1
|
Mair D, Madi H, Eftimov F, Lunn MP, Keddie S. Novel therapies in CIDP. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-334165. [PMID: 39358011 DOI: 10.1136/jnnp-2024-334165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a heterogeneous but clinically well-described disease within circumscribed parameters. It is immunologically mediated through several poorly understood mechanisms. First-line therapies with steroids, intravenous immunoglobulin (IVIG) or plasma exchange are each effective in about two-thirds of patients. These treatments are seldom associated with complete resolution or cure, and often pose considerable practical, financial and medical implications.Our understanding of many of the key pathological processes in autoimmune diseases is expanding, and novel targeted therapeutics are being developed with promise in several autoimmune neurological disorders.This narrative review looks first at detailing key pathogenic mechanisms of disease in CIDP, followed by an in-depth description of potential novel therapies and the current evidence of their application in clinical practice.
Collapse
Affiliation(s)
- Devan Mair
- Barts Health NHS Trust, London, UK
- Barts and The London School of Medicine and Dentistry, London, UK
| | | | - Filip Eftimov
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| | - Michael P Lunn
- MRC Centre for Neuromuscular Disease and Department of Molecular Neuroscience, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
- Neuroimmunology and CSF laboratory, Institute of Neurology, University College London Hospitals NHS Foundation Trust, London, UK
| | | |
Collapse
|
2
|
Martins AC, Oshiro MY, Albericio F, de la Torre BG. Food and Drug Administration (FDA) Approvals of Biological Drugs in 2023. Biomedicines 2024; 12:1992. [PMID: 39335511 PMCID: PMC11428688 DOI: 10.3390/biomedicines12091992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
An increase in total drug (small molecules and biologics) approvals by the Food and Drug Administration (FDA) was seen in 2023 compared with the previous year. Cancer remained the disease most targeted by monoclonal antibodies (mAbs), followed by autoimmune conditions. Our data reveal the prevalence of approvals for biologics even during years when the total number of authorizations was low, such as in 2022. Over half the drugs that received the green light in 2023 benefited from expedited programs, as the incidence of many diseases increased. In addition, over half of the biologics approved received Orphan Drug Designation from the FDA. This narrative review delves into details of the most significant approvals in 2023, including mAbs, enzymes, and proteins, explaining their mechanisms of action, differences from previous drugs, placebo, and standards of care, and outcomes in clinical trials. Given the varying number of drugs authorized annually by the U.S. health authority, this review also examines the limits of external influences over the FDA's decisions and independence regarding drug approvals and withdrawals.
Collapse
Affiliation(s)
- Alexander C Martins
- School of Health Sciences, UAM, Universidade Anhembi-Morumbi, São Paulo 03101-001, Brazil
- Medical Information Department, Thermo Fisher Scientific, São Paulo 4542011, Brazil
| | - Mariana Y Oshiro
- School of Health Sciences, UAM, Universidade Anhembi-Morumbi, São Paulo 03101-001, Brazil
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Beatriz G de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
3
|
Dalmia S, Harnett B, Al-Samkari H, Arnold DM. Novel treatments for immune thrombocytopenia: targeting platelet autoantibodies. Expert Rev Hematol 2024; 17:609-616. [PMID: 39072415 DOI: 10.1080/17474086.2024.2385485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by low platelets and an increased risk of bleeding. Platelet autoantibodies target major platelet glycoproteins and cause Fc-mediated platelet destruction in the spleen and reticuloendothelial systems. As mechanisms of disease, platelet autoantibodies are important therapeutic targets. Neonatal Fc receptor (FcRn) antagonists are a new class of therapeutics that reduce the half-life of immunoglobulin G including pathogenic platelet autoantibodies. Spleen tyrosine kinase (Syk) inhibitors interfere with Fc-mediated platelet clearance. Bruton's tyrosine kinase (BTK) inhibitors and B-cell activating factor (BAFF) inhibitors reduce antibody production. The efficacy of these targeted therapies provides new support for the role of platelet autoantibodies in pathogenesis of ITP even these antibodies can be difficult to detect. AREAS COVERED This review includes an in-depth exploration of the pathophysiologic mechanisms of ITP, focusing on autoantibodies. Treatments outlined in this review include a) FcRn antagonists, b) complement inhibitors, c) B-cell directed therapies such as BTK inhibitors, and anti-BAFF agents, d) Syk inhibitors, e) plasma-cell directed therapies, and f) novel cellular therapeutic products. EXPERT OPINION Platelet autoantibodies are often elusive in ITP, yet novel treatments targeting this pathway reinforce their role in the pathogenesis of this autoimmune platelet disorder.
Collapse
Affiliation(s)
- Shreyash Dalmia
- Department of Oncology, McMaster University, Hamilton, Canada
| | - Brian Harnett
- Department of Hematology, Memorial University of Newfoundland, St. John's, Canada
| | | | - Donald M Arnold
- Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
4
|
Sprenger-Svačina A, Svačina MKR, Gao T, Zhang G, Sheikh KA. Emerging treatment landscape for Guillain-Barré Syndrome (GBS): what's new? Expert Opin Investig Drugs 2024; 33:881-886. [PMID: 38980318 PMCID: PMC11424254 DOI: 10.1080/13543784.2024.2377323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Guillain-Barré syndrome (GBS) is a monophasic immune neuropathic disorder characterized by acute paralysis. A significant portion of patients are left with residual deficits, which presents a considerable global healthcare challenge. The precise mechanisms underlying GBS pathogenesis are not fully elucidated. Recent studies have focused on postinfectious molecular mimicry and identified involvement of IgG autoantibodies and innate immune effectors in GBS. Intravenous immunoglobulins (IVIg) and plasma exchange (PE) are two established evidence-based immunomodulatory treatments for GBS, but a significant proportion of GBS patients fails to respond adequately to either therapy. This emphasizes an urgent need for novel and more potent treatments. AREAS COVERED We discuss novel immunomodulatory therapies presently at different phases of preclinical and clinical investigation. Some drugs in development target pathophysiologic mechanisms such as IgG autoantibody catabolism and complement activation, which are relevant to GBS. EXPERT OPINION There is an unmet need for more effective immune therapies for GBS. New immunomodulatory therapies under development may provide more potent options for GBS patients who do not respond to IVIg or PE. Future directions may include incorporating neuroprotective interventions based on evolving understanding of mechanisms underlying nerve injury and axonal degeneration.
