1
|
Peng Y, Chen L, Chen X, Lin J, Wei J, Cheng J, Zhou F, Ge L, Zhou R, Ding F, Wang X. NPSR1 promotes chronic colitis through regulating CD4 + T cell effector function in inflammatory bowel disease. Int Immunopharmacol 2024; 142:113252. [PMID: 39332092 DOI: 10.1016/j.intimp.2024.113252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/31/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Neuropeptide S receptor 1 (NPSR1) has been implicated in the the onset of inflammatory bowel disease (IBD), though its exact mechanism remains unclear. This study investigates the role of NPSR1 in regulating CD4+ T cell effector function in IBD. METHODS Peripheral blood and colonic mucosal biopsies from IBD patients, as well as dextran sodium sulfate (DSS)-induced mouse colitis models, were analyzed to assess the effects of NPSR1 on colitis and CD4+ T cell-mediated immune responses. NPSR1 knockdown was conducted both in vitro and in vivo to elucidate underlying mechanisms. Expression of NPSR1 and CD4+ T cell-related factors was measured using quantitative real-time PCR, immunoblotting, cytometric bead array, immunofluorescence, and immunohistochemistry. CD4 + T cell effector functions were evaluated through flow cytometry, EdU incorporation assay, Annexin V-FITC/PI staining, and transwell assay. RESULTS NPSR1 expression was elevated in the intestinal tissues from IBD patients. Its downregulation provided protection in DSS-induced mouse colitis models. NPSR1 correlated positively with CD4 + T cell-mediated inflammation, and its knockdown reduced CD4+ T cell-mediated immune responses and inhibited CD4+ T cell differentiation. Additionally, NPSR1 knockdown decreased CD4+ T cell proliferation, increased apoptosis, and enhanced CCL2-induced migration in vitro, while significantly reducing Th1 cell chemotaxis in vivo. CONCLUSIONS This study demonstrates that NPSR1 promotes chronic colitis by regulating CD4 + T cell effector functions in IBD, offering potential new therapeutic strategies for IBD treatment.
Collapse
Affiliation(s)
- Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Liping Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaojia Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jia Wei
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Jie Cheng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Liuqing Ge
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Rui Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Feng Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaobing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
2
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Kaden T, Alonso-Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2024:e2402756. [PMID: 39491534 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH, 07745, Jena, Germany
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Raquel Alonso-Román
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV, Jena University Hospital, 07747, Jena, Germany
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| |
Collapse
|
4
|
Barros AS, Pinto S, Viegas J, Martins C, Almeida H, Alves I, Pinho S, Nunes R, Harris A, Sarmento B. Orally Delivered Stimulus-Sensitive Nanomedicine to Harness Teduglutide Efficacy in Inflammatory Bowel Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402502. [PMID: 39007246 DOI: 10.1002/smll.202402502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory condition affecting the gastrointestinal tract (GIT). Glucagon-like peptide-2 (GLP-2) analogs possess high potential in the treatment of IBD by enhancing intestinal repair and attenuating inflammation. Due to the enzymatic degradation and poor intestinal absorption, GLP-2 analogs are administered parenterally, which leads to poor patient compliance. This work aims to develop IBD-targeted nanoparticles (NPs) for the oral delivery of the GLP-2 analog, Teduglutide (TED). Leveraging the overproduction of Reactive Oxygen Species (ROS) in the IBD environment, ROS-sensitive NPs are developed to target the intestinal epithelium, bypassing the mucus barrier. PEGylation of NPs facilitates mucus transposition, but subsequent PEG removal is crucial for cellular internalization. This de-PEGylation is possible by including a ROS-sensitive thioketal linker within the system. ROS-sensitive NPs are established, with the ability to fully de-PEGylate via ROS-mediated cleavage. Encapsulation of TED into NPs resulted in the absence of absorption in 3D in vitro models, potentially promoting a localized action, and avoiding adverse effects due to systemic absorption. Upon oral administration to colitis-induced mice, ROS-sensitive NPs are located in the colon, displaying healing capacity and reducing inflammation. Cleavable PEGylated NPs demonstrate effective potential in managing IBD symptoms and modulating the disease's progression.
Collapse
Affiliation(s)
- Andreia S Barros
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- ICBAS- Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Soraia Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- ICBAS- Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Juliana Viegas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
| | - Claúdia Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
| | - Helena Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- ICBAS- Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Inês Alves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
| | - Salomé Pinho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- ICBAS- Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
- FMUP- Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| | - Rute Nunes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- IUCS-CESPU-Instituto Universitário de Ciências das Saúde, Porto, 4585-116, Portugal
| | - Alan Harris
- Ferring Pharmaceuticals, 1162-Saint-Prex, SA Chemin de la Vergognausaz 50, Switzerland
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- IUCS-CESPU-Instituto Universitário de Ciências das Saúde, Porto, 4585-116, Portugal
| |
Collapse
|
5
|
Xiong M, Sun W. Research progress of probiotics and their protective strategy in the field of inflammatory bowel disease treatment: A review. Medicine (Baltimore) 2024; 103:e40401. [PMID: 39495980 PMCID: PMC11537665 DOI: 10.1097/md.0000000000040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease characterized by recurrent episodes and difficult-to-cure symptoms. Although the pathogenesis of IBD is closely related to host genetic susceptibility, intestinal microbiota, environmental factors, and immune responses, leading to mucosal damage and increased intestinal permeability. Intestinal mucosal injury in IBD patients causes pathogenic bacteria and pathogenic factors to invade the intestine, leading to disturb the structure and metabolic products of intestinal flora. Researchers have found that probiotics, as live microbial agents, can effectively inhibit the growth of pathogenic bacteria, regulate intestinal flora, optimize intestinal microecology, restore intestinal homeostasis, and promote intestinal mucosal repairing. During the oral delivery process, probiotics are susceptible to adverse physiological factors, leading to reduced bioavailability. Additionally, the oxidative stress microenvironment induced by intestinal mucosal damage makes it difficult for probiotics to colonize the intestinal tract of IBD patients, thereby affecting their probiotic effect. This research mainly introduces and reviews the advantages and disadvantages of probiotics and their protective strategies in the treatment of IBD, and prospects the future development trends of probiotics and their protective strategies. Probiotics can effectively inhibit the growth of harmful microorganisms, regulate the structure of the intestinal microbiota, and promote mucosal repairing, thereby reducing immune stress and alleviating intestinal inflammation, providing a new perspective for the treatment of IBD. The development of single-cell encapsulation technology not only effectively maintaining the biological activity of probiotics during oral delivery, but also endowing probiotics with additional biological functions naturally achieved through surface programming, which has multiple benefits for intestinal health.
Collapse
Affiliation(s)
- Ming Xiong
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wanlei Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
6
|
De la Rosa González A, Guerra-Ojeda S, Camacho-Villa MA, Valls A, Alegre E, Quintero-Bernal R, Martorell P, Chenoll E, Serna-García M, Mauricio MD, Serna E. Effect of Probiotics on Gastrointestinal Health Through the Aryl Hydrocarbon Receptor Pathway: A Systematic Review. Foods 2024; 13:3479. [PMID: 39517263 PMCID: PMC11545787 DOI: 10.3390/foods13213479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Probiotics are living microorganisms recognized for conferring health benefits on the host by modulating the gut microbiota. They interact with various signaling pathways, including the aryl hydrocarbon receptor (AhR), which plays a crucial role in maintaining intestinal homeostasis and immune function. The activation of AhR by probiotics has been associated with benefits such as improved intestinal barrier function, reduced inflammation, and modulation of immune responses. This systematic review aims to summarize current knowledge on the signaling of AhR, mediated by probiotics in physiological conditions and gastrointestinal pathologies. We conducted a comprehensive search across databases, including PubMed and Embase, up until July 2024. Out of 163 studies screened, 18 met the inclusion criteria. Our findings revealed in healthy populations that probiotic consumption increases the production of AhR ligands promoting intestinal immune tolerance. Furthermore, in populations with gastrointestinal pathologies, probiotics ameliorated symptoms through AhR activation by Trp metabolites, leading to the upregulation of the anti-inflammatory response.
Collapse
Affiliation(s)
| | - Sol Guerra-Ojeda
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.V.); (E.A.); (E.S.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - María Alejandra Camacho-Villa
- HARPEER Research Group, Yumbo 760001, Colombia; (A.D.l.R.G.); (M.A.C.-V.); (R.Q.-B.)
- Pain Study Group (GED), Physical Therapy School, Universidad Industrial de Santander, Bucaramanga Santander 680002, Colombia
| | - Alicia Valls
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.V.); (E.A.); (E.S.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- MODULAhR Group, Universitat de Valencia, 46010 Valencia, Spain
| | - Eva Alegre
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.V.); (E.A.); (E.S.)
| | | | - Patricia Martorell
- Archer Daniels Midland (ADM), Nutrition, Health & Wellness, Biopolis S. L. Parc Cientific, University of Valencia, 46980 Paterna, Spain; (P.M.); (E.C.)
| | - Empar Chenoll
- Archer Daniels Midland (ADM), Nutrition, Health & Wellness, Biopolis S. L. Parc Cientific, University of Valencia, 46980 Paterna, Spain; (P.M.); (E.C.)
| | - Marta Serna-García
- Department of Dentistry, Faculty of Health Sciences, Universidad Europea de Valencia, 46010 Valencia, Spain;
| | - Maria D. Mauricio
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.V.); (E.A.); (E.S.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- MODULAhR Group, Universitat de Valencia, 46010 Valencia, Spain
| | - Eva Serna
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.V.); (E.A.); (E.S.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- MODULAhR Group, Universitat de Valencia, 46010 Valencia, Spain
| |
Collapse
|
7
|
Israel A, Sharif K, Zada G, Friedenberg A, Vinker S, Lahat A. Comparative Analysis of Inflammatory Bowel Disease Management: Hospital-based Versus Community-based Care. J Clin Gastroenterol 2024:00004836-990000000-00364. [PMID: 39453694 DOI: 10.1097/mcg.0000000000002088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) encompasses chronic gastrointestinal disorders characterized by recurrent inflammation. Achieving mucosal healing and preventing disease progression are primary treatment goals. OBJECTIVES This study aimed to compare disease characteristics, medication utilization, procedures performed, and hospitalizations between IBD patients treated in hospital and community settings using the Leumit Health Service database. DESIGN A retrospective cohort study was conducted using data from the Leumit Health Service, comprising 3020 patients diagnosed with IBD from January 2010 to December 2019. METHODS Patients were divided based on primary care setting: hospital-based or community-based. Data included demographic characteristics, disease type, medication usage, procedures, and outcomes. Statistical analyses assessed differences between groups. RESULTS Hospital-treated patients were significantly younger (49.4±18.4 vs. 40.4±18.7, P<0.001 ), had higher rates of Crohn's disease (45.9% vs. 71.4%, P<0.001), exhibited higher inflammatory markers (calprotectin 768±2182 vs. 1305±2526, P<0.001), lower albumin (4.23±0.27 vs. 4.12±0.32, P<0.001), hemoglobin levels (13.4±1.6 vs. 12.9±1.6, P<0.001), and lower BMI (26.2±5.3 vs. 24.6±5.6, P<0.001) compared with community-treated patients. Hospital-treated patients had more endoscopic procedures, higher medication utilization rates, shorter treatment durations, and increased hospitalization occurrence (12.1% vs. 23.6%, P<0.001), length (0.67±3.34 vs. 1.45±5.88, P<0.001), and colectomies (4.73% vs. 15.8%, P<0.001). CONCLUSIONS Disparities exist in IBD management between hospital and community settings, influenced by disease severity and treatment approaches. Hospital-based care is associated with more aggressive disease and intensive interventions, while community-based care may reflect milder disease and conservative management. Integrating specialized care models and personalized approaches across settings can optimize patient outcomes and health care delivery for IBD management. Further research is needed to understand these disparities' underlying mechanisms and develop comprehensive care strategies.
