarán, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Committee of Infectious Diseases, National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Valentina Gutiérrez
- Department of Pediatrics, Hospital Dr. Sótero del Río, Santiago, Chile; Committee of Infectious Diseases, National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Ximena Claverie
- Department of Pediatrics, Hospital Dr. Sótero del Río, Santiago, Chile; Committee of Infectious Diseases, National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Milena Villarroel
- Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Committee of Infectious Diseases, National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - María E Santolaya
- Department of Pediatrics, Hospital Dr. Luis Calvo Mackenna, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Committee of Infectious Diseases, National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile.
| |
Collapse
|
11
|
Zhu J, Yang T, Tang M, Yang Z, Pei H, Ye H, Tang Y, Cheng Z, Lin P, Chen L. Studies on the anti-psoriasis effects and its mechanism of a dual JAK2/FLT3 inhibitor flonoltinib maleate. Biomed Pharmacother 2021; 137:111373. [PMID: 33761599 DOI: 10.1016/j.biopha.2021.111373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic, inflammatory autoimmune disease mediated by T cells, and characterized with abnormal proliferation and differentiation of keratinocytes, and inflammatory infiltration. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway has been identified to play essential roles in mediating various of biological processes, and is closely related to autoimmune diseases. Dendritic cells (DCs) are important antigen presenting cells and play an important regulatory role in T cells. The proliferation, differentiation and function of DCs are regulated by JAK and FMS-like tyrosine kinase 3 (FLT3) signal pathways. Flonoltinib maleate (FM), a high selectivity dual JAK2/FLT3 inhibitor with IC50 values of 0.8 nM and 15 nM for JAK2 and FLT3, respectively, was developed by our laboratory. Moreover, FM was a potent JAK2 inhibitor with 863-fold and 696-fold selectivity over JAK1 and JAK3, respectively. In this study, the anti-psoriasis activity of FM was evaluated both in vitro and in vivo. FM effectively inhibited the proliferation of HaCaT, the inflammatory keratinocyte induced by M5 and markedly suppressed the generation and differentiation of DCs from bone marrow (BM), and inhibited the expression of FLT3 in DCs in vitro. FM effectively inhibited the ear thickening and improved the pathological changes of the ear in interleukin (IL)-23-induced psoriasis-like acanthosis mouse model. Further in keratin 14-vascular endothelial growth factor (K14-VEGF) transgenic homozygous mice model, FM could obviously improve the psoriatic symptom and pathological changes, significantly inhibit the generations of Th1 and Th17 cells in the spleen, and the accumulations of DCs in the ears. FM could also significantly reduce the expression of various inflammatory factors both in C57BL/6 and K14-VEGF mice ears, and the serum of K14-VEGF mice. Mechanism revealed that FM effectively suppressed the phosphorylation of JAK2, STAT3 and STAT5 in inflammatory keratinocytes and the mice ears of C57BL/6 and K14-VEGF, as well as the phosphorylation of FLT3 in K14-VEGF mice ears. In conclusion, FM plays an excellent anti-psoriasis activity, including inhibiting keratinocyte proliferation and regulating inflammatory response through inhibiting JAK2 and FLT3 signaling pathway.