Collapse
Affiliation(s)
- Alina Sprenger-Svačina
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Martin K R Svačina
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Tong Gao
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gang Zhang
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kazim A Sheikh
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
5
|
Andreeva I, Kolb P, Rodon L, Blank N, Lorenz HM, Merkt W. Fcγ-receptor-IIIA bioactivity of circulating and synovial immune complexes in rheumatoid arthritis. RMD Open 2024; 10:e004190. [PMID: 39209371 PMCID: PMC11367361 DOI: 10.1136/rmdopen-2024-004190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Previous technical limitations prevented the proof of Fcγ-receptor (FcγR)-activation by soluble immune complexes (sICs) in patients. FcγRIIIa (CD16) is a risk factor in rheumatoid arthritis (RA). We aimed at determining the presence of CD16-activating sICs in RA and control diseases. METHODS Sera from an exploratory cohort (n=50 patients with RA) and a validation cohort (n=106 patients with RA, 20 patients with psoriasis arthritis (PsA), 22 patients with systemic lupus erythematosus (SLE) and 31 healthy controls) were analysed using a new reporter cell assay. Additionally, 26 synovial fluid samples were analysed, including paired serum/synovial samples. RESULTS For the first time using a reliable and sensitive functional assay, the presence of sICs in RA sera was confirmed. sICs possess an intrinsic capacity to activate CD16 and can be found in both synovial fluid and in blood. In low experimental dilutions, circulating sICs were also detected in a subset of healthy people and in PsA. However, we report a significantly increased frequency of bioactive circulating sICs in RA. While the bioactivity of circulating sICs was low and did not correlate with clinical parameters, synovial sICs were highly bioactive and correlated with serum autoantibody levels. Receiver operator curves indicated that sICs bioactivity in synovial fluid could be used to discriminate immune complex-associated arthritis from non-associated forms. Finally, circulating sICs were more frequently found in SLE than in RA. The degree of CD16 bioactivity showed strong donor-dependent differences, especially in SLE. CONCLUSIONS RA is characterised by the presence of circulating and synovial sICs that can engage and activate CD16.
Collapse
Affiliation(s)
- Ivana Andreeva
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp Kolb
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
- Albert-Ludwigs-Universitat Freiburg Medizinische Fakultat, Freiburg, Germany
| | - Lea Rodon
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Blank
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Wolfgang Merkt
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
- Hiller Forschungszentrum, Department of Rheumatology, University Hospital of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Wang P, Zhang B, Yin J, Xi J, Tan Y, Gao F, Zeng F, Chang T, Zhou H, Liang H, Zhao Z, Yang H, Zhao C, Huang S. Prospective cohort study evaluating efficacy and safety of efgartigimod in Chinese generalized myasthenia gravis patients. Front Neurol 2024; 15:1407418. [PMID: 38966082 PMCID: PMC11222781 DOI: 10.3389/fneur.2024.1407418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Background Despite the efficacy of efgartigimod demonstrated in ADAPT phase 3 trial, data specifically derived from Chinese participants are not available. Therefore, we aimed to evaluate the efficacy and safety of efgartigimod in Chinese patients with generalized myasthenia gravis (gMG). Methods This is a prospective cohort study conducted in 8 hospitals across China. gMG patients received weekly intravenous infusions of efgartigimod (10 mg/kg) under a named patient program (NPP). The present study is an 8-week study, consisting of 4 consecutive doses of efgartigimod administered over 3 weeks (one cycle), followed by a 5-week follow-up period to assess the tolerability of efgartigimod's therapeutic effects. The primary outcome was the mean change in MG activities of daily living (MG-ADL) total score from baseline to 4 weeks. MG-ADL responder was defined as a ≥ 2-point improvement that persisted for 4 weeks, starting by week 4. Safety evaluations encompassed the monitoring of adverse events (AE) and serious AE (SAE) throughout the study. Results Between 5 July 2022 and 25 August 2023, a total of 14 gMG patients were included. The mean age was 57.7 years, with a mean MG-ADL score of 10.86 ± 3.32. At week 4, MG-ADL scores showed a mean reduction of 6 points, reaching a maximum decline of 13 points. Among the patients, 85.7% (12/14) achieved MG-ADL responder status after one cycle of treatment. The most significant reduction in quantitative MG (QMG) scores also occurred at week 4, with a mean decrease of 7 points. Notably, the improvements in MG-ADL and QMG scores persisted until week 8. During treatment and follow-up period, only two mild neck rashes occurred and resolved promptly. No infections or SAE were reported. Discussion A single cycle of efgartigimod treatment demonstrates effectiveness and the tolerability through week 8, with no new safety signals observed in Chinese gMG patients.