Collapse
Affiliation(s)
- Ariel Israel
- Leumit Research Institute and Department of Family Medicine, Leumit Health Services
- Faculty of Medicine, Tel-Aviv University
| | - Kassem Sharif
- Department of Gastroenterology, Chaim Sheba Medical Center, affiliated with Tel Aviv University, Faculty of Medicine, Tel Aviv
| | - Galit Zada
- Department of Gastroenterology, Chaim Sheba Medical Center, affiliated with Tel Aviv University, Faculty of Medicine, Tel Aviv
| | - Amir Friedenberg
- Leumit Research Institute and Department of Family Medicine, Leumit Health Services
- Faculty of Medicine, Tel-Aviv University
| | - Shlomo Vinker
- Leumit Research Institute and Department of Family Medicine, Leumit Health Services
- Faculty of Medicine, Tel-Aviv University
| | - Adi Lahat
- Department of Gastroenterology, Chaim Sheba Medical Center, affiliated with Tel Aviv University, Faculty of Medicine, Tel Aviv
- Department of Gastroenterology, Samson Assuta Ashdod Medical Center, affiliated with Faculty of Medicine, Ben Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
8
|
Huang Z, Tang J, Wu R, Long S, Chen W, Lu T, Xia Q, Wu Y, Yang H, Yang Q, Huang Z, Guo Q, Li M, Gao X, Chao K. Comparison of clinical and endoscopic efficacy between vedolizumab and infliximab in bio-naïve patients with ulcerative colitis: a multicenter, real-world study. Therap Adv Gastroenterol 2024; 17:17562848241281218. [PMID: 39420999 PMCID: PMC11483708 DOI: 10.1177/17562848241281218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/18/2024] [Indexed: 10/19/2024] Open
Abstract
Background No head-to-head trial directly compares the effectiveness of vedolizumab (VDZ) and infliximab (IFX) in patients with ulcerative colitis (UC) who were naïve to biologic therapy. Objectives We aimed to compare the clinical and endoscopic effectiveness of VDZ and IFX in biologic-naïve patients with UC in real-world settings. Design It was a multicenter, observational, real-world cohort study conducted at five centers. Methods Patients diagnosed with UC and treated with either IFX or VDZ as their first-line biologic therapy were retrospectively enrolled. Steroid-free remission, clinical response, clinical remission, and endoscopic healing at week 14 and week 52 were compared between the two groups after propensity score weighting. Results A total of 199 patients (117 VDZ and 82 IFX) were included in the study. There were no significant differences in steroid-free remission (64.6% vs 56.1%, p = 0.224), clinical response (83.4% vs 73.4%, p = 0.086), or clinical remission (69.4% vs 60.1%, p = 0.174) at week 14. However, VDZ showed better results in steroid-free remission (67.5% vs 44.4%, p = 0.004), clinical response (69.7% vs 47.1%, p = 0.005), and clinical remission (67.5% vs 44.4%, p = 0.004) at week 52. In terms of endoscopic healing, VDZ was similar to IFX at week 14 (25.7% vs 17.4%, p = 0.185), but VDZ had a significantly higher rate at week 52 (29.5% vs 11.8%, p = 0.027). VDZ was found to be superior to IFX in therapeutic continuation (hazard ratio = 0.339, 95% CI: 0.187-0.614, p < 0.001). The rate of adverse events was similar between the two groups (6.8% vs 8.5%, p = 0.655). Conclusion VDZ demonstrated similar clinical and endoscopic effectiveness to IFX at week 14 in biologic-naïve patients with UC, but appeared to be superior at week 52. The safety outcomes were comparable between the groups.
Collapse
Affiliation(s)
- Zhaopeng Huang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Tang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruibin Wu
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shunhua Long
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenke Chen
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tingna Lu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuyue Xia
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yanhui Wu
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongsheng Yang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qingfan Yang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zicheng Huang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qin Guo
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miao Li
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiang Gao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Road II, Tianhe District, Guangzhou 510000, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kang Chao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Road II, Tianhe District, Guangzhou 510000, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Deng C, Zhang H, Li Y, Cheng X, Liu Y, Huang S, Cheng J, Chen H, Shao P, Jiang B, Wang X, Wang K. Exosomes derived from mesenchymal stem cells containing berberine for ulcerative colitis therapy. J Colloid Interface Sci 2024; 671:354-373. [PMID: 38815372 DOI: 10.1016/j.jcis.2024.05.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Berberine (Ber), an isoquinoline alkaloid, is a potential drug therapy for ulcerative colitis (UC) because of its anti-inflammatory activity, high biological safety, and few side effects. Nevertheless, its clinical application is hindered by its limited water solubility and low bioavailability. Currently, compared to synthetic nanocarriers, exosomes as carriers possess advantages such as low toxicity, high stability, and high specificity. Human placental mesenchymal stem cell-derived exosomes (HplMSC-Exos) have emerged as a promising drug delivery system, offering intrinsic anti-inflammatory and antioxidant activities. Therefore, we engineered MSC-Exos loaded with Ber (Exos-Ber) to enhance the solubility and bioavailability of Ber and for colon targeting, revealing a novel approach for treating UC with natural compounds. Structurally and functionally, Exos-Ber closely resembled unmodified Exos. Both in vitro and in vivo investigations confirmed the antioxidant and anti-inflammatory properties of Exos-Ber. Notably, Exos-Ber exhibited reparative effects on injured epithelial cells and reduced cellular apoptosis. Furthermore, Exos-Ber concurrently demonstrated anti-inflammatory and antioxidant activities, contributing to the mitigation of UC, possibly through its modulation of the MAPK signaling pathway. Overall, our findings demonstrate the potential of Exos-Ber as a promising therapeutic option for alleviating UC, highlighting its capacity to enhance the clinical applicability of Ber.
Collapse
Affiliation(s)
- Chao Deng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Huanxiao Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Yuxuan Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Xinyi Cheng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Youyi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Shubing Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Jianqing Cheng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Hui Chen
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, P. R. China
| | - Ping Shao
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, P. R. China
| | - Bing Jiang
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, P. R. China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China.
| | - Kewei Wang
- Affiliated Hospital of Jiangnan University, Wuxi 214122, P. R. China.
| |
Collapse
|
10
|
Xie X, Wang Y, Deng B, Blatchley MR, Lan D, Xie Y, Lei M, Liu N, Xu F, Wei Z. Matrix metalloproteinase-responsive hydrogels with tunable retention for on-demand therapy of inflammatory bowel disease. Acta Biomater 2024; 186:354-368. [PMID: 39117116 DOI: 10.1016/j.actbio.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Therapeutic options for addressing inflammatory bowel disease (IBD) include the administration of an enema to reduce intestinal inflammation and alleviate associated symptoms. However, uncontrollable retention of enemas in the intestinal tract has posed a long-term challenge for improving their therapeutic efficacy and safety. Herein we have developed a protease-labile hydrogel system as an on-demand enema vehicle with tunable degradation and drug release rates in response to varying matrix metalloproteinase-9 (MMP-9) expression. The system, composed of three tailored hydrogel networks, is crosslinked by poly (ethylene glycol) (PEG) with 2-, 4- and 8-arms through dynamic hydrazone bonds to confer injectability and generate varying network connectivity. The retention time of the hydrogels can be tuned from 12 to 36 h in the intestine due to their different degradation behaviors induced by MMP-9. The drug-releasing rate of the hydrogels can be controlled from 0.0003 mg/h to 0.278 mg/h. In addition, injection of such hydrogels in vivo resulted in significant differences in therapeutic effects including MMP-9 consumption, colon tissue repair, reduced collagen deposition, and decreased macrophage cells, for treating a mouse model of acute colitis. Among them, GP-8/5-ASA exhibits the best performance. This study validates the effectiveness of the tailored design of hydrogel architecture in response to pathological microenvironment cues, representing a promising strategy for on-demand therapy of IBD. STATEMENT OF SIGNIFICANCE: The uncontrollable retention of enemas at the delivery site poses a long-term challenge for improving therapeutic efficacy in IBD patients. MMP-9 is highly expressed in IBD and correlates with disease severity. Therefore, an MMP-9-responsive GP hydrogel system was developed as an enema by linking multi-armed PEG and gelatin through hydrazone bonds. This forms a dynamic hydrogel characterized by in situ gelation, injectability, enhanced bio-adhesion, biocompatibility, controlled retention time, and regulated drug release. GP hydrogels encapsulating 5-ASA significantly improved the intestinal phenotype of acute IBD and demonstrated notable therapeutic differences with increasing PEG arms. This method represents a promising on-demand IBD therapy strategy and provides insights into treating diseases of varying severities using endogenous stimulus-responsive drug delivery systems.
Collapse
Affiliation(s)
- Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yaohui Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bo Deng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Michael R Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Ave, Boulder, CO 80303, USA
| | - Dongwei Lan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yizhou Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
11
|
Feng C, Yan J, Luo T, Zhang H, Zhang H, Yuan Y, Chen Y, Chen H. Vitamin B12 ameliorates gut epithelial injury via modulating the HIF-1 pathway and gut microbiota. Cell Mol Life Sci 2024; 81:397. [PMID: 39261351 PMCID: PMC11391010 DOI: 10.1007/s00018-024-05435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Inflammatory bowel diseases (IBDs) are immune chronic diseases characterized by recurrent episodes, resulting in continuous intestinal barrier damage and intestinal microbiota dysbiosis. Safe strategies aimed at stabilizing and reducing IBDs recurrence have been vigorously pursued. Here, we constructed a recurrent intestinal injury Drosophila model and found that vitamin B12 (VB12), an essential co-factor for organism physiological functions, could effectively protect the intestine and reduce dextran sulfate sodium-induced intestinal barrier disruption. VB12 also alleviated microbial dysbiosis in the Drosophila model and inhibited the growth of gram-negative bacteria. We demonstrated that VB12 could mitigate intestinal damage by activating the hypoxia-inducible factor-1 signaling pathway in injured conditions, which was achieved by regulating the intestinal oxidation. In addition, we also validated the protective effect of VB12 in a murine acute colitis model. In summary, we offer new insights and implications for the potential supportive role of VB12 in the management of recurrent IBDs flare-ups.
Collapse
Affiliation(s)
- Chenxi Feng
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinhua Yan
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Luo
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hu Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Yuan
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Haiyang Chen
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Wang X, Shang D, Chen J, Cheng S, Chen D, Zhang Z, Liu C, Yu J, Cao H, Li L, Li L. Serum metabolomics reveals the effectiveness of human placental mesenchymal stem cell therapy for Crohn's disease. Talanta 2024; 277:126442. [PMID: 38897006 DOI: 10.1016/j.talanta.2024.126442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mesenchymal stem cell (MSC) therapy offers a promising cure for Crohn's disease (CD), however, its therapeutic effects vary significantly due to individual differences. Therefore, identifying easily detectable biomarkers is essential to assess the efficacy of MSC therapy. In this study, SAMP1/Yit mice were used as a model of CD, which develop spontaneous chronic ileitis, closely resembling the characteristics present in CD patients. Serum metabolic alterations during treatment were analyzed, through the application of differential 12C-/13C-dansylation labeling liquid chromatography-mass spectrometry. Based on the significant differences and time-varying trends of serum amine/phenol-containing metabolites abundance between the control group, the model group, and the treatment group, four serum biomarkers were ultimately screened for evaluating the efficacy of MSC treatment for CD, namely 4-hydroxyphenylpyruvate, 4-hydroxyphenylacetaldehyde, caffeate, and N-acetyltryptamine, whose abundances both increased in the serum of CD model mice and decreased after MSC treatment. These metabolic alterations were associated with tyrosine metabolism, which was validated by the dysregulation of related enzymes. The discovery of biomarkers may help to improve the targeting and effectiveness of treatment and provide innovative prospects for the clinical application of MSC for CD.
Collapse
Affiliation(s)
- Xiao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China
| | - Dandan Shang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China
| | - Junyao Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Deying Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Zhehua Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Jiong Yu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China; State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, 79 Qingchun Rd, Hangzhou City 310003, China.
| | - Hongcui Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China; State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, 79 Qingchun Rd, Hangzhou City 310003, China.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China; State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| |
Collapse
|
13
|
Zhai Z, Wang X, Qian Z, Wang A, Zhao W, Xiong J, Wang J, Wang Y, Cao H. Lactobacillus rhamnosus GG coating with nanocomposite ameliorates intestinal inflammation. Biomed Pharmacother 2024; 178:117197. [PMID: 39084077 DOI: 10.1016/j.biopha.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
The steady increase in the prevalence of inflammatory bowel disease (IBD) is regarded as a worldwide health issue. Gut microorganisms could modulate host immune and metabolic status and are associated with health effects. Probiotics, Lactobacillus rhamnosus GG (LGG), are beneficial microorganisms that ameliorate disease and exert advantageous effects on intestinal homeostasis. However, the viability of probiotics will suffer from various risk factors in the digestive tract. In this view, we developed a probiotic coating with nanocomposite using tannic acid (TA) and casein phosphopeptide (CPP) through layer-by-layer technology to overcome the challenges after oral administration. LGG showed an improved survival rate in simulated gastrointestinal conditions after coated. The coating (LGG/TA-Mg2+/CPP) had potent reactive oxygen species (ROS) scavenging ability and improved the survival rate of colorectal epithelial cells after H2O2 stimulation. In DSS-induced colitis, administration of LGG/TA-Mg2+/CPP ameliorated intestinal inflammation and reduced the disruption of barrier function. Furthermore, LGG/TA-Mg2+/CPP increased the abundance and diversity of the gut microbiota. In the mouse model of DSS colitis, LGG/TA-Mg2+/CPP can better activate the EGFR/AKT signaling pathway, thereby protecting the epithelial barrier function of the colon epithelium. In conclusion, the probiotic coating with nanocomposite may become a delivery platform for probiotics applied to IBD.