Collapse
Affiliation(s)
- Jiali Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhixuan Cheng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Lin
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
12
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
13
|
Park SC, Shim D, Kim H, Bak Y, Choi DY, Yoon JH, Kim CH, Shin SJ. Fms-Like Tyrosine Kinase 3-Independent Dendritic Cells Are Major Mediators of Th2 Immune Responses in Allergen-Induced Asthmatic Mice. Int J Mol Sci 2020; 21:ijms21249508. [PMID: 33327561 PMCID: PMC7765069 DOI: 10.3390/ijms21249508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are the main mediators of Th2 immune responses in allergic asthma, and Fms-like tyrosine kinase 3 ligand (Flt3L) is an important growth factor for the development and homeostasis of DCs. This study identified the DC populations that primarily cause the initiation and development of allergic lung inflammation using Fms-like tyrosine kinase 3 (Flt3) knockout (KO) mice with allergen-induced allergic asthma. We observed type 2 allergic lung inflammation with goblet cell hyperplasia in Flt3 KO mice, despite a significant reduction in total DCs, particularly CD103+ DCs, which was barely detected. In addition, bone marrow-derived dendritic cells (BMDCs) from Flt3 KO mice directed Th2 immune responses in vitro, and the adoptive transfer of these BMDCs exacerbated allergic asthma with more marked Th2 responses than that of BMDCs from wild-type (WT) mice. Furthermore, we found that Flt3L regulated the in vitro expression of OX40 ligand (OX40L) in DCs, which is correlated with DC phenotype in in vivo models. In conclusion, we revealed that Flt3-independent CD11b+ DCs direct Th2 responses with the elevated OX40L and are the primary cause of allergic asthma. Our findings suggest that Flt3 is required to control type 2 allergic inflammation.
Collapse
Affiliation(s)
- Sang Chul Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea;
| | - Dahee Shim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
| | - Hongmin Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yeeun Bak
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Da Yeon Choi
- Hallym University Industry-Academic Cooperation Foundation, Chuncheon 24252, Korea;
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea;
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea;
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (C.-H.K.); (S.J.S.); Tel.: +82-2-2228-3609 (C.-H.K.); +82-2-2228-1813 (S.J.S.)
| | - Sung Jae Shin
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (C.-H.K.); (S.J.S.); Tel.: +82-2-2228-3609 (C.-H.K.); +82-2-2228-1813 (S.J.S.)
| |
Collapse
|
14
|
Abstract
Fms-like tyrosine kinase-3 (FLT3) mutations occur in approximately 30% of acute myeloid leukemia (AML) cases, suggesting FLT3 as an attractive target for AML treatment. Early FLT3 inhibitors enhance antileukemia efficacy by inhibiting multiple targets, and thus had stronger off-target activity, increasing their toxicity. Recently, a number of potent and selective FLT3 inhibitors have been developed, many of which are effective against multiple mutations. This review outlines the evolution of AML-targeting FLT3 inhibitors by focusing on their chemotypes, selectivity and activity over FLT3 wild-type and FLT3 mutations as well as new techniques related to FLT3. Compounds that currently enter the late clinical stage or have entered the market are also briefly reported.
Collapse
|
15
|
Crosstalk between Dendritic Cells and Immune Modulatory Agents against Sepsis. Genes (Basel) 2020; 11:genes11030323. [PMID: 32197507 PMCID: PMC7140865 DOI: 10.3390/genes11030323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.
Collapse
|
16
|
Cytokine signatures associate with disease severity in children with Mycoplasma pneumoniae pneumonia. Sci Rep 2019; 9:17853. [PMID: 31780733 PMCID: PMC6882793 DOI: 10.1038/s41598-019-54313-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023] Open
Abstract
Host immune response may be involved in the pathogenesis of children Mycoplasma pneumoniae pneumonia (MPP). In the current study, we investigated the alterations of cytokines levels among control, mild MPP and severe MPP children to determine whether cytokine signatures associate with MPP and correlate with disease severity. We measured 13 cytokines in bronchoalveolar lavage fluid (BALF) of 88 children with MPP and 26 children with foreign body aspiration (FB) using a Luminex system. Linear discriminant analyses were performed to develop predictive models of mild MPP and severe MPP on these children. We observed nearly complete separations of severe MPP group, mild MPP group and control group in linear discriminant analyses. Eleven cytokines significantly increased in children with MPP, and seven cytokines had statistically significant upward linear trends correlated with MPP severity. In addition, compared to control group, both IFNγ/IL4 ratio and IFNγ/IL13 ratio increased in mild MPP and severe MPP groups. Our results suggest that children MPP can alter BALF cytokines signatures which associate with disease severity and can be characterized by a distinct airway molecular phenotype that has elevated Th1/Th2 ratios.