Collapse
Affiliation(s)
- Pan Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Zhang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jian Yin
- Department of Neurology, Beijing Hospital, Beijing, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Tan
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Feng Gao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Fan Zeng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Army Medical University, Chongqing, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Hao Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhongyan Zhao
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shixiong Huang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
7
|
Zhu G, Ma Y, Zhou H, Nie X, Qi W, Hao L, Guo X. Case report: Rapid clinical improvement in acute exacerbation of MuSK-MG with efgartigimod. Front Immunol 2024; 15:1401972. [PMID: 38911858 PMCID: PMC11190065 DOI: 10.3389/fimmu.2024.1401972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Myasthenia gravis with positive MuSK antibody often involves the bulbar muscles and is usually refractory to acetylcholinesterase inhibitors. For MuSK-MG patients who experience acute exacerbations and do not respond to conventional treatments, there is an urgent need to find more suitable treatment options. With the advent of biologic agents, efgartigimod has shown promising results in the treatment of MG. We report a 65-year-old MuSK-MG patient who presented with impaired eye movements initially, and the symptoms rapidly worsened within a week, affecting the limbs and neck muscles, and had difficulties in chewing and swallowing. Lymphoplasmapheresis did not achieve satisfactory results, but after a cycle of efgartigimod treatment, the patient's symptoms gradually improved and remained in a good clinical state for several months.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Hao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Kulkarni HS. Hexamerization: explaining the original sin of IgG-mediated complement activation in acute lung injury. J Clin Invest 2024; 134:e181137. [PMID: 38828725 PMCID: PMC11142731 DOI: 10.1172/jci181137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Although antibody-mediated lung damage is a major factor in transfusion-related acute lung injury (ALI), autoimmune lung disease (for example, coatomer subunit α [COPA] syndrome), and primary graft dysfunction following lung transplantation, the mechanism by which antigen-antibody complexes activate complement to induce lung damage remains unclear. In this issue of the JCI, Cleary and colleagues utilized several approaches to demonstrate that IgG forms hexamers with MHC class I alloantibodies. This hexamerization served as a key pathophysiological mechanism in alloimmune lung injury models and was mediated through the classical pathway of complement activation. Additionally, the authors provided avenues for exploring therapeutics for this currently hard-to-treat clinical entity that has several etiologies but a potentially focused mechanism.
Collapse
|
9
|
Alfaidi N, Karmastaji S, Matic A, Bril V. FcRn Inhibitor Therapies in Neurologic Diseases. CNS Drugs 2024; 38:425-441. [PMID: 38724842 DOI: 10.1007/s40263-024-01090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
In the last decade, the landscape of treating autoimmune diseases has evolved with the emergence and approval of novel targeted therapies. Several new biological agents offer selective and target-specific immunotherapy and therefore fewer side effects, such as neonatal Fc receptor (FcRn)-targeting therapy. Neonatal Fc receptor-targeted therapies are engineered to selectively target FcRn through various methods, such as Fc fragments or monoclonal anti-FcRn antibodies. These approaches enhance the breakdown of autoantibodies by blocking the immunoglobulin G recycling pathway. This mechanism reduces overall plasma immunoglobulin levels, including the levels of pathogenic autoantibodies, without affecting the other immunoglobulin class immunoglobulin A, immunoglobulin E, immunoglobulin M, and immunoglobulin D levels. Drugs that inhibit FcRn include efgartigimod, rozanolixizumab, batoclimab, and nipocalimab. These medications can be administered either intravenously or subcutaneously. Numerous clinical trials are currently underway to investigate their effectiveness, safety, and tolerability in various neurological conditions, including myasthenia gravis and other neurological disorders such as chronic inflammatory demyelinating polyneuropathy, myositis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. Positive results from clinical trials of efgartigimod and rozanolixizumab led to their approval for the treatment of generalized myasthenia gravis. Additional clinical trials are still ongoing. Neonatal Fc receptor inhibitor agents seem to be well tolerated. Reported adverse events include headache (most commonly observed with efgartigimod and rozanolixizumab), upper respiratory tract infection, urinary tract infection, diarrhea, pyrexia, and nausea. Additionally, some of these agents may cause transient hypoalbuminemia and hypercholesterolemia notably reported with batoclimab and nipocalimab. In this review, we discuss the available clinical data for FcRN inhibitor agents in treating different neurological autoimmune diseases.
Collapse
Affiliation(s)
- Nouf Alfaidi
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, 5EC-309, TGH 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada
| | - Salama Karmastaji
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, 5EC-309, TGH 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada
| | - Alexandria Matic
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, 5EC-309, TGH 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, 5EC-309, TGH 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
10
|
Ren Y, Ying Q, Chen Y, Liao C, Li A, Ye Q. HLA-DRB5 Overexpression Promotes Platelet Reduction in Immune Thrombocytopenia Mice Model by Facilitating MHC-II-Mediated Antigen Presentation. Acta Haematol 2024:1-9. [PMID: 38744253 DOI: 10.1159/000538749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION Major histocompatibility complex II (MHC-II)-mediated antigen presentation contributes to the pathogenesis of immune thrombocytopenia (ITP). Human leukocyte antigen (HLA)-DRB5 is an MHC-II molecule and this study aims to investigate its role and mechanisms in ITP development. METHODS Guinea pig anti-mouse platelet (PLT) serum-induced ITP mice received tail vein injection of HLA-DRB5 overexpressing adenoviral vector/immune receptor expressed on myeloid cells-1 (IREM-1) monoclonal antibody (mAb). PLT count changes in mice blood were assessed by a hematology analyzer. MHC-II/CD80/CD86 expression in mice blood was measured by quantitative real-time-PCR and immunofluorescence assay. CD8+ T-cell proportion in mice blood was detected by flow cytometry. RESULTS HLA-DRB5 overexpression exacerbated PLT reduction since the 5th day of the establishment of ITP mice model and enhanced MHC-II/CD80/CD86 expression upregulation as well as CD8+ T-cell ratio elevation in the blood of ITP mice, while its effects were reversed by IREM-1 mAb. CONCLUSION HLA-DRB5 overexpression upregulates MHC-II-mediated antigen presentation to CD8+ T cells, thus lowering PLT count in the ITP mice model.