Collapse
Affiliation(s)
- Zihan Zhai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China; School of Health, Binzhou Polytechnic, Binzhou, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Zhanying Qian
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Aili Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China; Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, China
| | - Wenjing Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Jie Xiong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Jingyi Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yinsong Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|
14
|
Wang S, Wang J, Meng X, Yang S, Wu L, Chen K, Li Z, Xiao J, Yu X, Chen X, Feng J, Gong R. Exploring causal association between malnutrition, nutrients intake and inflammatory bowel disease: a Mendelian randomization analysis. Front Nutr 2024; 11:1406733. [PMID: 39206309 PMCID: PMC11349745 DOI: 10.3389/fnut.2024.1406733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Malnutrition has emerged as main side effects of inflammatory bowel disease (IBD) which might also affect the prognosis of IBD. However, whether these associations are causal remains unclear. We aimed to identify the causality of IBD on malnutrition and explore the causal relationship of malnutrition and nutrients intake on IBD by using Mendelian randomization (MR). Methods Single nucleotide polymorphisms associated with IBD, malnutrition and nutrients intake were obtained from previous researches of genome-wide association studies (GWAS) (p < 0.00000005). MR analysis was conducted to evaluate the causality with different methods based on OR and their 95% CIs. Meanwhile, heterogeneity, pleiotropy and MR-PRESSO were used for instrumental variables evaluation. Results The results of MR analysis revealed that IBD, both Crohn disease (CD) and ulcerative colitis (UC), could directly impact the incidence of malnutrition (p-value <0.01). CD is directly related to nutrients such as sugar, fat, VA, VC, VD and zinc, while UC is correlated with carbohydrate, fat, VB12, VC, VD, VE, iron, zinc and magnesium. However, our results suggested that malnutrition could not affect the risk of IBD directly (p > 0.05). Further analysis showed similar results that nutrients intake had no direct effect on IBD, neither CD or UC. Conclusion Our results indicated that IBD increases the risk of malnutrition, however, malnutrition and nutrients intake might not directly affect the progression of IBD.
Collapse
Affiliation(s)
- Shi Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zejian Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Gong
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Lopalco G, Cito A, Venerito V, Iannone F, Proft F. The management of axial spondyloarthritis with cutting-edge therapies: advancements and innovations. Expert Opin Biol Ther 2024; 24:835-853. [PMID: 39109494 DOI: 10.1080/14712598.2024.2389987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Axial involvement in spondyloarthritis has significantly evolved from the original 1984 New York criteria for ankylosing spondylitis, leading to an improved understanding of axial spondyloarthritis (axSpA) as a disease continuum encompassing non- radiographic axSpA (nr-axSpA) and radiographic axSpA (r-axSpA). A clear definition for early axSpA has been established, underscoring the need for early intervention with biological and targeted synthetic drugs to mitigate pain, reduce functional impairment, and prevent radiographic progression. AREAS COVERED This review explores therapeutic strategies in axSpA management, focusing on biological and targeted synthetic therapies and recent advancements. Biologics targeting TNFα or IL-17 and targeted synthetic disease-modifying antirheumatic drugs (DMARDs) are primary treatment options. These therapies significantly impact clinical outcomes, radiographic progression, and patient-reported functional improvement. EXPERT OPINION AxSpA treatment has evolved significantly, offering various therapeutic options. Biological DMARDs, particularly TNFα inhibitors, have transformed treatment, significantly enhancing patient outcomes. However, challenges persist for patients unresponsive or intolerant to existing therapies. Emerging therapeutic targets promise to address these challenges. Comprehensive management strategies and personalized approaches, considering extra-articular manifestations and individual patient factors, are crucial for achieving optimal outcomes in axSpA management.
Collapse
Affiliation(s)
- Giuseppe Lopalco
- Department of Precision Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Andrea Cito
- Department of Precision Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Venerito
- Department of Precision Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Florenzo Iannone
- Department of Precision Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Fabian Proft
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Sun Q, Li YJ, Ning SB. Investigating the molecular mechanisms underlying the co-occurrence of Parkinson's disease and inflammatory bowel disease through the integration of multiple datasets. Sci Rep 2024; 14:17028. [PMID: 39043798 PMCID: PMC11266657 DOI: 10.1038/s41598-024-67890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Parkinson's disease (PD) and inflammatory bowel disease (IBD) are chronic diseases affecting the central nervous system and gastrointestinal tract, respectively. Recent research suggests a bidirectional relationship between neurodegeneration in PD and intestinal inflammation in IBD. PD patients may experience gastrointestinal dysfunction over a decade before motor symptom onset, and IBD may increase the risk of developing PD. Despite the "gut-brain axis" concept, the underlying pathophysiological mechanisms of this potential association remain unclear. This study aimed to investigate the biological mechanisms of differentially expressed genes in PD and IBD using bioinformatics tools, providing novel insights into the co-diagnosis and treatment of these diseases. We constructed a gene marker for disease diagnosis and identified five important genes (BTK, NCF2, CRH, FCGR3A and SERPINA3). Through nomogram and decision tree analyses, we found that both the IBD and PD required only the expression levels of BTK and NCF2 for accurate discrimination. Additionally, small molecule drugs RO-90-7501 and MST-312 may be useful for the treatment of both IBD and PD. These findings offer new perspectives on the co-diagnosis and treatment of PD and IBD, and suggest that targeting BTK may be a promising therapeutic strategy for both diseases.
Collapse
Affiliation(s)
- Qi Sun
- Department of Gastroenterology, Air Force Medical Center, No. 30 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yi-Jun Li
- Department of Anesthesiology, The People's Hospital of Changxing, Huzhou, 313100, Zhejiang, China
| | - Shou-Bin Ning
- Department of Gastroenterology, Air Force Medical Center, No. 30 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
17
|
Wu JF, Yen HH, Wang HY, Chang TA, Chang CH, Chang CW, Chao TH, Chou JW, Chou YH, Chuang CH, Hsu WH, Hsu TC, Huang TY, Hung TI, Le PH, Lin CC, Lin CC, Lin CP, Lin JK, Lin WC, Ni YH, Shieh MJ, Shih IL, Shun CT, Tsai TJ, Wang CY, Weng MT, Wong JM, Wu DC, Wei SC. Management of Crohn's disease in Taiwan: consensus guideline of the Taiwan Society of Inflammatory Bowel Disease updated in 2023. Intest Res 2024; 22:250-285. [PMID: 39099218 PMCID: PMC11309825 DOI: 10.5217/ir.2024.00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 08/06/2024] Open
Abstract
Crohn's disease (CD) is a chronic, fluctuating inflammatory condition that primarily affects the gastrointestinal tract. Although the incidence of CD in Taiwan is lower than that in Western countries, the severity of CD presentation appears to be similar between Asia and the West. This observation indicates the urgency for devising revised guidelines tailored to the unique reimbursement system, and patient requirements in Taiwan. The core objectives of these updated guidelines include the updated treatment choices and the integration of the treat-to-target strategy into CD management, promoting the achievement of deep remission to mitigate complications and enhance the overall quality of life. Given the diversity in disease prevalence, severity, insurance policies, and access to medical treatments in Taiwan, a customized approach is imperative for formulating these guidelines. Such tailored strategies ensure that international standards are not only adapted but also optimized to local contexts. Since the inception of its initial guidelines in 2017, the Taiwan Society of Inflammatory Bowel Disease (TSIBD) has acknowledged the importance of continuous revisions for incorporating new therapeutic options and evolving disease management practices. The latest update leverages international standards and recent research findings focused on practical implementation within the Taiwanese healthcare system.
Collapse
Affiliation(s)
- Jia-Feng Wu
- Department of Pediatrics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsu-Heng Yen
- Division of Gastroenterology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University College of Medicine, Taichung, Taiwan
| | - Horng-Yuan Wang
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- MacKay Medical College, Taipei, Taiwan
| | - Ting-An Chang
- Department of Pathology, Taipei City Hospital, Renai-Branch, Taipei, Taiwan
| | - Chung-Hsin Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chen-Wang Chang
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- MacKay Medical College, Taipei, Taiwan
| | - Te-Hsin Chao
- Division of Colon and Rectal Surgery, Department of Surgery, Chiayi and Wangiao Branch, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jen-Wei Chou
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yenn-Hwei Chou
- Division of General Surgery, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chiao-Hsiung Chuang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Tzu-Chi Hsu
- Division of Colon and Rectal Surgery, Department of Surgery, MacKay Memorial Hospital, MacKay Medical College, Taipei, Taiwan
| | - Tien-Yu Huang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-I Hung
- Division of General Surgery, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Puo-Hsien Le
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
- Chang Gung Microbiota Therapy Center, Linkou Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
- Inflammatory Bowel Disease Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Chun-Che Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taipei, Taiwan
| | - Chun-Chi Lin
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Pin Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taipei, Taiwan
| | - Jen-Kou Lin
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chen Lin
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Children’s Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Jium Shieh
- Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - I-Lun Shih
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pathology, Good Liver Clinic, Taipei, Taiwan
| | - Tzung-Jiun Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Yi Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Jau-Min Wong
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Mao N, Yu Y, He J, Yang Y, Liu Z, Lu Y, Wang D. Matrine Ameliorates DSS-Induced Colitis by Suppressing Inflammation, Modulating Oxidative Stress and Remodeling the Gut Microbiota. Int J Mol Sci 2024; 25:6613. [PMID: 38928319 PMCID: PMC11204106 DOI: 10.3390/ijms25126613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Matrine (MT) possesses anti-inflammatory, anti-allergic and antioxidative properties. However, the impact and underlying mechanisms of matrine on colitis are unclear. The purpose of this research was to examine the protective impact and regulatory mechanism of matrine on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. MT alleviated DSS-induced UC by inhibiting weight loss, relieving colon shortening and reducing the disease activity index (DAI). Moreover, DSS-induced intestinal injury and the number of goblet cells were reversed by MT, as were alterations in the expression of zonula occludens-1 (ZO-1) and occludin in colon. Simultaneously, matrine not only effectively restored DSS-induced oxidative stress in colonic tissues but also reduced the production of inflammatory cytokines. Furthermore, MT could treat colitis mice by regulating the regulatory T cell (Treg)/T helper 17 (Th17) cell imbalance. We observed further evidence that MT alleviated the decrease in intestinal flora diversity, reduced the proportion of Firmicutes and Bacteroidetes, decreased the proportion of Proteobacteria and increased the relative abundance of Lactobacillus and Akkermansia in colitis mice. In conclusion, these results suggest that MT may mitigate DSS-induced colitis by enhancing the colon barrier integrity, reducing the Treg/Th17 cell imbalance, inhibiting intestinal inflammation, modulating oxidative stress and regulating the gut microbiota. These findings provide strong evidence for the development and application of MT as a dietary treatment for UC.
Collapse
MESH Headings
- Animals
- Alkaloids/pharmacology
- Gastrointestinal Microbiome/drug effects
- Oxidative Stress/drug effects
- Quinolizines/pharmacology
- Quinolizines/therapeutic use
- Dextran Sulfate
- Matrines
- Mice
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Male
- Colitis/chemically induced
- Colitis/drug therapy
- Colitis/metabolism
- Colitis/microbiology
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Zonula Occludens-1 Protein/metabolism
- Colon/pathology
- Colon/metabolism
- Colon/drug effects
- Colon/microbiology
- Th17 Cells/drug effects
- Th17 Cells/metabolism
- Th17 Cells/immunology
- Disease Models, Animal
- Cytokines/metabolism
- Mice, Inbred C57BL
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/microbiology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/pathology
- Occludin/metabolism
Collapse
Affiliation(s)
- Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Qiu X, Luo W, Li H, Li T, Huang Y, Huang Q, Zhou R. A Traditional Chinese Medicine, Zhenqi Granule, Potentially Alleviates Dextran Sulfate Sodium-Induced Mouse Colitis Symptoms. BIOLOGY 2024; 13:427. [PMID: 38927307 PMCID: PMC11200386 DOI: 10.3390/biology13060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that causes chronic inflammation in the large intestine. The etiology of UC is complex and incompletely understood, with potential contributing factors including genetic susceptibility, environmental influences, immune dysregulation, and gut barrier dysfunction. Despite available therapeutic drugs, the suboptimal cure rate for UC emphasizes the necessity of developing novel therapeutics. Traditional Chinese Medicine (TCM) has attracted great interest in the treatment of such chronic inflammatory diseases due to its advantages, such as multi-targets and low side effects. In this study, a mouse model of Dextran Sulfate Sodium (DSS)-induced acute colitis was established and the efficacy of Zhenqi Granule, a TCM preparation composed of the extractives from Astragali Radix and Fructus Ligustri Lucidi, was evaluated. The results showed that treatment with Zhenqi Granule prior to or post-DSS induction could alleviate the symptoms of colitis, including weight loss, diarrhea, hematochezia, colon length shortening, and pathological damage of colon tissues of the DSS-treated mice. Further, network pharmacology analysis showed that there were 98 common targets between the active components of Zhenqi Granule and the targets of UC, and the common targets were involved in the regulation of inflammatory signaling pathways. Our results showed that Zhenqi Granule had preventive and therapeutic effects on acute colitis in mice, and the mechanism may be that the active components of Zhenqi Granule participated in the regulation of inflammatory response. This study provided data reference for further exploring the mechanism of Zhenqi Granule and also provided potential treatment strategies for UC.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Wentao Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Yaxue Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
20
|
Bessa MK, Bessa GR, Bonamigo RR. Kefir as a therapeutic agent in clinical research: a scoping review. Nutr Res Rev 2024; 37:79-95. [PMID: 36994828 DOI: 10.1017/s0954422423000070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Increasing research has been conducted on the role of probiotics in disease treatment. Kefir, a safe, low-cost probiotic fermented milk drink, has been investigated in many in vitro and animal studies, although parameters for human therapeutic dose or treatment time have not yet been determined. Here we perform a scoping review of clinical studies that have used kefir as a therapeutic agent, compiling the results for perspectives to support and direct further research. This review was based on Joanna Briggs Institute guidelines, including studies on the effects of kefir-fermented milk in humans. Using the term KEFIR, the main international databases were searched for studies published in English, Spanish or Portuguese until 9 March 2022. A total of 5835 articles were identified in the four databases, with forty-four eligible for analysis. The research areas were classified as metabolic syndrome and type 2 diabetes, gastrointestinal health/disorders, maternal/child health and paediatrics, dentistry, oncology, women's and geriatric health, and dermatology. The many study limitations hampered generalisation of the results. The small sample sizes, methodological variation and differences in kefir types, dosage and treatment duration prevented clear conclusions about its benefits for specific diseases. We suggest using a standard therapeutic dose of traditionally prepared kefir in millilitres according to body weight, making routine consumption more feasible. The studies showed that kefir is safe for people without serious illnesses.