Collapse
|
17
|
Kiang L, Ross BX, Yao J, Shanmugam S, Andrews CA, Hansen S, Besirli CG, Zacks DN, Abcouwer SF. Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. Invest Ophthalmol Vis Sci 2019; 59:3767-3778. [PMID: 30046818 PMCID: PMC6059764 DOI: 10.1167/iovs.18-24489] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Retinal detachment (RD) separates the retina from the underlying retinal pigment epithelium, resulting in a gradual degeneration of photoreceptor (PR) cells. It is known that RD also results in an inflammatory response, but its contribution to PR degeneration is unknown. In this study we examine the inflammatory responses to RD in patient vitreous and validate a mouse experimental RD as a model of this phenomenon. Methods Multiplex bead arrays were used to examine cytokine levels in vitreous samples from 24 patients with macula-off rhegmatogenous retinal detachment (RRD) undergoing reattachment surgery and from 10 control patients undergoing vitrectomy for vitreous opacities or epiretinal membrane. Activation of the innate immune response was then examined in a mouse model of RD. Results Twenty-eight factors were significantly increased in vitreous from RD patients versus controls. Notable were the cytokines MCP-1 (CCL2), IP-10 (CXCL10), fractalkine (CX3CL1), GRO (CXCL1), MDC (CCL22), IL-6, and IL-8, which all exhibited relatively high concentrations and several-fold increases in the vitreous of RD patients. Concentrations of various analytes correlated with a range of clinical variables such as duration of detachment and visual acuity. Retinal detachment in the mouse resulted in cytokine mRNA expression changes consistent with human RD vitreous results, as well as microglial proliferation and migration toward the outer retina. Conclusions The findings suggest that an inflammatory response involving microglia is a component of the reaction to retinal detachment that may impact visual acuity after surgical repair and that mouse experimental RD can serve as a model to study this effect.
Collapse
Affiliation(s)
- Lee Kiang
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
| | - Bing X Ross
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Jingyu Yao
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Sumathi Shanmugam
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Chris A Andrews
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Sean Hansen
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Cagri G Besirli
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - David N Zacks
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Steven F Abcouwer
- University of Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| |
Collapse
|
18
|
Parys M, Yuzbasiyan-Gurkan V, Kruger JM. Serum Cytokine Profiling in Cats with Acute Idiopathic Cystitis. J Vet Intern Med 2018; 32:274-279. [PMID: 29356123 PMCID: PMC5787166 DOI: 10.1111/jvim.15032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Feline idiopathic cystitis (FIC) is a common lower urinary tract disorder of domestic cats that resembles interstitial cystitis/painful bladder syndrome (IC/PBS) in humans. Diagnosis of FIC is based on clinical signs and exclusion of other disorders because of a lack of specific pathologic findings or other objective biomarkers. Cytokines are potential noninvasive biomarkers to define the presence, severity, and progression of disease, and response to treatment. OBJECTIVES The objective of this pilot study was to determine concentrations of selected cytokines in serum from healthy cats and cats with acute FIC. ANIMALS Serum samples from 13 healthy cats and from 12 cats with nonobstructive acute FIC were utilized. METHODS Multiplex analysis of 19 cytokines (CCL2, CCL5, CXCL1, CXCL12, CXCL8, Flt3L, GM-CSF, IFN-γ, IL-12 (p40), IL-13, IL-18, IL-1β, IL-2, IL-4, IL-6, PDGF-BB, SCF, sFas, and TNF-α) was performed with a commercially available feline-specific multiplex bead-based assay. RESULTS Mean serum concentrations of IL-12 (p40; P < 0.0001), CXCL12 (P = 0.002), IL-18 (P = 0.032), and Flt3L (P = 0.0024) were significantly increased in FIC cats compared to healthy cats. GM-CSF, IL-1b, IL-2, and PDGF-BB were undetectable or detected in an insufficient number of cats to allow meaningful comparisons. CONCLUSIONS AND CLINICAL IMPORTANCE We have identified increased serum concentrations of pro-inflammatory cytokines and chemokines CXCL12, IL-12, IL-18, and Flt3L in FIC-affected cats. These findings suggest potential candidates for noninvasive biomarkers for diagnosis, staging, and therapeutic outcome monitoring of affected cats and provide additional insight into the etiopathogenesis of FIC.