Collapse
Affiliation(s)
- Yujuan Ren
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
- NBU Health Science Center, Ningbo, China
| | - Qianqian Ying
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
| | - Ying Chen
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
| | - Cong Liao
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
| | - Anrong Li
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
| | - Qidong Ye
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
11
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Yu L, Wan Q, Liu Q, Fan Y, Zhou Q, Skowronski AA, Wang S, Shao Z, Liao CY, Ding L, Kennedy BK, Zha S, Que J, LeDuc CA, Sun L, Wang L, Qiang L. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab 2024; 36:793-807.e5. [PMID: 38378001 PMCID: PMC11070064 DOI: 10.1016/j.cmet.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Aging is underpinned by pronounced metabolic decline; however, the drivers remain obscure. Here, we report that IgG accumulates during aging, particularly in white adipose tissue (WAT), to impair adipose tissue function and metabolic health. Caloric restriction (CR) decreases IgG accumulation in WAT, whereas replenishing IgG counteracts CR's metabolic benefits. IgG activates macrophages via Ras signaling and consequently induces fibrosis in WAT through the TGF-β/SMAD pathway. Consistently, B cell null mice are protected from aging-associated WAT fibrosis, inflammation, and insulin resistance, unless exposed to IgG. Conditional ablation of the IgG recycling receptor, neonatal Fc receptor (FcRn), in macrophages prevents IgG accumulation in aging, resulting in prolonged healthspan and lifespan. Further, targeting FcRn by antisense oligonucleotide restores WAT integrity and metabolic health in aged mice. These findings pinpoint IgG as a hidden culprit in aging and enlighten a novel strategy to rejuvenate metabolic health.
Collapse
Affiliation(s)
- Lexiang Yu
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Qianfen Wan
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Qiongming Liu
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yong Fan
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Qiuzhong Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Alicja A Skowronski
- Naomi Berrie Diabetes Center, Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Summer Wang
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Zhengping Shao
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Chen-Yu Liao
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Lei Ding
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Healthy Longevity Translational Research Programme, Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Health Longevity, National University Health System, Singapore, Singapore
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Charles A LeDuc
- Naomi Berrie Diabetes Center, Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Liheng Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Medicine, Division of Endocrinology, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Li Qiang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Naomi Berrie Diabetes Center, Department of Medicine, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
13
|
Hao YB, Xing J, Sheng XZ, Chi H, Tang XQ, Zhan WB. The Role of Fc Receptors in the Innate Immune System of Flounders Purported to Be Homologs of FcγRII and FcγRIII. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1196-1206. [PMID: 38380986 DOI: 10.4049/jimmunol.2300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
FcγR is a significant opsonin receptor located on the surface of immune cells, playing a crucial role in Ab-dependent cell-mediated immunity. Our previous work revealed opposite expression trends of FcγRII and FcγRIII in flounder mIgM+ B lymphocytes after phagocytosis of antiserum-opsonized Edwardsiella tarda. This observation suggests that FcγRII and FcγRIII might serve distinct functions in Ig-opsonized immune responses. In this study, we prepared rFcγRIII as well as its corresponding Abs to investigate the potential roles of FcγRII and FcγRIII in the Ab-dependent immune response of IgM+ B cells. Our findings indicate that, unlike FcγRII, FcγRIII does not participate in Ab-dependent cellular phagocytosis. Instead, it is involved in cytokine production and bacterial killing in mIgM+ B lymphocytes. Additionally, we identified platelet-derived ADAM17 as a key factor in regulating FcγRIII shedding and cytokine release in mIgM+ B lymphocytes. These results elucidate the functions of FcγRII and FcγRIII in the innate immunology of mIgM+ B lymphocytes and contribute to an improved understanding of the regulatory roles of FcγRs in the phagocytosis of teleost B lymphocytes.