Collapse
Affiliation(s)
- Milena Klippel Bessa
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, 90050-170, Porto Alegre, RS, Brazil
| | | | - Renan Rangel Bonamigo
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Wanyi Z, Jiao Y, Wen H, Bin X, Xuefei W, Lan J, Liuyin Z. Bidirectional communication of the gut-brain axis: new findings in Parkinson's disease and inflammatory bowel disease. Front Neurol 2024; 15:1407241. [PMID: 38854967 PMCID: PMC11157024 DOI: 10.3389/fneur.2024.1407241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Parkinson's disease (PD) and inflammatory bowel disease (IBD) are the two chronic inflammatory diseases that are increasingly affecting millions of people worldwide, posing a major challenge to public health. PD and IBD show similarities in epidemiology, genetics, immune response, and gut microbiota. Here, we review the pathophysiology of these two diseases, including genetic factors, immune system imbalance, changes in gut microbial composition, and the effects of microbial metabolites (especially short-chain fatty acids). We elaborate on the gut-brain axis, focusing on role of gut microbiota in the pathogenesis of PD and IBD. In addition, we discuss several therapeutic strategies, including drug therapy, fecal microbiota transplantation, and probiotic supplementation, and their potential benefits in regulating intestinal microecology and relieving disease symptoms. Our analysis will provide a new understanding and scientific basis for the development of more effective therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Zhang Wanyi
- Department of Neurology, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Yan Jiao
- Department of Nursing, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Huang Wen
- Department of Neurology, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Xu Bin
- Outpatient Department, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Wang Xuefei
- Department of Neurology, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Jiang Lan
- Outpatient Department, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Zhou Liuyin
- Department of Respiratory Medicine, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| |
Collapse
|
22
|
Wu Y, Fu H, Xu X, Jin H, Kao QJ, Teng WL, Wang B, Zhao G, Pi XE. Intervention with fructooligosaccharides, Saccharomyces boulardii, and their combination in a colitis mouse model. Front Microbiol 2024; 15:1356365. [PMID: 38835484 PMCID: PMC11148295 DOI: 10.3389/fmicb.2024.1356365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Objective To examine the effects of an intervention with fructooligosaccharides (FOS), Saccharomyces boulardii, and their combination in a mouse model of colitis and to explore the mechanisms underlying these effects. Methods The effects of FOS, S. boulardii, and their combination were evaluated in a DSS-induced mouse model of colitis. To this end, parameters such as body weight, the disease activity index (DAI), and colon length were examined in model mice. Subsequently, ELISA was employed to detect the serum levels of proinflammatory cytokines. Histopathological analysis was performed to estimate the progression of inflammation in the colon. Gas chromatography was used to determine the content of short-chain fatty acids (SCFAs) in the feces of model mice. Finally, 16S rRNA sequencing technology was used to analyze the gut microbiota composition. Results FOS was slight effective in treating colitis and colitis-induced intestinal dysbiosis in mice. Meanwhile, S. boulardii could significantly reduced the DAI, inhibited the production of IL-1β, and prevented colon shortening. Nevertheless, S. boulardii treatment alone failed to effectively regulate the gut microbiota. In contrast, the combined administration of FOS/S. boulardii resulted in better anti-inflammatory effects and enabled microbiota regulation. The FOS/S. boulardii combination (109 CFU/ml and 107 CFU/ml) significantly reduced the DAI, inhibited colitis, lowered IL-1β and TNF-α production, and significantly improved the levels of butyric acid and isobutyric acid. However, FOS/S. boulardii 109 CFU/ml exerted stronger anti-inflammatory effects, inhibited IL-6 production and attenuated colon shortening. Meanwhile, FOS/S. boulardii 107 CFU/ml improved microbial regulation and alleviated the colitis-induced decrease in microbial diversity. The combination of FOS and S. boulardii significantly increased the abundance of Parabacteroides and decreased the abundance of Escherichia-Shigella. Additionally, it promoted the production of acetic acid and propionic acid. Conclusion Compared with single administration, the combination can significantly increase the abundance of beneficial bacteria such as lactobacilli and Bifidobacteria and effectively regulate the gut microbiota composition. These results provide a scientific rationale for the prevention and treatment of colitis using a FOS/S. boulardii combination. They also offer a theoretical basis for the development of nutraceutical preparations containing FOS and S. boulardii.
Collapse
Affiliation(s)
- Yan Wu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Hao Fu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xu Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Hui Jin
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Qing-Jun Kao
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Wei-Lin Teng
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Bing Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Gang Zhao
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiong-E Pi
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
23
|
Li J, Wu H, Zhou J, Jiang R, Zhuo Z, Yang Q, Chen H, Sha W. Ruscogenin Attenuates Ulcerative Colitis in Mice by Inhibiting Caspase-1-Dependent Pyroptosis via the TLR4/NF-κB Signaling Pathway. Biomedicines 2024; 12:989. [PMID: 38790951 PMCID: PMC11117655 DOI: 10.3390/biomedicines12050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders affecting the digestive tract, including ulcerative colitis and Crohn's disease. Ruscogenin, a prominent steroidal sapogenin present in radix ophiopogon japonicus, has shown a protective effect on attenuating the inflammatory response associated with inflammatory diseases, but the efficacy of ruscogenin in IBD remains unclear. The aim of this study is to explore the effect of ruscogenin on intestinal barrier dysfunction and inflammatory responses as well as the underlying mechanism in ulcerative colitis. A dextran sulfate sodium salt (DSS)-induced C57BL/6 mouse colitis model was employed for the in vivo studies, while in vitro experiments were performed in THP-1 cells and human intestinal epithelial cells involved in inducing inflammatory responses and pyroptosis using LPS/nigericin. The results indicated that ruscogenin treatment attenuated the symptoms of ulcerative colitis, reduced the release of inflammatory cytokines and the expression of pyroptosis-associated proteins, and restored the integrity of the intestinal epithelial barrier in colon tissue in mice. Moreover, ruscogenin inhibited LPS/nigericin-induced pyroptosis in THP-1 cells. Mechanically, ruscogenin inhibited NLRP3 inflammasome activation and canonical pyroptosis, at least in part, through the suppression of the TLR4/NF-κB signaling pathway. These findings might provide new insights and a solid foundation for further exploration into the therapeutic potential of ruscogenin in the treatment of IBD.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| | - Huihuan Wu
- Department of Gastroenterology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China;
| | - Jialiang Zhou
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (J.L.); (R.J.); (Z.Z.); (Q.Y.)
| |
Collapse
|
24
|
Li S, Zhuge A, Chen H, Han S, Shen J, Wang K, Xia J, Xia H, Jiang S, Wu Y, Li L. Sedanolide alleviates DSS-induced colitis by modulating the intestinal FXR-SMPD3 pathway in mice. J Adv Res 2024:S2090-1232(24)00128-0. [PMID: 38582300 DOI: 10.1016/j.jare.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is a global disease with limited therapy. It is reported that sedanolide exerts anti-oxidative and anti-inflammatory effects as a natural phthalide, but its effects on IBD remain unclear. OBJECTIVES In this study, we investigated the impacts of sedanolide on dextran sodium sulfate (DSS)-induced colitis in mice. METHODS The mice were administered sedanolide or vehicle followed by DSS administration, after which colitis symptoms, inflammation levels, and intestinal barrier function were evaluated. Transcriptome analysis, 16S rRNA sequencing, and targeted metabolomics analysis of bile acids and lipids were performed. RESULTS Sedanolide protected mice from DSS-induced colitis, suppressed the inflammation, restored the weakened epithelial barrier, and modified the gut microbiota by decreasing bile salt hydrolase (BSH)-expressing bacteria. The downregulation of BSH activity by sedanolide increased the ratio of conjugated/unconjugated bile acids (BAs), thereby inhibiting the intestinal farnesoid X receptor (FXR) pathway. The roles of the FXR pathway and gut microbiota were verified using an intestinal FXR-specific agonist (fexaramine) and germ-free mice, respectively. Furthermore, we identified the key effector ceramide, which is regulated by sphingomyelin phosphodiesterase 3 (SMPD3). The protective effects of ceramide (d18:1/16:0) against inflammation and the gut barrier were demonstrated in vitro using the human cell line Caco-2. CONCLUSION Sedanolide could reshape the intestinal flora and influence BA composition, thus inhibiting the FXR-SMPD3 pathway to stimulate the synthesis of ceramide, which ultimately alleviated DSS-induced colitis in mice. Overall, our research revealed the protective effects of sedanolide against DSS-induced colitis in mice, which indicated that sedanolide may be a clinical treatment for colitis. Additionally, the key lipid ceramide (d18:1/16:0) was shown to mediate the protective effects of sedanolide, providing new insight into the associations between colitis and lipid metabolites.
Collapse
Affiliation(s)
- Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China.
| |
Collapse
|
25
|
Abumuhfouz MAM, Alsadi A, Umer WF, Habib MB. Febrile neutropenia associated with adalimumab in a patient with ulcerative colitis. Clin Case Rep 2024; 12:e8629. [PMID: 38550736 PMCID: PMC10973094 DOI: 10.1002/ccr3.8629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 11/12/2024] Open
Abstract
Adalimumab has become essential for managing various chronic inflammatory diseases, including inflammatory bowel disease (IBD). While hematologic complications of adalimumab therapy are rare, they can have significant clinical implications. This report highlights the importance of recognizing and monitoring for neutropenia in patients receiving adalimumab treatment. We also describe the potential mechanisms and management strategies for this adverse event.
Collapse
Affiliation(s)
| | - Anas Alsadi
- Department of Internal MedicineHamad Medical CorporationDohaQatar
| | | | - Mhd Baraa Habib
- Department of CardiologyHeart Hospital, Hamad Medical CorporationDohaQatar
| |
Collapse
|
26
|
Zhao N, Huang X, Liu Z, Gao Y, Teng J, Yu T, Yan F. Probiotic characterization of Bacillus smithii: Research advances, concerns, and prospective trends. Compr Rev Food Sci Food Saf 2024; 23:e13308. [PMID: 38369927 DOI: 10.1111/1541-4337.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Bacillus smithii is a thermophilic Bacillus that can be isolated from white wine, hot spring soil, high-temperature compost, and coffee grounds, with various biofunctions and wide applications. It is resistant to both gastric acid and high temperature, which makes it easier to perform probiotic effects than traditional commercial probiotics, so it can maintain good vitality during food processing and has great application prospects. This paper starts with the taxonomy and genetics and focuses on aspects, including genetic transformation, functional enzyme production, waste utilization, and application in the field of food science as a potential probiotic. According to available studies during the past 30 years, we considered that B. smithii is a novel class of microorganisms with a wide range of functional enzymes such as hydrolytic enzymes and hydrolases, as well as resistance to pathogenic bacteria. It is available in waste degradation, organic fertilizer production, the feed and chemical industries, the pharmaceutical sector, and food fortification. Moreover, B. smithii has great potentials for applications in the food industry, as it presents high resistance to the technological processes that guarantee its health benefits. It is also necessary to systematically evaluate the safety, flavor, and texture of B. smithii and explore its biological mechanism of action, which is of great value for further application in multiple fields, especially in food and medicine.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xuedi Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jialuo Teng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Ying Y, Song LY, Pang WL, Zhang SQ, Yu JZ, Liang PT, Li TG, Sun Y, Wang YY, Yan JY, Yang ZS. Astragalus polysaccharide protects experimental colitis through an aryl hydrocarbon receptor-dependent autophagy mechanism. Br J Pharmacol 2024; 181:681-697. [PMID: 37653584 DOI: 10.1111/bph.16229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Disruption of intestinal barriers plays a vital role in the pathogenesis of colitis. The aryl hydrocarbon receptor (AhR) is a recognition sensor that mediates intestinal immune homeostasis and minimizes intestinal inflammation. Astragalus polysaccharide (APS) exerts pharmacological actions in colitis; however, the mechanism has not been elucidated. We investigated whether APS protects through AhR-dependent autophagy. EXPERIMENTAL APPROACH The symptoms of dextran sulfate sodium (DSS)-induced colitis in mice involving intestinal barrier function and inflammatory injury were evaluated after APS administration. Intestinal-specific Becn1 conditional knockout (Becn1 cKO) mice were constructed and compared with wild-type mice. Autophagy and the effects of APS were investigated after the deactivation of AhRs. The relationship between APS-induced AhRs and autophagic Becn1 was investigated using a dual-luciferase reporter system and chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction assay. Caco-2 cells were used to investigate inflammatory responses and AhR-dependent autophagy. KEY RESULTS APS improved intestinal barrier function in inflammatory injury in colitis mice. APS triggered autophagic flow; however, knockout of Becn1 in the gut increased susceptibility to colitis, leading to diminished epithelial barrier function and severe intestinal inflammation, impairing the protective effects of APS. Mechanistically, APS-triggered autophagy depends on AhR expression. Activated AhR binds to the promoter Becn1 to operate transcription of genes involved in anti-inflammation and intestinal barrier repair, while deactivation of AhR correlated with intestinal inflammation and the therapeutic function of APS. CONCLUSIONS AND IMPLICATIONS APS protects colitis mice by targeting autophagy, especially as the AhR stimulates the repair of damaged intestinal barrier functions.