Collapse
Affiliation(s)
- M Parys
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - V Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - J M Kruger
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
19
|
Parigi SM, Czarnewski P, Das S, Steeg C, Brockmann L, Fernandez-Gaitero S, Yman V, Forkel M, Höög C, Mjösberg J, Westerberg L, Färnert A, Huber S, Jacobs T, Villablanca EJ. Flt3 ligand expands bona fide innate lymphoid cell precursors in vivo. Sci Rep 2018; 8:154. [PMID: 29317685 PMCID: PMC5760642 DOI: 10.1038/s41598-017-18283-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
A common helper-like innate lymphoid precursor (CHILP) restricted to the innate lymphoid cells (ILC) lineage has been recently characterized. While specific requirements of transcription factors for CHILPs development has been partially described, their ability to sense cytokines and react to peripheral inflammation remains unaddressed. Here, we found that systemic increase in Flt3L levels correlated with the expansion of Lineage (Lin)negα4β7+ precursors in the adult murine bone marrow. Expanded Linnegα4β7+ precursors were bona fide CHILPs as seen by their ability to differentiate into all helper ILCs subsets but cNK in vivo. Interestingly, Flt3L-expanded CHILPs transferred into lymphopenic mice preferentially reconstituted the small intestine. While we did not observe changes in serum Flt3L during DSS-induced colitis in mice or plasma from inflammatory bowel disease (IBD) patients, elevated Flt3L levels were detected in acute malaria patients. Interestingly, while CHILP numbers were stable during the course of DSS-induced colitis, they expanded following increased serum Flt3L levels in malaria-infected mice, hence suggesting a role of the Flt3L-ILC axis in malaria. Collectively, our results indicate that Flt3L expands CHILPs in the bone marrow, which might be associated with specific inflammatory conditions.
Collapse
Affiliation(s)
- Sara M Parigi
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Paulo Czarnewski
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Srustidhar Das
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Christiane Steeg
- Department of Immunology, Bernhard-Nocht-Institut for Tropical Medicine, Hamburg, Germany
| | - Leonie Brockmann
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sara Fernandez-Gaitero
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Victor Yman
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Marianne Forkel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Höög
- Unit for Inflammation, Gastroenterology and Rheumathology, Department of Medicine, Huddinge, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lisa Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Färnert
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Department of Immunology, Bernhard-Nocht-Institut for Tropical Medicine, Hamburg, Germany
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Li GB, Ma S, Yang LL, Ji S, Fang Z, Zhang G, Wang LJ, Zhong JM, Xiong Y, Wang JH, Huang SZ, Li LL, Xiang R, Niu D, Chen YC, Yang SY. Drug Discovery against Psoriasis: Identification of a New Potent FMS-like Tyrosine Kinase 3 (FLT3) Inhibitor, 1-(4-((1H-Pyrazolo[3,4-d]pyrimidin-4-yl)oxy)-3-fluorophenyl)-3-(5-(tert-butyl)isoxazol-3-yl)urea, That Showed Potent Activity in a Psoriatic Animal Model. J Med Chem 2016; 59:8293-305. [PMID: 27535613 DOI: 10.1021/acs.jmedchem.6b00604] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guo-Bo Li
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Shuang Ma
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Ling-Ling Yang
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- College
of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Sen Ji
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Zhen Fang
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Guo Zhang
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li-Jiao Wang
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- College
of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Jie-Min Zhong
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yu Xiong
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Jiang-Hong Wang
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shen-Zhen Huang
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Lin-Li Li
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Xiang
- Department
of Clinical Medicine, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dawen Niu
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Ying-Chun Chen
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sheng-Yong Yang