Collapse
Affiliation(s)
- Yan-Bo Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wen-Bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Frangiamore R, Rinaldi E, Vanoli F, Andreetta F, Ciusani E, Bonanno S, Maggi L, Gallone A, Colasuonno A, Tramacere I, Cheli M, Pinna A, Mantegazza R, Antozzi C. Efgartigimod in generalized myasthenia gravis: A real-life experience at a national reference center. Eur J Neurol 2024; 31:e16189. [PMID: 38164996 PMCID: PMC11236067 DOI: 10.1111/ene.16189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND PURPOSE Inhibition of the neonatal Fc receptor (FcRn) for IgG is a promising new therapeutic strategy for antibody-mediated disorders. We report our real-life experience with efgartigimod (EFG) in 19 patients with generalized myasthenia gravis (gMG) along a clinical follow-up of 14 months. METHODS EFG was administered according to the GENERATIVE protocol (consisting of a Fixed period of two treatment cycles [given 1 month apart] of four infusions at weekly intervals, followed by a Flexible period of re-cycling in case of worsening). Eight patients were positive for acetylcholine receptor antibody, four for muscle-specific tyrosine kinase antibody, and two for lipoprotein-related protein 4 antibody, and five were classified as triple negative. Efficacy of EFG was assessed by the Myasthenia Gravis Activities of Daily Living, Myasthenia Gravis Composite, and Quantitative Myasthenia Gravis scales. RESULTS Fifty-three percent of patients needed three treatment cycles, 26% needed four, and 21% needed five along the 14-month clinical follow-up. Meaningful improvement was observed at the end of each cycle with the clinical scores adopted. EFG had a dramatic effect on disease course, as during the year before treatment eight of 19 patients (42%) were hospitalized, and 15 of 19 (79%) needed treatment with plasma exchange or immunoglobulins; three of 19 (16%) were admitted to the intensive care unit. During EFG, none of the patients was hospitalized and only one patient required plasma exchange and intravenous immunoglobulins. No major side effects or infusion-related reactions occurred. CONCLUSIONS We observed that EFG was safe and modified significantly the course of the disease along a 14-month follow-up. Our experience strengthens the role of FcRn inhibition as an effective new tool for long-term treatment of gMG.
Collapse
Affiliation(s)
- Rita Frangiamore
- Neuroimmunology and Neuromuscular Diseases UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| | - Elena Rinaldi
- Neuroimmunology and Neuromuscular Diseases UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| | - Fiammetta Vanoli
- Neuroimmunology and Neuromuscular Diseases UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Francesca Andreetta
- Neuroimmunology and Neuromuscular Diseases UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| | - Emilio Ciusani
- Laboratory of Neurological Biochemistry and NeuropharmacologyFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Diseases UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| | - Annamaria Gallone
- Neuroimmunology and Neuromuscular Diseases UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| | - Anna Colasuonno
- Neuroimmunology and Neuromuscular Diseases UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific DirectorateFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| | - Marta Cheli
- Neuroimmunology and Neuromuscular Diseases UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| | | | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| | - Carlo Antozzi
- Neuroimmunology and Neuromuscular Diseases UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
- Immunotherapy and Apheresis Departmental UnitFondazione IRCCS Istituto Neurologico C. BestaMilanItaly
| |
Collapse
|
15
|
Frangiamore R, Rinaldi E, Vanoli F, Andreetta F, Mantegazza R, Antozzi C. Efgartigimod improves triple-negative myasthenia gravis. Neurol Sci 2024; 45:1307-1309. [PMID: 37875596 DOI: 10.1007/s10072-023-07122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Affiliation(s)
- Rita Frangiamore
- Neuroimmunology and Muscle Pathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Elena Rinaldi
- Neuroimmunology and Muscle Pathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Fiammetta Vanoli
- Neuroimmunology and Muscle Pathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Andreetta
- Neuroimmunology and Muscle Pathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Renato Mantegazza
- Neuroimmunology and Muscle Pathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Carlo Antozzi
- Neuroimmunology and Muscle Pathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Via Giovanni Celoria 11, 20133, Milan, Italy.
- Immunotherapy and Apheresis Departmental Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Via Giovanni Celoria 11, 20133, Milan, Italy.
| |
Collapse
|
16
|
Pigors M, Patzelt S, Reichhelm N, Dworschak J, Khil'chenko S, Emtenani S, Bieber K, Hofrichter M, Kamaguchi M, Goletz S, Köhl G, Köhl J, Komorowski L, Probst C, Vanderheyden K, Balbino B, Ludwig RJ, Verheesen P, Schmidt E. Bullous pemphigoid induced by IgG targeting type XVII collagen non-NC16A/NC15A extracellular domains is driven by Fc gamma receptor- and complement-mediated effector mechanisms and is ameliorated by neonatal Fc receptor blockade. J Pathol 2024; 262:161-174. [PMID: 37929639 DOI: 10.1002/path.6220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies targeting type XVII collagen (Col17) with the noncollagenous 16A (NC16A) ectodomain representing the immunodominant site. The role of additional extracellular targets of Col17 outside NC16A has not been unequivocally demonstrated. In this study, we showed that Col17 ectodomain-reactive patient sera depleted in NC16A IgG induced dermal-epidermal separation in a cryosection model indicating the pathogenic potential of anti-Col17 non-NC16A extracellular IgG. Moreover, injection of IgG targeting the murine Col17 NC14-1 domains (downstream of NC15A, the murine homologue of human NC16A) into C57BL/6J mice resulted in erythematous skin lesions and erosions. Clinical findings were accompanied by IgG/C3 deposits along the basement membrane and subepidermal blistering with inflammatory infiltrates. Disease development was significantly reduced in either Fc-gamma receptor (FcγR)- or complement-5a receptor-1 (C5aR1)-deficient mice. Inhibition of the neonatal FcR (FcRn), an atypical FcγR regulating IgG homeostasis, with the murine Fc fragment IgG2c-ABDEG, a derivative of efgartigimod, reduced anti-NC14-1 IgG levels, resulting in ameliorated skin inflammation compared with isotype-treated controls. These data demonstrate that the pathogenic effects of IgG targeting the Col17 domain outside human NC16A/murine NC15A are partly attributable to antibody-mediated FcγR- and C5aR1 effector mechanisms while pharmacological inhibition of the FcRn represents a promising treatment for BP. The mouse model of BP will be instrumental in further investigating the role of Col17 non-NC16A/NC15A extracellular epitopes and validating new therapies for this disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Manuela Pigors
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sabrina Patzelt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Niklas Reichhelm
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Jenny Dworschak
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Maxi Hofrichter
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mayumi Kamaguchi
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gabriele Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lars Komorowski
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Christian Probst
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | | | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
17
|