Collapse
Affiliation(s)
- Yi Ying
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li-Yun Song
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen-Lin Pang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si-Qi Zhang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jing-Ze Yu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Peng-Tao Liang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tian-Gang Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yi Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yin-Ying Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jin-Yuan Yan
- Central Laboratory, Kunming Medical University Second Hospital, Kunming, Yunnan, China
| | - Zhong-Shan Yang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
28
|
Tan Z, Liu C, He P, Wu Y, Li J, Zhang J, Dong W. Based on Weighted Gene Co-Expression Network Analysis Reveals the Hub Immune Infiltration-Related Genes Associated with Ulcerative Colitis. J Inflamm Res 2024; 17:357-370. [PMID: 38250142 PMCID: PMC10800091 DOI: 10.2147/jir.s428503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose Immune infiltration plays a pivotal role in the pathogenesis of mucosal damage in ulcerative colitis (UC). The objective of this study was to systematically analyze and identify genetic characteristics associated with immune infiltration in UC. Patients and Methods Gene expression data from three independent datasets obtained from the Gene Expression Omnibus (GEO) were utilized. By employing the ssGSEA and CIBERSORT algorithms, we estimated the extent of immune cell infiltration in UC samples. Subsequently, Weighted Correlation Network Analysis (WGCNA) was performed to identify gene modules exhibiting significant associations with immune infiltration, and further identification of hub genes associated with immune infiltration was accomplished using least absolute shrinkage and selection operator (LASSO) regression analysis. The relationship between the identified hub genes and clinical information was subsequently investigated. Results Our findings revealed significant activation of both innate and adaptive immune cells in UC. Notably, the expression levels of CD44, IL1B, LYN, and ITGA5 displayed strong correlations with immune cell infiltration within the mucosa of UC patients. Immunohistochemical analysis confirmed the significant upregulation of CD44, LYN, and ITGA5 in UC samples, and their expression levels were found to be significantly associated with common inflammatory markers, including the systemic immune inflammation indices, C-reactive protein, and erythrocyte sedimentation rate. Conclusion CD44, LYN, and ITGA5 are involved in the immune infiltration pathogenesis of UC and may be potential therapeutic targets for UC.
Collapse
Affiliation(s)
- Zongbiao Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Yanrui Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| |
Collapse
|
29
|
Kocabas LI, Ayyoubi S, Tajqurishi M, Quodbach J, Vermonden T, Kok RJ. 3D-printed prednisolone phosphate suppositories with tunable dose and rapid release for the treatment of inflammatory bowel disease. Int J Pharm 2024; 649:123639. [PMID: 38042381 DOI: 10.1016/j.ijpharm.2023.123639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
Established medicines are often not tailored to the needs of the pediatric population, causing difficulties with administration or dosing. Three-dimensional (3D) printing technology allows novel approaches for compounding of personalized medicine, as is exemplified in this study for the automated compounding of rectal preparations for children. We investigated the material requirements to print prednisolone phosphate-loaded suppositories with tunable dose and rapid drug release for the treatment of inflammatory bowel diseases. Three formulations containing 4 % w/w prednisolone sodium phosphate (PSP) and different amounts of hydroxypropyl cellulose (HPC) and mannitol as excipients were printed as suppositories with a fused deposition modeling (FDM) 3D-printer. Dissolution studies showed that the PSP release rate was increased when higher weight fractions of mannitol were added as a pore former, with 90 % drug release within 30 min for mannitol 48 % w/w. We further printed suppositories with 48 % mannitol with different infill densities and dimensions to tune the dose. Our findings demonstrated that 3D-printed suppositories with PSP doses ranging from 6 to 30 mg could be compounded without notably affecting the dissolution kinetics, ensuring equivalent therapeutic efficacies for different doses.
Collapse
Affiliation(s)
- L I Kocabas
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands.
| | - S Ayyoubi
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| | - M Tajqurishi
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| | - J Quodbach
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| | - T Vermonden
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| | - R J Kok
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| |
Collapse
|
30
|
Oliveira A, Rodrigues LC, Soares da Costa D, Fernandes EM, Reis RL, Neves NM, Leão P, Martins A. COX-2 inhibitor delivery system aiming intestinal inflammatory disorders. BIOMATERIALS ADVANCES 2024; 156:213712. [PMID: 38056110 DOI: 10.1016/j.bioadv.2023.213712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
Selective COX-2 inhibitors such as etoricoxib (ETX) are potentially indicated for the treatment of intestinal inflammatory disorders. However, their systemic administration provokes some off-site secondary effects, decreasing the desirable local effectiveness. To circumvent such limitations, herein an ETX delivery system based on electrospun fibrous meshes (eFMs) was proposed. ETX at different concentrations (1, 2, and 3 mg mL-1) was loaded into eFMs, which not affect the morphology and the mechanical properties of this drug delivery system (DDS). The ETX showed a burst release within the first 12 h, followed by a faster release until 36 h, gradually decreasing over time. Importantly, the ETX studied concentrations were not toxic to human colonic cells (i.e. epithelial and fibroblast). Moreover, the DDS loading the highest concentration of ETX, when tested with stimulated human macrophages, promoted a reduction of PGE2, IL-8 and TNF-α secretion. Therefore, the proposed DDS may constitute a safe and efficient treatment of colorectal diseases promoted by inflammatory disorders associated with COX-2.
Collapse
Affiliation(s)
- Ana Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Luísa C Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Emanuel M Fernandes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro Leão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
31
|
Taha M, Elazab ST, Abdelbagi O, Saati AA, Babateen O, Baokbah TAS, Qusty NF, Mahmoud ME, Ibrahim MM, Badawy AM. Phytochemical analysis of Origanum majorana L. extract and investigation of its antioxidant, anti-inflammatory and immunomodulatory effects against experimentally induced colitis downregulating Th17 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116826. [PMID: 37348796 DOI: 10.1016/j.jep.2023.116826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Origanum majorana L. is a member of the Lamiaceae family and is commonly used in Egyptian cuisine as a seasoning and flavor enhancer. It is also recognized as a well-known traditional medicine in Egypt and is widely used for treating abdominal colic due to its antispasmodic properties. However, the protective effects of Origanum majorana L. against ulcerative colitis and its underlying mechanisms remain unclear. AIM OF THE STUDY This study aimed to identify the biologically active components present in methanol extracts of Origanum majorana L. using gas chromatography/mass spectrometry (GC/MS). Additionally, it aimed to investigate the therapeutic effects of these extracts on acetic acid-induced ulcerative colitis and elucidate the potential mechanisms involved. MATERIALS AND METHODS We conducted a GC-MS analysis of the methanolic extract obtained from Origanum majorana L. Thirty-two male rats were included in the study and divided into four experimental groups, with eight rats in each group: sham, UC, UC + O. majorana, and UC sulfasalazine. After euthanizing the rats, colon tissue samples were collected for gross and microscopic examinations, assessment of oxidative stress, and molecular evaluation. GC-MS analysis identified 15 components in the extracts. Pretreatment with O. majorana L. extract and sulfasalazine significantly improved the disease activity index (DAI) and resulted in notable improvements in macroscopic and microscopic colon findings. Additionally, both treatments demonstrated preventive effects against colonic oxidative damage by reducing the levels of malondialdehyde (MDA) and increasing the levels of the antioxidant systems superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), which operate through the Nrf2/HO-1 signaling pathway. Moreover, these treatments downregulated the colonic inflammatory cascade by inhibiting NFκB, TNFα, IL-1β, IL6, IL23, IL17, COX-2, and iNOS, subsequently leading to downregulation of the JAK2/STAT3 signaling pathway and a decrease in the Th17 cell response. Furthermore, a reduction in the number of apoptotic epithelial cells that expressed caspase-3 was observed. CONCLUSION pretreatment with O. majorana L. extract significantly ameliorated acetic acid-induced ulcerative colitis. This effect could be attributed to the protective, antioxidant, anti-inflammatory, and anti-apoptotic properties of the extract.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Anatomy, Al- Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah, 28814, Saudi Arabia.
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm-Al-Qura University, Kingdom of Saudi Arabia, Makka, 24382, Saudi Arabia
| | - Abdullah A Saati
- Department of Community Medicine and Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Omar Babateen
- Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Tourki A S Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudah, 28814, Saudi Arabia
| | - Naeem F Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Mohamed Ezzat Mahmoud
- Histology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta, 34711, Egypt
| | - Mohie Mahmoud Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Alaa M Badawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
32
|
Wang Y, Qiao M, Yao X, Feng Z, Hu R, Chen J, Liu L, Liu J, Sun Y, Guo Y. Lidocaine ameliorates intestinal barrier dysfunction in irritable bowel syndrome by modulating corticotropin-releasing hormone receptor 2. Neurogastroenterol Motil 2023; 35:e14677. [PMID: 37736684 DOI: 10.1111/nmo.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Intestinal barrier dysfunction is a prevalent pathogenic factor underlying various disorders. Currently there is no effective resolution. Previous studies have reported the potential anti-inflammatory properties of lidocaine and its ability to alleviate visceral hypersensitivity in individuals with irritable bowel syndrome (IBS). Therefore, our study will further verify the effect of lidocaine on intestinal barrier dysfunction in IBS and investigate the underlying mechanisms. METHODS In this study, we investigated the role of lidocaine by assessing visceral hypersensitivity, body weight, inflammatory factors, fluorescein isothiocyanate-dextran 4000 (FD4) flux, tight junctions (TJs) and spleen and thymus index in rats subjected to water avoidance stress (WAS) to mimic intestinal barrier dysfunction in IBS with and without lidocaine. In vitro, we investigated the role of corticotropin-releasing hormone receptor 2 (CRHR2) in lidocaine-treated Caco2 cells using small interfering RNA (siRNA) targeting CRHR2. KEY RESULTS In WAS rats, lidocaine significantly restored weight loss, damaged TJs, spleen index and thymus index and inhibited abdominal hypersensitivity as well as blood levels of markers indicating intestinal permeability, such as diamine oxidase (DAO), D-lactic acid (D-Lac) and lipopolysaccharide (LPS). Consequently, the leakage of FD4 flux from intestine was significantly attenuated in lidocaine group, and levels of intestinal inflammatory factors (IL-1β, IFN-γ, TNF-α) were reduced. Interestingly, lidocaine significantly suppressed corticotropin-releasing hormone (CRH) levels in lamina propria cells, while the CRH receptor CRHR2 was upregulated in intestinal epithelial cells. In vitro, lidocaine enhanced the expression of CRHR2 on Caco-2 intestinal epithelial cells and restored disrupted TJs and the epithelial barrier caused by LPS. Conversely, these effects were diminished by a CRHR2 antagonist and siRNA-CRHR2, suggesting that the protective effect of lidocaine depends on CRHR2. CONCLUSIONS AND INFERENCES Lidocaine ameliorates intestinal barrier dysfunction in IBS by potentially modulating the expression of CRHR2 on intestinal epithelial cells.