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative
Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
21
|
Mackern-Oberti JP, Llanos C, Riedel CA, Bueno SM, Kalergis AM. Contribution of dendritic cells to the autoimmune pathology of systemic lupus erythematosus. Immunology 2015; 146:497-507. [PMID: 26173489 DOI: 10.1111/imm.12504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease in which excessive inflammation, autoantibodies and complement activation lead to multisystem tissue damage. The contribution of the individual genetic composition has been extensively studied, and several susceptibility genes related to immune pathways that participate in SLE pathogenesis have been identified. It has been proposed that SLE takes place when susceptibility factors interact with environmental stimuli leading to a deregulated immune response. Experimental evidence suggests that such events are related to the failure of T-cell and B-cell suppression mediated by defects in cell signalling, immune tolerance and apoptotic mechanism promoting autoimmunity. In addition, it has been reported that dendritic cells (DCs) from SLE patients, which are crucial in the modulation of peripheral tolerance to self-antigens, show an increased ratio of activating/inhibitory receptors on their surfaces. This phenotype and an augmented expression of co-stimulatory molecules is thought to be critical for disease pathogenesis. Accordingly, tolerogenic DCs can be a potential strategy for developing antigen-specific therapies to reduce detrimental inflammation without causing systemic immunosuppression. In this review article we discuss the most relevant data relative to the contribution of DCs to the triggering of SLE.
Collapse
Affiliation(s)
- Juan P Mackern-Oberti
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), Science and Technology Center (CCT) of Mendoza, National Council of Scientific and Technical Research (CONICET), Mendoza, Argentina.,Institute of Physiology, School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Carolina Llanos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| |
Collapse
|
22
|
Bhattacharya P, Thiruppathi M, Elshabrawy HA, Alharshawi K, Kumar P, Prabhakar BS. GM-CSF: An immune modulatory cytokine that can suppress autoimmunity. Cytokine 2015; 75:261-71. [PMID: 26113402 DOI: 10.1016/j.cyto.2015.05.030] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/12/2022]
Abstract
GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases such as Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance.
Collapse
Affiliation(s)
- Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Muthusamy Thiruppathi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Hatem A Elshabrawy
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Khaled Alharshawi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
23
|
Role of dendritic cells in the initiation, progress and modulation of systemic autoimmune diseases. Autoimmun Rev 2015; 14:127-39. [DOI: 10.1016/j.autrev.2014.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
|
24
|
Warkentin AA, Lopez MS, Lasater EA, Lin K, He BL, Leung AY, Smith CC, Shah NP, Shokat KM. Overcoming myelosuppression due to synthetic lethal toxicity for FLT3-targeted acute myeloid leukemia therapy. eLife 2014; 3. [PMID: 25531068 PMCID: PMC4307180 DOI: 10.7554/elife.03445] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 12/20/2014] [Indexed: 01/01/2023] Open
Abstract
Activating mutations in FLT3 confer poor prognosis for individuals with acute myeloid leukemia (AML). Clinically active investigational FLT3 inhibitors can achieve complete remissions but their utility has been hampered by acquired resistance and myelosuppression attributed to a ‘synthetic lethal toxicity’ arising from simultaneous inhibition of FLT3 and KIT. We report a novel chemical strategy for selective FLT3 inhibition while avoiding KIT inhibition with the staurosporine analog, Star 27. Star 27 maintains potency against FLT3 in proliferation assays of FLT3-transformed cells compared with KIT-transformed cells, shows no toxicity towards normal human hematopoiesis at concentrations that inhibit primary FLT3-mutant AML blast growth, and is active against mutations that confer resistance to clinical inhibitors. As a more complete understanding of kinase networks emerges, it may be possible to define anti-targets such as KIT in the case of AML to allow improved kinase inhibitor design of clinical agents with enhanced efficacy and reduced toxicity. DOI:http://dx.doi.org/10.7554/eLife.03445.001 Major advances in cancer therapy have improved the treatment