Cleary SJ, Seo Y, Tian JJ, Kwaan N, Bulkley DP, Bentlage AEH, Vidarsson G, Boilard É, Spirig R, Zimring JC, Looney MR. IgG hexamers initiate acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577129. [PMID: 38328049 PMCID: PMC10849723 DOI: 10.1101/2024.01.24.577129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Antibodies can initiate lung injury in a variety of disease states such as autoimmunity, transfusion reactions, or after organ transplantation, but the key factors determining in vivo pathogenicity of injury-inducing antibodies are unclear. A previously overlooked step in complement activation by IgG antibodies has been elucidated involving interactions between IgG Fc domains that enable assembly of IgG hexamers, which can optimally activate the complement cascade. Here, we tested the in vivo relevance of IgG hexamers in a complement-dependent alloantibody model of acute lung injury. We used three approaches to block alloantibody hexamerization (antibody carbamylation, the K439E Fc mutation, or treatment with domain B from Staphylococcal protein A), all of which reduced acute lung injury. Conversely, Fc mutations promoting spontaneous hexamerization made a harmful alloantibody into a more potent inducer of acute lung injury and rendered an innocuous alloantibody pathogenic. Treatment with a recombinant Fc hexamer 'decoy' therapeutic protected mice from lung injury, including in a model with transgenic human FCGR2A expression that exacerbated pathology. These results indicate a direct in vivo role of IgG hexamerization in initiating acute lung injury and the potential for therapeutics that inhibit or mimic hexamerization to treat antibody-mediated diseases.
Collapse
Affiliation(s)
- Simon J. Cleary
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
| | - Yurim Seo
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
| | - Jennifer J. Tian
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
| | - Nicholas Kwaan
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
| | - David P. Bulkley
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), CA, USA
| | | | | | - Éric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Rolf Spirig
- CSL Behring, Research, CSL Behring Biologics Research Center, Bern, Switzerland
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mark R. Looney
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
| |
Collapse
|
18
|
Mroué M, Bessaguet F, Nizou A, Richard L, Sturtz F, Magy L, Bourthoumieu S, Danigo A, Demiot C. Neuroprotective Effect of Polyvalent Immunoglobulins on Mouse Models of Chemotherapy-Induced Peripheral Neuropathy. Pharmaceutics 2024; 16:139. [PMID: 38276509 PMCID: PMC10818580 DOI: 10.3390/pharmaceutics16010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The occurrence of neuropathic pain in chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting effect of many commonly-used anticancer agents. Polyvalent human immunoglobulins (hIg), used in the treatment of several peripheral neuropathies, may alleviate neuropathic pain. The aim of this project was to investigate the preventive effect of hIg in two mouse models of CIPN, induced by vincristine (VCR, 100 µg/kg/d) and oxaliplatin (OXP, 6 mg/kg/3d). Human Ig were administered one day before the first injection of chemotherapy. The onset of CIPN and effects of hIg were assessed via functional tests and morphological analyses of sensory nerves. To evaluate the effect of hIg on chemotherapy cytotoxicity, viability assays were performed using hIg (0 to 12 mg/mL) combined with anticancer agents on human cancer cell lines. The preventive treatment with hIg alleviated tactile hypersensitivity and nerve injuries induced by VCR. It also alleviated tactile/cold hypersensitivities and nerve injuries induced by OXP. Treatment with hIg did not affect the cytotoxicity of either chemotherapy. Furthermore, in combination with VCR, hIg potentiated chemo-induced cell death. In conclusion, hIg is a promising therapy to prevent the onset of CIPN and potentiate chemotherapy effect on cancer, reinforcing the interest in hIg in the management of CIPN.
Collapse
Affiliation(s)
- Mohamad Mroué
- UR 20218—NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (M.M.); (A.N.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Flavien Bessaguet
- UMR INSERM 1083 CNRS 6015 MITOVASC Laboratory, CarMe Team, University of Angers, 49045 Angers, France;
| | - Angélique Nizou
- UR 20218—NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (M.M.); (A.N.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Laurence Richard
- UR 20218—NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (M.M.); (A.N.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87042 Limoges, France
- Department of Pathology, University Hospital of Limoges, 87042 Limoges, France
| | - Franck Sturtz
- UR 20218—NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (M.M.); (A.N.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, 87042 Limoges, France
| | - Laurent Magy
- UR 20218—NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (M.M.); (A.N.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87042 Limoges, France
| | - Sylvie Bourthoumieu
- UR 20218—NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (M.M.); (A.N.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Cytogenetic, Medical Genetic and Reproductive Biology, University Hospital of Limoges, 87042 Limoges, France
| | - Aurore Danigo
- UR 20218—NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (M.M.); (A.N.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Claire Demiot
- UR 20218—NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (M.M.); (A.N.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Transversal and Territorial Therapeutic Education Unit (UTTEP87), University Hospital of Limoges, 87042 Limoges, France
| |
Collapse
|
19
|
Tannemaat MR, Huijbers MG, Verschuuren JJGM. Myasthenia gravis-Pathophysiology, diagnosis, and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:283-305. [PMID: 38494283 DOI: 10.1016/b978-0-12-823912-4.00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by dysfunction of the neuromuscular junction resulting in skeletal muscle weakness. It is equally prevalent in males and females, but debuts at a younger age in females and at an older age in males. Ptosis, diplopia, facial bulbar weakness, and limb weakness are the most common symptoms. MG can be classified based on the presence of serum autoantibodies. Acetylcholine receptor (AChR) antibodies are found in 80%-85% of patients, muscle-specific kinase (MuSK) antibodies in 5%-8%, and <1% may have low-density lipoprotein receptor-related protein 4 (Lrp4) antibodies. Approximately 10% of patients are seronegative for antibodies binding the known disease-related antigens. In patients with AChR MG, 10%-20% have a thymoma, which is usually detected at the onset of the disease. Important differences between clinical presentation, treatment responsiveness, and disease mechanisms have been observed between these different serologic MG classes. Besides the typical clinical features and serologic testing, the diagnosis can be established with additional tests, including repetitive nerve stimulation, single fiber EMG, and the ice pack test. Treatment options for MG consist of symptomatic treatment (such as pyridostigmine), immunosuppressive treatment, or thymectomy. Despite the treatment with symptomatic drugs, steroid-sparing immunosuppressants, intravenous immunoglobulins, plasmapheresis, and thymectomy, a large proportion of patients remain chronically dependent on corticosteroids (CS). In the past decade, the number of treatment options for MG has considerably increased. Advances in the understanding of the pathophysiology have led to new treatment options targeting B or T cells, the complement cascade, the neonatal Fc receptor or cytokines. In the future, these new treatments are likely to reduce the chronic use of CS, diminish side effects, and decrease the number of patients with refractory disease.