Collapse
Affiliation(s)
- Yanrong Wang
- Department of Laboratory Medicine, Sichuan Tianfu New Area People's Hospital, Chengdu, China
| | - Mingbiao Qiao
- Department of Pathology, De Yang People's Hospital, Deyang, China
| | - Xue Yao
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Zhonghui Feng
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Ruiqi Hu
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianguo Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Jinbo Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
33
|
Gu Q, Chen Z, Liu N, Xia C, Zhou Q, Li P. Lactiplantibacillus plantarum ZJ316-fermented milk ameliorates dextran sulfate sodium-induced chronic colitis by improving the inflammatory response and regulating intestinal microbiota. J Dairy Sci 2023; 106:7352-7366. [PMID: 37210370 DOI: 10.3168/jds.2023-23251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 05/22/2023]
Abstract
The pathogenesis of inflammatory bowel disease may be related to local inflammatory damage and disturbances in intestinal microecology. Probiotic therapy is a safe and effective therapeutic approach. Considering that fermented milk is accepted and enjoyed by many people as a daily dietary intervention strategy, its potential to alleviate dextran sulfate sodium (DSS)-induced chronic colitis in mice needs to be explored. In this study, we evaluated the therapeutic effects of Lactiplantibacillus plantarum ZJ316-fermented milk by establishing a mouse model of DSS-induced chronic colitis. The results showed that the disease severity and colonic lesions of inflammatory bowel disease were effectively alleviated by ingestion of fermented milk. At the same time, the expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) effectively decreased, and the expression of antiinflammatory cytokines (IL-10) increased. Results based on 16S rRNA gene sequencing indicated that the structure and diversity of intestinal microorganisms changed markedly by intake of L. plantarum ZJ316-fermented milk, and fermented milk reduced the abundance of harmful bacteria (Helicobacter) while promoting the growth of beneficial bacteria (Faecalibacterium, Lactiplantibacillus, and Bifidobacterium). Additionally, the levels of short-chain fatty acids (acetic acid, propionic acid, butyric acid, pentanoic acid, and isobutyric acid) were also increased. In conclusion, the intake of L. plantarum ZJ316-fermented milk can alleviate chronic colitis by suppressing the inflammatory response and regulating intestinal microbiota.
Collapse
Affiliation(s)
- Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Nana Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
34
|
de Oliveira Vieira KC, da Silva ABB, Felício SA, Lira FS, de Figueiredo C, Bezirtzoglou E, Pereira VC, Nakagaki WR, Nai GA, Winkelströter LK. Orange juice containing Pediococcus acidilactici CE51 modulates the intestinal microbiota and reduces induced inflammation in a murine model of colitis. Sci Rep 2023; 13:18513. [PMID: 37898635 PMCID: PMC10613252 DOI: 10.1038/s41598-023-45819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
The management of inflammatory bowel diseases has been widely investigated, especially ulcerative colitis. Thus, studies with the application of new probiotic products are needed in the prevention/treatment of these clinical conditions. The objective of this work was to evaluate the effects of probiotic orange juice containing Pediococcus acidilactici CE51 in a murine model of colitis. 45 male Swiss lineage mice were used, divided into five groups (n = 9): control, colitis, colitis + probiotic (probiotic orange juice containing CE51), colitis + placebo (orange juice) and colitis + sulfasalazine (10 mg/kg/Weight). The induction of colitis was performed with dextran sodium sulfate (3%). The treatment time was 5 and 15 days after induction. Histopathological analysis, serum measurements of TNF-α and C-reactive protein and metagenomic analysis of feces were performed after euthanasia. Probiotic treatment reduced inflammation in the small intestine, large intestine and spleen. The probiotic did not alter the serum dosages of TNF-α and C-reactive protein. Their use maintained the quantitative ratio of the phylum Firmicutes/Bacteroidetes and increased Lactobacillus helveticus with 15 days of treatment (p < 0.05). The probiotic orange juice containing P. acidilactici CE51 positively modulated the gut microbiota composition and attenuated the inflammation induced in colitis.
Collapse
Affiliation(s)
- Karolinny Cristiny de Oliveira Vieira
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Ana Beatriz Batista da Silva
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Suelen Aparecida Felício
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Fábio Santos Lira
- Department of Physical Education, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, UNESP, Rua Roberto Simonsen, 305, Presidente Prudente, Sao Paulo, 19060-900, Brazil
| | - Caíque de Figueiredo
- Department of Physical Education, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, UNESP, Rua Roberto Simonsen, 305, Presidente Prudente, Sao Paulo, 19060-900, Brazil
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Valéria Cataneli Pereira
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Wilson Romero Nakagaki
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Gisele Alborghetti Nai
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Lizziane Kretli Winkelströter
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil.
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil.
| |
Collapse
|
35
|
He R, Zhao S, Cui M, Chen Y, Ma J, Li J, Wang X. Cutaneous manifestations of inflammatory bowel disease: basic characteristics, therapy, and potential pathophysiological associations. Front Immunol 2023; 14:1234535. [PMID: 37954590 PMCID: PMC10637386 DOI: 10.3389/fimmu.2023.1234535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease typically involving the gastrointestinal tract but not limited to it. IBD can be subdivided into Crohn's disease (CD) and ulcerative colitis (UC). Extraintestinal manifestations (EIMs) are observed in up to 47% of patients with IBD, with the most frequent reports of cutaneous manifestations. Among these, pyoderma gangrenosum (PG) and erythema nodosum (EN) are the two most common skin manifestations in IBD, and both are immune-related inflammatory skin diseases. The presence of cutaneous EIMs may either be concordant with intestinal disease activity or have an independent course. Despite some progress in research on EIMs, for instance, ectopic expression of gut-specific mucosal address cell adhesion molecule-1 (MAdCAM-1) and chemokine CCL25 on the vascular endothelium of the portal tract have been demonstrated in IBD-related primary sclerosing cholangitis (PSC), little is understood about the potential pathophysiological associations between IBD and cutaneous EIMs. Whether cutaneous EIMs are inflammatory events with a commonly shared genetic background or environmental risk factors with IBD but independent of IBD or are the result of an extraintestinal extension of intestinal inflammation, remains unclear. The review aims to provide an overview of the two most representative cutaneous manifestations of IBD, describe IBD's epidemiology, clinical characteristics, and histology, and discuss the immunopathophysiology and existing treatment strategies with biologic agents, with a focus on the potential pathophysiological associations between IBD and cutaneous EIMs.
Collapse
Affiliation(s)
- Ronghua He
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Subei Zhao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingyu Cui
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yanhao Chen
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinrong Ma
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jintao Li
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaodong Wang
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Pivac I, Jelicic Kadic A, Despot R, Zitko V, Tudor D, Runjic E, Markic J. Characteristics of the Inflammatory Bowel Disease in Children: A Croatian Single-Centre Retrospective Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1677. [PMID: 37892340 PMCID: PMC10605261 DOI: 10.3390/children10101677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Inflammatory bowel diseases (IBDs), encompassing ulcerative colitis (UC) and Crohn's disease (CD), are chronic gastrointestinal disorders often diagnosed in youth, presenting unique features compared to adult-onset cases. We aimed to profile pediatric IBD patients in Croatia through a retrospective analysis of children up to 18 years old diagnosed with IBD at the University Hospital of Split from 1 January 2012, to 31 December 2021, utilizing data collected during hospitalization for diagnosis. Over a decade, 107 children were diagnosed, with 43.9% having UC, 55.1% CD, and 0.9% IBD-unclassified. Median age at diagnosis was 14.1 years, with UC patients being older (14.8 vs. 13.7 years, p = 0.044). Males constituted 60.7% of patients. Median symptom duration was 2.0 months, with CD patients experiencing a longer diagnostic delay (3.0 vs. 2.0 months, p = 0.003). The median incidence rate was 9.89 (95% CI 5.93-13.84) per 100,000 children/year, varying across age groups. Median (IQR) BMI z-score was -0.34 (-0.97-0.45). Common symptoms included diarrhea (60.7%) and abdominal pain (50.5%), with rectal bleeding more prevalent in UC (72.3% vs. 32.2%, p < 0.001). While our study offers valuable insights into pediatric IBD in Croatia, further prospective research is needed to clarify disease progression and development.
Collapse
Affiliation(s)
- Ivan Pivac
- School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia;
| | - Antonia Jelicic Kadic
- Department of Pediatrics, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (A.J.K.); (R.D.); (D.T.); (E.R.)
| | - Ranka Despot
- Department of Pediatrics, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (A.J.K.); (R.D.); (D.T.); (E.R.)
| | - Vanda Zitko
- Department of Pediatrics, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (A.J.K.); (R.D.); (D.T.); (E.R.)
| | - Darija Tudor
- Department of Pediatrics, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (A.J.K.); (R.D.); (D.T.); (E.R.)
| | - Edita Runjic
- Department of Pediatrics, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (A.J.K.); (R.D.); (D.T.); (E.R.)
| | - Josko Markic
- School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia;
- Department of Pediatrics, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (A.J.K.); (R.D.); (D.T.); (E.R.)
| |
Collapse
|
37
|
Xue JC, Yuan S, Hou XT, Meng H, Liu BH, Cheng WW, Zhao M, Li HB, Guo XF, Di C, Li MJ, Zhang QG. Natural products modulate NLRP3 in ulcerative colitis. Front Pharmacol 2023; 14:1265825. [PMID: 37849728 PMCID: PMC10577194 DOI: 10.3389/fphar.2023.1265825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Ulcerative colitis (UC) is a clinically common, progressive, devastating, chronic inflammatory disease of the intestine that is recurrent and difficult to treat. Nod-like receptor protein 3 (NLRP3) is a protein complex composed of multiple proteins whose formation activates cysteine aspartate protease-1 (caspase-1) to induce the maturation and secretion of inflammatory mediators such as interleukin (IL)-1β and IL-18, promoting the development of inflammatory responses. Recent studies have shown that NLRP3 is associated with UC susceptibility, and that it maintains a stable intestinal environment by responding to a wide range of pathogenic microorganisms. The mainstay of treatment for UC is to control inflammation and relieve symptoms. Despite a certain curative effect, there are problems such as easy recurrence after drug withdrawal and many side effects associated with long-term medication. NLRP3 serves as a core link in the inflammatory response. If the relationship between NLRP3 and gut microbes and inflammation-associated factors can be analyzed concerning its related inflammatory signaling pathways, its expression status as well as specific mechanism in the course of IBD can be elucidated and further considered for clinical diagnosis and treatment of IBD, it is expected that the development of lead compounds targeting the NLRP3 inflammasome can be developed for the treatment of IBD. Research into the prevention and treatment of UC, which has become a hotbed of research in recent years, has shown that natural products are rich in therapeutic means, and multi-targets, with fewer adverse effects. Natural products have shown promise in treating UC in numerous basic and clinical trials over the past few years. This paper describes the regulatory role of the NLRP3 inflammasome in UC and the mechanism of recent natural products targeting NLRP3 against UC, which provides a reference for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Jia-Chen Xue
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| | - Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Bao-Hong Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Wen-Wen Cheng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ming Zhao
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Hong-Ben Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xue-Fen Guo
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chang Di
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Min-Jie Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| |
Collapse
|
38
|
Abdelhady R, Saber S, Ahmed Abdel-Reheim M, Mohammad S. Alamri M, Alfaifi J, I. E. Adam M, A. Saleh L, I. Farag A, A. Elmorsy E, S. El-Wakeel H, S. Doghish A, E. Shaker M, H. Hazem S, A. Ramadan H, S. Hamad R, A. Mohammed O. Unveiling the therapeutic potential of exogenous β-hydroxybutyrate for chronic colitis in rats: novel insights on autophagy, apoptosis, and pyroptosis. Front Pharmacol 2023; 14:1239025. [PMID: 37841914 PMCID: PMC10570820 DOI: 10.3389/fphar.2023.1239025] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory disease of the colorectal area that demonstrates a dramatically increasing incidence worldwide. This study provides novel insights into the capacity of the exogenous β-hydroxybutyrate and ketogenic diet (KD) consumption to alleviate dextran sodium sulfate (DSS)-induced UC in rats. Remarkably, both interventions attenuated disease activity and colon weight-to-length ratio, and improved macro and microstructures of the damaged colon. Importantly, both β-hydroxybutyrate and KD curbed the DSS-induced aberrant NLRP3 inflammasome activation as observed in mRNA and protein expression analysis. Additionally, inhibition of the NLRP3/NGSDMD-mediated pyroptosis was detected in response to both regimens. In parallel, these modalities attenuated caspase-1 and its associated consequences of IL-1β and IL-18 overproduction. They also mitigated apoptosis as indicated by the inactivation of caspase-3. The anti-inflammatory effects of BHB and KD were confirmed by the reported decline in the levels of inflammatory markers including MPO, NFκB, IL-6, and TNF-α. Moreover, these interventions exhibited antioxidative properties by reducing ROS production and improving antioxidative enzymes. Their effectiveness in mitigating UC was also evident in the renovation of normal intestinal epithelial barrier function, as shown by correcting the discrepancies in the levels of tight junction proteins ZO-1, OCLN, and CLDN5. Furthermore, their effects on the intestinal microbiota homeostasis were investigated. In terms of autophagy, exogenous β-hydroxybutyrate upregulated BECN-1 and downregulated p62, which may account for its superiority over KD in attenuating colonic damage. In conclusion, this study provides experimental evidence supporting the potential therapeutic use of β-hydroxybutyrate or β-hydroxybutyrate-boosting regimens in UC.