options for many patients. However, many cancer treatments are toxic or have severe side effects, making them difficult for patients to tolerate. One cause of these side effects is that many cancer therapies kill both normal cells and cancer cells. Developing cancer therapies that are more targeted is therefore a priority in cancer research. Acute myeloid leukemia is a type of blood cancer that has proven difficult to treat without causing serious side effects. This cancer is very aggressive and only about 1 in 4 patients are successfully cured of their cancer. At present, physicians treat acute myeloid leukemia with chemotherapy, which kills both the cancer cells and some of the patient's healthy cells. Many patients with acute myeloid leukemia have mutations in the gene encoding an enzyme called Fms-like tyrosine kinase 3 (FLT3). This mutation makes the enzyme permanently active, and patients with the mutation have a greater risk of their cancer recurring or death. Scientists have recently discovered that treatments that inhibit the FLT3 enzyme can be effective against cancer. However, the drugs investigated so far also interfere with the patient's ability to produce new blood cells, which can lead to infections or an inability to recover from bleeding. Therefore, no new drugs have yet been approved for general use. Warkentin et al. suspected the reason for the adverse effects of FLT3 inhibitors is that these drugs also inhibit another enzyme necessary for blood cell production. Previous work showed that inhibiting one or the other of the enzymes still allows blood cells to be produced as normal: it is only when both are inhibited that production problems arise. Warkentin et al. therefore looked for a chemical that inhibits only the FLT3 enzyme and found one called Star 27. Tests revealed that this inhibits FLT3 and prevents the growth and spread of cancerous cells but does not impair blood cell production. Additionally, Star 27 continues to work even when mutations arise in the cancer cells that cause resistance to other FLT3 inhibitors. The findings demonstrate that when it comes to drug development, it is sometimes as important to avoid certain molecular targets as it is to hit others. Understanding the network of enzymes that FLT3 works with could therefore help researchers to develop more effective and safer cancer treatments. DOI:http://dx.doi.org/10.7554/eLife.03445.002
Collapse
Affiliation(s)
- Alexander A Warkentin
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Michael S Lopez
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Elisabeth A Lasater
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, United States
| | - Kimberly Lin
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, United States
| | - Bai-Liang He
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Anskar Yh Leung
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Catherine C Smith
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, United States
| | - Neil P Shah
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, United States
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
25
|
Barrera-Vargas A, Gómez-Martín D, Alcocer-Varela J. T cell receptor-associated protein tyrosine kinases: the dynamics of tolerance regulation by phosphorylation and its role in systemic lupus erythematosus. Hum Immunol 2014; 75:945-52. [PMID: 25173412 DOI: 10.1016/j.humimm.2014.08.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/10/2014] [Accepted: 08/21/2014] [Indexed: 01/27/2023]
Abstract
There are different abnormalities that lead to the autoreactive phenotype in T cells from systemic lupus erythematosus (SLE) patients. Proximal signaling, involving the T-cell receptor (TCR) and its associated protein tyrosine kinases (PTKs), is significantly affected in SLE. This ultimately leads to aberrant responses, which include enhanced tyrosine phosphorylation and calcium release, as well as decreased IL-2 secretion. Lck, ZAP70 and Syk, which are PTKs with a major role in proximal signaling, all present abnormal functioning that contributes to an altered T cell response in these patients. A number of other molecules, especially regulatory proteins, are also involved. This review will focus on the PTKs that participate in proximal signaling, with specific emphasis on their relevance in maintaining peripheral tolerance, their abnormalities in SLE and how these contribute to an altered T cell response.
Collapse
Affiliation(s)
- Ana Barrera-Vargas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Jorge Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| |
Collapse
|