Collapse
Affiliation(s)
- Martijn R Tannemaat
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G Huijbers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
20
|
Kamboj A, Harrison AR, Mokhtarzadeh A. Emerging therapies in the medical management of thyroid eye disease. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1295902. [PMID: 38983101 PMCID: PMC11182121 DOI: 10.3389/fopht.2023.1295902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/23/2023] [Indexed: 07/11/2024]
Abstract
Introduction Thyroid eye disease (TED) is an immune-mediated disorder associated with a heterogenous array of manifestations that may unfavorably impact vision and quality of life. As understanding of this entity's complex pathogenesis has evolved, so have therapies with novel molecular targets offering promise for improved patient outcomes. Results Emerging immunologic therapies for the management of thyroid eye disease have diverse mechanisms of actions and routes of administration. Different conventional and biological immunosuppressive agents have been studied as mediators of the autoimmune and autoinflammatory pathways in thyroid eye disease. Teprotumumab - an anti-IGF-1R monoclonal antibody that has recently emerged as a first-line therapy for active, moderate-to-severe TED - has demonstrated statistically significant improvements in proptosis, diplopia, clinical activity score, and quality of life compared to placebo. Currently under investigation are several other agents, with varying administration modalities, that aim to inhibit IGF-1R: VRDN-001 (intravenous), VRDN-002 or VRDN-003 (subcutaneous), lonigutamab (subcutaneous), and linsitinib (oral). Tocilizumab, a monoclonal antibody of interleukin 6, has played a role in the management of multiple autoimmune and inflammatory conditions and may offer promise in TED. Another incipient biologic target for TED management is the neonatal Fc receptor, inhibition of which has potential to decrease recycling of immunoglobulin and antibody levels; agents addressing this target including monoclonal antibodies as well as antibody fragments. Finally, hypolipidemic agents may play a role as mediators of TED-associated inflammation. Conclusion Among the agents under investigation that aim to decrease ocular morbidity associated with TED are agents that IGF-1R, interleukin 6, and the neonatal Fc receptor. The management of TED continues to expand with novel immunologic approaches for disease therapy.
Collapse
Affiliation(s)
- Alisha Kamboj
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Andrew R. Harrison
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
- Department of Otolaryngology and Head and Neck Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Ali Mokhtarzadeh
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
21
|
Cutolo EA, Caferri R, Campitiello R, Cutolo M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar Drugs 2023; 21:630. [PMID: 38132951 PMCID: PMC10745133 DOI: 10.3390/md21120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Rosanna Campitiello
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| |
Collapse
|
22
|
Tran MH, Mathur G, Barnhard S, Schwartz J. Historic and emerging trends in transfusion medicine: Maintaining relevance as a specialty. Transfusion 2023; 63:2341-2350. [PMID: 37921092 DOI: 10.1111/trf.17588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Minh-Ha Tran
- Department of Pathology and Laboratory Medicine, Irvine School of Medicine, University of California, Irvine, California, USA
| | - Gagan Mathur
- Department of Pathology and Laboratory Medicine, Irvine School of Medicine, University of California, Irvine, California, USA
| | - Sarah Barnhard
- Department of Pathology and Laboratory Medicine, Davis School of Medicine, University of California, Sacramento, California, USA
| | - Joseph Schwartz
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
23
|
Chen X, Qiu J, Gao Z, Liu B, Zhang C, Yu W, Yang J, Shen Y, Qi L, Yao X, Sun H, Yang X. Myasthenia gravis: Molecular mechanisms and promising therapeutic strategies. Biochem Pharmacol 2023; 218:115872. [PMID: 37865142 DOI: 10.1016/j.bcp.2023.115872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Myasthenia gravis (MG) is a type of autoimmune disease caused by the blockage of neuromuscular junction transmission owing to the attack of autoantibodies on transmission-related proteins. Related antibodies, such as anti-AChR, anti-MuSK and anti-LRP4 antibodies, can be detected in most patients with MG. Although traditional therapies can control most symptoms, several challenges remain to be addressed, necessitating the development of more effective and safe treatment strategies for MG. With the in-depth exploration on the mechanism and immune targets of MG, effective therapies, especially therapies using biologicals, have been reported recently. Given the important roles of immune cells, cytokines and intercellular interactions in the pathological process of MG, B-cell targeted therapy, T-cell targeted therapy, proteasome inhibitors targeting plasma cell, complement inhibitors, FcRn inhibitors have been developed for the treatment of MG. Although these novel therapies exert good therapeutic effects, they may weaken the immunity and increase the risk of infection in MG patients. This review elaborates on the pathogenesis of MG and discusses the advantages and disadvantages of the strategies of traditional treatment and biologicals. In addition, this review emphasises that combined therapy may have better therapeutic effects and reducing the risk of side effects of treatments, which has great prospects for the treatment of MG. With the deepening of research on immunotherapy targets in MG, novel opportunities and challenges in the treatment of MG will be introduced.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiayi Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiawen Yang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