Collapse
Affiliation(s)
- Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | | | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Masoud I. E. Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Lobna A. Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pharmacology and Toxicology, Collage of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Azza I. Farag
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, Qassim College of Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hend S. El-Wakeel
- Physiology Department, Benha Faculty of Medicine, Benha University, Banha, Egypt
- Physiology Department, Al-baha Faculty of Medicine, Al-baha University, Al-Baha, Saudi Arabia
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Sara H. Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Heba A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Al Mansurah, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Osama A. Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
39
|
Yan L, Zhou J, Yuan L, Ye J, Zhao X, Ren G, Chen H. Silibinin alleviates intestinal inflammation via inhibiting JNK signaling in Drosophila. Front Pharmacol 2023; 14:1246960. [PMID: 37781701 PMCID: PMC10539474 DOI: 10.3389/fphar.2023.1246960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic relapsing intestinal inflammation that causes digestive system dysfunction. For years, researchers have been working to find more effective and safer therapeutic strategies to treat these diseases. Silibinin (SIL), a flavonoid compound extracted from the seeds of milk thistle plants, possesses multiple biological activities and is traditionally applied to treat liver diseases. SIL is also widely used in the treatment of a variety of inflammatory diseases attributed to its excellent antioxidant and anti-inflammatory effects. However, the efficacy of SIL against IBDs and its mechanisms remain unclear. In this study, using Drosophila melanogaster as a model organism, we found that SIL can effectively relieve intestinal inflammation caused by dextran sulfate sodium (DSS). Our results suggested that SIL supplementation can inhibit the overproliferation of intestinal stem cells (ISCs) induced by DSS, protect intestinal barrier function, acid-base balance, and intestinal excretion function, reduce intestinal reactive oxygen species (ROS) levels and inflammatory stress, and extend the lifespan of Drosophila. Furthermore, our study demonstrated that SIL ameliorates intestinal inflammation via modulating the c-Jun N-terminal kinase (JNK) signaling pathway in Drosophila. Our research aims to provide new insight into the treatment of IBDs.
Collapse
Affiliation(s)
- La Yan
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juanyu Zhou
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Yuan
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jinbao Ye
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Ren
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Wang Q, Wang Z, Song J, Xu K, Tian W, Cai X, Mo J, Cao Y, Xiao J. Homogalacturonan enriched pectin based hydrogel enhances 6-gingerol's colitis alleviation effect via NF-κB/NLRP3 axis. Int J Biol Macromol 2023; 245:125282. [PMID: 37331544 DOI: 10.1016/j.ijbiomac.2023.125282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
A nanolipidcarrier (NLC) loaded homogalacturonan enriched pectin (citrus modified pectin, MCP4) hydrogel was designed as a novel colon inflammation site-specific oral delivery system for 6-gingerol (6G) (6G-NLC/MCP4 hydrogel) administration, and its colitis alleviation effect were investigated. 6G-NLC/MCP4 exhibited typical "cage-like" ultrastructure with 6G-NLC embedded in the hydrogel matrix as observed by cryoscanning electron microscope. And due to the homogalacturonan (HG) domain in MCP4 specifically combined with Galectin-3, which is overexpressed in the inflammatory region, the 6G-NLC/MCP4 hydrogel targeted to severe inflammatory region. Meanwhile, the prolonged-release characteristics of 6G-NLC provided sustained release of 6G in severe inflammatory regions. The matrix of hydrogel MCP4 and 6G achieved synergistic alleviation effects for colitis through NF-κB/NLRP3 axis. Specifically, 6G mainly regulated the NF-κB inflammatory pathway and inhibited the activity of NLRP3 protein, while MCP4 regulated the expression of Galectin-3 and peripheral clock gene Rev-Erbα/β to prevent the activation of inflammasome NLRP3.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangjie Xu
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Xu Cai
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiamei Mo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China.
| |
Collapse
|
41
|
Ikeda Y, Tsuji A, Matsuda S. Gut Protective Effect from Newly Isolated Bacteria as Probiotics against Dextran Sulfate Sodium and Carrageenan-Induced Ulcerative Colitis. Microorganisms 2023; 11:1858. [PMID: 37513030 PMCID: PMC10386561 DOI: 10.3390/microorganisms11071858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Gut microbiome dysbiosis might be linked to certain diseases such as inflammatory bowel diseases (IBDs), which are categorized by vigorous inflammation of the gastrointestinal tract. Several studies have shown the favorable anti-inflammatory effect of certain probiotics in IBD therapy. In the present investigation, the possible gut protective effects of commensal bacteria were examined in an IBD model mouse that was cost-effectively induced with low molecular weight dextran sulfate sodium (DSS) and kappa carrageenan. Our conclusions show that certain probiotic supplementation could result in the attenuation of the disease condition in the IBD mouse, suggesting a favorable therapeutic capability for considerably improving symptoms of gut inflammation with an impact on the IBD therapy. However, the molecular mechanisms require further investigation.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
42
|
Chen Q, Fan Y, Zhang B, Yan C, Zhang Q, Ke Y, Chen Z, Wang L, Shi H, Hu Y, Huang Q, Su J, Xie C, Zhang X, Zhou L, Ren J, Xu H. Capsulized Fecal Microbiota Transplantation Induces Remission in Patients with Ulcerative Colitis by Gut Microbial Colonization and Metabolite Regulation. Microbiol Spectr 2023; 11:e0415222. [PMID: 37093057 PMCID: PMC10269780 DOI: 10.1128/spectrum.04152-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Fecal microbiota transplantation (FMT) can induce clinical remission in ulcerative colitis (UC) patients. Enemas, nasoduodenal tubes, and colonoscopies are the most common routes for FMT administration. However, there is a lack of definitive evidence regarding the effectiveness of capsulized FMT treatment in UC patients. In this study, we administered capsulized FMT to 22 patients with active UC to assess the efficiency of capsulized FMT and determine the specific bacteria and metabolite factors associated with the response to clinical remission. Our results showed that the use of capsulized FMT was successful in the treatment of UC patients. Capsulized FMT induced clinical remission and clinical response in 57.1% (12 of 21) and 76.2% (16 of 21) of UC patients, respectively. Gut bacterial richness was increased after FMT in patients who achieved remission. Patients in remission after FMT exhibited enrichment of Alistipes sp. and Odoribacter splanchnicus, along with increased levels of indolelactic acid. Patients who did not achieve remission exhibited enrichment of Escherichia coli and Klebsiella and increased levels of biosynthesis of 12,13-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid) and lipopolysaccharides. Furthermore, we identified a relationship between specific bacteria and metabolites and the induction of remission in patients. These findings may provide new insights into FMT in UC treatment and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects. (This study has been registered at ClinicalTrails.gov under registration no. NCT03426683). IMPORTANCE Fecal microbiota transplantation has been successfully used in patients. Recently, capsulized FMT was reported to induce a response in patients with UC. However, limited patients were enrolled in such studies, and the functional factors of capsulized FMT have not been reported in the remission of patients with UC. In this study, we prospectively recruited patients with UC to receive capsulized FMT. First, we found that capsulized FMT could induce clinical remission in 57.1% of patients and clinical response in 76.2% after 12 weeks, which was more acceptable. Second, we found a relationship between the decrease of opportunistic pathogen and lipopolysaccharide synthesis in patients in remission after capsulized FMT. We also identified an association between specific bacteria and metabolites and remission induction in patients after capsulized FMT. These findings put forward a possibility for patients to receive FMT at home and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects.
Collapse
Affiliation(s)
- Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhao Ke
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Wang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huaxiu Shi
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiqun Hu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingwen Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Xie
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xu Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lixiang Zhou
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
43
|
Tang HJ, Bie CQ, Guo LL, Zhong LX, Tang SH. Efficacy and safety of vedolizumab in the treatment of patients with inflammatory bowel disease: A systematic review and meta‑analysis of randomized controlled trials. Exp Ther Med 2023; 25:298. [PMID: 37229320 PMCID: PMC10203751 DOI: 10.3892/etm.2023.11997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Few studies have thoroughly assessed the efficacy and safety of vedolizumab (VDZ) in the treatment of inflammatory bowel disease (IBD). Therefore, this systematic review and meta-analysis was performed to further evaluate this association. PubMed, Embase, and the Cochrane databases were searched until April 2022. Randomized controlled trials (RCTs) evaluating the efficacy and safety of VDZ in the treatment of IBD were included. The risk ratio (RR) and 95% confidence intervals (CI) were estimated for each outcome using a random effects model. A total of 12 RCTs, including 4,865 patients, met the inclusion criteria. In the induction phase, VDZ was more effective than placebo for patients with ulcerative colitis and Crohn's disease (CD) in clinical remission (RR=2.09; 95% CI=1.66-2.62) and clinical response (RR=1.54; 95% CI=1.34-1.78). In the maintenance therapy group, VDZ reached higher clinical remission (RR=1.98; 95% CI=1.58-2.49) and clinical response (RR=1.78; 95% CI=1.40-2.26) rates compared with the placebo group. VDZ particularly improved clinical remission (RR=2.07; 95% CI=1.48-2.89) and clinical response (RR=1.84; 95% CI=1.54-2.21) in patients with TNF antagonist failure. In terms of corticosteroid-free remission, VDZ was also more effective than placebo in patients with IBD (RR=1.98; 95% CI=1.51-2.59). In Crohn's patients, VDZ was more effective than placebo in terms of mucosal healing (RR=1.78; 95% CI=1.27-2.51). With respect to adverse events, VDZ significantly reduced the risk of IBD exacerbation compared with the placebo (RR=0.60; 95% CI=0.39-0.93; P=0.023). However, when compared with the placebo, VDZ increased the risk of nasopharyngitis in patients with CD (RR=1.77; 95% CI=1.01-3.10; P=0.045). No significant differences in other adverse events were observed. Although there might be underlying risk, such as selection bias, in the present study it can be safely concluded that VDZ is a safe and effective biological agent for IBD, particularly for patients with TNF antagonist failure.
Collapse
Affiliation(s)
- Hui-Jun Tang
- Department of Gastroenterology, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen, Guangdong 518104, P.R. China
| | - Cai-Qun Bie
- Department of Gastroenterology, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen, Guangdong 518104, P.R. China
| | - Li-Liangzi Guo
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Li-Xian Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shao-Hui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
44
|
Marr EE, Mulhern TJ, Welch M, Keegan P, Caballero-Franco C, Johnson BG, Kasaian M, Azizgolshani H, Petrie T, Charest J, Wiellette E. A platform to reproducibly evaluate human colon permeability and damage. Sci Rep 2023; 13:8922. [PMID: 37264117 DOI: 10.1038/s41598-023-36020-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
The intestinal epithelium comprises diverse cell types and executes many specialized functions as the primary interface between luminal contents and internal organs. A key function provided by the epithelium is maintenance of a barrier that protects the individual from pathogens, irritating luminal contents, and the microbiota. Disruption of this barrier can lead to inflammatory disease within the intestinal mucosa, and, in more severe cases, to sepsis. Animal models to study intestinal permeability are costly and not entirely predictive of human biology. Here we present a model of human colon barrier function that integrates primary human colon stem cells into Draper's PREDICT96 microfluidic organ-on-chip platform to yield a high-throughput system appropriate to predict damage and healing of the human colon epithelial barrier. We have demonstrated pharmacologically induced barrier damage measured by both a high throughput molecular permeability assay and transepithelial resistance. Using these assays, we developed an Inflammatory Bowel Disease-relevant model through cytokine induced damage that can support studies of disease mechanisms and putative therapeutics.
Collapse
Affiliation(s)
| | | | | | - Philip Keegan
- Draper, 555 Technology Sq., Cambridge, MA, 02139, USA
| | | | - Bryce G Johnson
- Pfizer Inflammation and Immunology, 1 Portland St., Cambridge, MA, 02139, USA
| | - Marion Kasaian
- Pfizer Inflammation and Immunology, 1 Portland St., Cambridge, MA, 02139, USA
| | | | | | | | | |
Collapse
|
45
|
Wang Y, Li P, Lavrijsen M, Rottier RJ, den Hoed CM, Bruno MJ, Kamar N, Peppelenbosch MP, de Vries AC, Pan Q. Immunosuppressants exert differential effects on pan-coronavirus infection and distinct combinatory antiviral activity with molnupiravir and nirmatrelvir. United European Gastroenterol J 2023; 11:431-447. [PMID: 37226653 PMCID: PMC10256998 DOI: 10.1002/ueg2.12417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Immunocompromised populations, such as organ transplant recipients and patients with inflammatory bowel disease (IBD) receiving immunosuppressive/immunomodulatory medications, may be more susceptible to coronavirus infections. However, little is known about how immunosuppressants affect coronavirus replication and their combinational effects with antiviral drugs. OBJECTIVE This study aims to profile the effects of immunosuppressants and the combination of immunosuppressants with oral antiviral drugs molnupiravir and nirmatrelvir on pan-coronavirus infection in cell and human airway organoids (hAOs) culture models. METHODS Different coronaviruses (including wild type, delta and omicron variants of SARS-CoV-2, and NL63, 229E and OC43 seasonal coronaviruses) were used in lung cell lines and hAOs models. The effects of immunosuppressants were tested. RESULTS Dexamethasone and 5-aminosalicylic acid moderately stimulated the replication of different coronaviruses. Mycophenolic acid (MPA), 6-thioguanine (6-TG), tofacitinib and filgotinib treatment dose-dependently inhibited viral replication of all tested coronaviruses in both cell lines and hAOs. The half maximum effective concentration (EC50) of tofacitinib against SARS-CoV-2 was 0.62 μM and the half maximum cytotoxic concentration (CC50) was above 30 μM, which resulted in a selective index (SI) of about 50. The anti-coronavirus effect of the JAK inhibitors tofacitinib and filgotinib is dependent on the inhibition of STAT3 phosphorylation. Combinations of MPA, 6-TG, tofacitinib, and filgotinib with the oral antiviral drugs molnupiravir or nirmatrelvir exerted an additive or synergistic antiviral activity. CONCLUSIONS Different immunosuppressants have distinct effects on coronavirus replication, with 6-TG, MPA, tofacitinib and filgotinib possessing pan-coronavirus antiviral activity. The combinations of MPA, 6-TG, tofacitinib and filgotinib with antiviral drugs exerted an additive or synergistic antiviral activity. Thus, these findings provide an important reference for optimal management of immunocompromised patients infected with coronaviruses.
Collapse
Affiliation(s)
- Yining Wang
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Pengfei Li
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Marla Lavrijsen
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Robbert J. Rottier
- Department of Pediatric SurgeryErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
- Department of Cell BiologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Caroline M. den Hoed
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
- Erasmus MC Transplant InstituteErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Marco J. Bruno
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Nassim Kamar
- Department of NephrologyDialysis and Organ TransplantationCHU RangueilINSERM UMR 1291Toulouse Institute for Infectious and Inflammatory Disease (Infinity)University Paul SabatierToulouseFrance
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Annemarie C. de Vries
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
- Erasmus MC Transplant InstituteErasmus MC‐University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
46
|
Ma Y, Lang X, Yang Q, Han Y, Kang X, Long R, Du J, Zhao M, Liu L, Li P, Liu J. Paeoniflorin promotes intestinal stem cell-mediated epithelial regeneration and repair via PI3K-AKT-mTOR signalling in ulcerative colitis. Int Immunopharmacol 2023; 119:110247. [PMID: 37159966 DOI: 10.1016/j.intimp.2023.110247] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Ulcerative colitis (UC) is a chronic and immune-mediated inflammatory disorder characterized by abdominal pain, diarrhoea, and haematochezia. The goal of clinical therapy for UC is mucosal healing, accomplished by regenerating and repairing the intestinal epithelium. Paeoniflorin (PF) is a natural ingredient extracted from Paeonia lactiflora that has significant anti-inflammatory and immunoregulatory efficacy. In this study, we investigated how PF could regulate the renewal and differentiation of intestinal stem cells (ISCs) to improve the regeneration and repair of the intestinal epithelium in UC. Our experimental results showed that PF significantly alleviated colitis induced by dextran sulfate sodium (DSS) and ameliorated intestinal mucosal injury by regulating the renewal and differentiation of ISCs. The mechanism by which PF regulates ISCs was confirmed to be through PI3K-AKT-mTOR signalling. In vitro, we found that PF not only improved the growth of TNF-α-induced colon organoids but also increased the expression of genes and proteins related to the differentiation and regeneration of ISCs. Furthermore, PF promoted the repair ability of lipopolysaccharide (LPS)-induced IEC-6 cells. The mechanism by which PF regulates ISCs was further confirmed and was consistent with the in vivo results. Overall, these findings demonstrate that PF accelerates epithelial regeneration and repair by promoting the renewal and differentiation of ISCs, suggesting that PF treatment may be beneficial to mucosal healing in UC patients.
Collapse
Affiliation(s)
- Yujing Ma
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China; Hebei University of Chinese Medicine, China
| | - Xiaomeng Lang
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China
| | - Qian Yang
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China
| | - Yan Han
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China
| | - Xin Kang
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China
| | - Run Long
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China
| | | | | | | | - Peitong Li
- Hebei University of Chinese Medicine, China
| | - Jianping Liu
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China.
| |
Collapse
|
47
|
Zhou HF, Yang C, Li JY, He YY, Huang Y, Qin RJ, Zhou QL, Sun F, Hu DS, Yang J. Quercetin serves as the major component of Xiang-lian Pill to ameliorate ulcerative colitis via tipping the balance of STAT1/PPARγ and dictating the alternative activation of macrophage. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116557. [PMID: 37142141 DOI: 10.1016/j.jep.2023.116557] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese herbal formula, Xiang-lian Pill (XLP), is commonly prescribed for ulcerative colitis (UC) patients to relieve their clinical symptom. Nonetheless, the underlying cellular and molecular mechanisms of XLP's anti-UC effect remain incompletely understood. AIM OF THE STUDY To evaluate the therapeutic effect and elucidate the possible working mechanisms of XLP in UC treatment. The major active component of XLP was also characterized. MATERIALS AND METHODS Colitis was induced in C57BL/6 mice with 3% dextran sulfate sodium (DSS) dissolved in drinking water for 7 consecutive days. The UC mice were grouped and treated with XLP (3640 mg/kg) or vehicle orally during the procedure of DSS induction. Mouse body weight, disease activity index (DAI) score and colon length were recorded. Histopathological changes and inflammatory cell infiltration were evaluated by pathological staining and flow cytometric analysis (FACS). Network pharmacology, bioinformatic analysis, widely targeted and targeted metabolomics analysis were performed to screen the potential effective ingredients and key targets. Bone marrow derived macrophages (BMDMs), peripheral blood mononuclear cells (PBMCs), RAW264.7 and THP-1 cells were used to dissect the anti-inflammatory effect of XLP. RESULTS Oral administration of XLP ameliorated DSS induced mouse colitis, as evidenced by reduced DAI and colonic inflammatory destruction. FACS results demonstrated that XLP treatment effectively restored immune tolerance in colon, inhibited the generation of monocyte derived macrophages and skewed macrophage polarization into M2 phenotype. Network pharmacology analysis suggested that innate effector modules related to macrophage activation comprise the major targets of XLP, and the counter-regulatory STAT1/PPARγ signaling possibly serves as the critical downstream pathway. Subsequent experiments unveiled an imbalance of STAT1/PPARγ signaling in monocytes derived from UC patients, and validated that XLP suppressed LPS/IFN-γ induced macrophage activation (STAT1 mediated) but facilitated IL-4 induced macrophage M2 polarization (PPARγ dependent). Meanwhile, our data showed that quercetin served as the major component of XLP to recapitulate the regulatory effect on macrophages. CONCLUSION Our findings revealed that quercetin serves as the major component of XLP that regulates macrophage alternative activation via tipping the balance of STAT1/PPARγ, which provides a mechanistic explanation for the therapeutic effect of XLP in UC treatment.
Collapse
Affiliation(s)
- Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Chao Yang
- Department of Geratology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430015, China.
| | - Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yu-Yao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yun Huang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Ren-Jie Qin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qiao-Li Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Fei Sun
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China.
| | - De-Sheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
48
|
Harun R, Yang E, Kassir N, Zhang W, Lu J. Machine Learning for Exposure-Response Analysis: Methodological Considerations and Confirmation of Their Importance via Computational Experimentations. Pharmaceutics 2023; 15:1381. [PMID: 37242624 PMCID: PMC10221670 DOI: 10.3390/pharmaceutics15051381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Exposure-response (E-R) is a key aspect of pharmacometrics analysis that supports drug dose selection. Currently, there is a lack of understanding of the technical considerations necessary for drawing unbiased estimates from data. Due to recent advances in machine learning (ML) explainability methods, ML has garnered significant interest for causal inference. To this end, we used simulated datasets with known E-R "ground truth" to generate a set of good practices for the development of ML models required to avoid introducing biases when performing causal inference. These practices include the use of causal diagrams to enable the careful consideration of model variables by which to obtain desired E-R relationship insights, keeping a strict separation of data for model-training and for inference generation to avoid biases, hyperparameter tuning to improve the reliability of models, and estimating proper confidence intervals around inferences using a bootstrap sampling with replacement strategy. We computationally confirm the benefits of the proposed ML workflow by using a simulated dataset with nonlinear and non-monotonic exposure-response relationships.
Collapse
Affiliation(s)
- Rashed Harun
- Genentech Inc., South San Francisco, CA 94080, USA
| | - Eric Yang
- Genentech Inc., South San Francisco, CA 94080, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wenhui Zhang
- Genentech Inc., South San Francisco, CA 94080, USA
| | - James Lu
- Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
49
|
Zhao J, Guo F, Hou L, Zhao Y, Sun P. Electron transfer-based antioxidant nanozymes: Emerging therapeutics for inflammatory diseases. J Control Release 2023; 355:273-291. [PMID: 36731800 DOI: 10.1016/j.jconrel.2023.01.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Inflammatory diseases are usually featured with relatively high level of reactive oxygen species (ROS). The excess ROS facilitate the polarization of microphages into proinflammatory M1 phenotype, and cause DNA damage, protein carbonylation, and lipid peroxidation, resulting in further deterioration of inflammatory diseases. Therefore, alleviating oxidative stress by ROS scavenging has been an effective strategy for reversing inflammation. Inspired by the natural antioxidant enzymes, electron transfer-based artificial antioxidant nanozymes have been emerging therapeutics for the treatment of inflammatory diseases. The present review starts with the basic knowledge of ROS and diseases, followed by summarizing the possible active centers for the preparation of antioxidant nanozymes. The strategies for the design of antioxidant nanozymes on the purpose of higher catalytic activity are provided, and the applications of the developed antioxidant nanozymes on the therapy of inflammatory diseases are discussed. A perspective is included for the design and applications of artificial antioxidant nanozymes in biomedicine as well.
Collapse
Affiliation(s)
- Jingnan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Fanfan Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongxing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, PR China
| | - Pengchao Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
50
|
Salvador-Martín S, Zapata-Cobo P, Velasco M, Palomino LM, Clemente S, Segarra O, Sánchez C, Tolín M, Moreno-Álvarez A, Fernández-Lorenzo A, Pérez-Moneo B, Loverdos I, Navas López VM, Millán A, Magallares L, Torres-Peral R, García-Romero R, Pujol-Muncunill G, Merino-Bohorquez V, Rodríguez A, Salcedo E, López-Cauce B, Marín-Jiménez I, Menchén L, Laserna-Mendieta E, Lucendo AJ, Sanjurjo-Sáez M, López-Fernández LA. Association between HLA DNA Variants and Long-Term Response to Anti-TNF Drugs in a Spanish Pediatric Inflammatory Bowel Disease Cohort. Int J Mol Sci 2023; 24:ijms24021797. [PMID: 36675312 PMCID: PMC9861004 DOI: 10.3390/ijms24021797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The genetic polymorphisms rs2395185 and rs2097432 in HLA genes have been associated with the response to anti-TNF treatment in inflammatory bowel disease (IBD). The aim was to analyze the association between these variants and the long-term response to anti-TNF drugs in pediatric IBD. We performed an observational, multicenter, ambispective study in which we selected 340 IBD patients under 18 years of age diagnosed with IBD and treated with anti-TNF drugs from a network of Spanish hospitals. Genotypes and failure of anti-TNF drugs were analyzed using Kaplan-Meier curves and Cox logistic regression. The homozygous G allele of rs2395185 and the C allele of rs2097432 were associated with impaired long-term response to anti-TNF drugs in children with IBD after 3 and 9 years of follow-up. Being a carrier of both polymorphisms increased the risk of anti-TNF failure. The SNP rs2395185 but not rs2097432 was associated with response to infliximab in adults with CD treated with infliximab but not in children after 3 or 9 years of follow-up. Conclusions: SNPs rs2395185 and rs2097432 were associated with a long-term response to anti-TNFs in IBD in Spanish children. Differences between adults and children were observed in patients diagnosed with CD and treated with infliximab.
Collapse
Affiliation(s)
- Sara Salvador-Martín
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Paula Zapata-Cobo
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Marta Velasco
- Hospital Universitario Infantil Niño Jesús, 28009 Madrid, Spain
| | | | | | | | - Cesar Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Mar Tolín
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | | | | | | | - Inés Loverdos
- Hospital Universitario Parc Taulí, 08208 Sabadell, Spain
| | | | - Antonio Millán
- Hospital Universitario Virgen de Valme, Universidad de Sevilla, 41014 Sevilla, Spain
| | | | | | | | - Gemma Pujol-Muncunill
- Servicio de Gastroenterología, Hepatología y Nutrición Pediátrica, Hospital Sant Joan de Dèu, 08950 Barcelona, Spain
| | | | | | | | - Beatriz López-Cauce
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Ignacio Marín-Jiménez
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | - Luis Menchén
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | - Emilio Laserna-Mendieta
- Departamento of Gastroenterología, Hospital General de Tomelloso, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Alfredo J Lucendo
- Departamento of Gastroenterología, Hospital General de Tomelloso, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 28029 Madrid, Spain
| | - María Sanjurjo-Sáez
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Luis A López-Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| |
Collapse
|