24
|
Zhang X, Zhao Q, Li B. Current and promising therapies based on the pathogenesis of Graves' ophthalmopathy. Front Pharmacol 2023; 14:1217253. [PMID: 38035032 PMCID: PMC10687425 DOI: 10.3389/fphar.2023.1217253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is a hyperthyroidism-related and immune-mediated disease that poses a significant threat to human health. The pathogenesis of GO primarily involves T cells, B cells, and fibroblasts, suggesting a pivotal role for the thyrotropin-antibody-immunocyte-fibroblast axis. Traditional treatment approaches for Graves' disease (GD) or GO encompass antithyroid drugs (ATDs), radioactive iodine, and beta-blockers. However, despite decades of treatment, there has been limited improvement in the global incidence of GO. In recent years, promising therapies, including immunotherapy, have emerged as leading contenders, demonstrating substantial benefits in clinical trials by inhibiting the activation of immune cells like Th1 and B cells. Furthermore, the impact of diet, gut microbiota, and metabolites on GO regulation has been recognized, suggesting the potential of non-pharmaceutical interventions. Moreover, as traditional Chinese medicine (TCM) components have been extensively explored and have shown effective results in treating autoimmune diseases, remarkable progress has been achieved in managing GO with TCM. In this review, we elucidate the pathogenesis of GO, summarize current and prospective therapies for GO, and delve into the mechanisms and prospects of TCM in its treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bei Li
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
25
|
Danieli MG, Antonelli E, Auria S, Buti E, Shoenfeld Y. Low-dose intravenous immunoglobulin (IVIg) in different immune-mediated conditions. Autoimmun Rev 2023; 22:103451. [PMID: 37748542 DOI: 10.1016/j.autrev.2023.103451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
IVIg has been used for a long time as a replacement therapy for primary and secondary immunodeficiencies. Beside this supplementary role, when used at higher doses (i.e., 2 g/kg/monthly) it exerts an immunomodulatory role able to control multiple autoimmune and systemic inflammatory diseases. Several mechanisms of action have been described and hypothesized, nonetheless a synergistic action on the different component of the immune response seems to be crucial. The other side of the coin are the costs which showed an increase during the years due to the production of highly purified preparations which limit side reactions. This renders the product not easily accessible especially for low-income countries. Moreover, it is based on plasma donations that experienced a significant shrinkage after the COVID-19 pandemic and the consequences are still impactful. Due to the above-mentioned problems different authors tried to find out if a lower dosage of IVIg (< 2 g/kg/monthly) might exert an immunoregulatory role. In this review we aimed to summarize the current literature about a possible beneficial effect of a lower dosage of IVIg in multiple conditions that would help to treat a vast majority of patients. Even though in some cases (e.g., Kawasaki disease and immune thrombocytopenia) results are promising, for other conditions more research is needed.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- SOS Immunologia delle Malattie Rare e dei Trapianti, AOU delle Marche e Università Politecnica delle Marche, Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, Ancona, Italy.
| | - Eleonora Antonelli
- Postgraduate School of Internal Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Auria
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Buti
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, Ancona, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Reichman University Herzliya, Israel.
| |
Collapse
|
26
|
Shan B, Zhou Y, Yin M, Deng Y, Ge C, Liu Z, Zhou R, Dong Q, Zhou X, Yin L. Macrophage Membrane-Reversibly Cloaked Nanotherapeutics for the Anti-Inflammatory and Antioxidant Treatment of Rheumatoid Arthritis. SMALL METHODS 2023; 7:e2300667. [PMID: 37469217 DOI: 10.1002/smtd.202300667] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Indexed: 07/21/2023]
Abstract
During rheumatoid arthritis (RA) development, over-produced proinflammatory cytokines represented by tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) represented by H2 O2 form a self-promoted cycle to exacerbate the synovial inflammation and tissue damage. Herein, biomimetic nanocomplexes (NCs) reversibly cloaked with macrophage membrane (RM) are developed for effective RA management via dual scavenging of TNF-α and ROS. To construct the NCs, membrane-penetrating, helical polypeptide first condenses TNF-α siRNA (siTNF-α) and forms the cationic inner core, which further adsorbs catalase (CAT) via electrostatic interaction followed by surface coating with RM. The membrane-coated NCs enable prolonged blood circulation and active joint accumulation after systemic administration in Zymosan A-induced arthritis mice. In the oxidative microenvironment of joints, CAT degrades H2 O2 to produce O2 bubbles, which shed off the outer membrane layer to expose the positively charged inner core, thus facilitating effective intracellular delivery into macrophages. siRNA-mediated TNF-α silencing and CAT-mediated H2 O2 scavenging then cooperate to inhibit inflammation and alleviate oxidative stress, remodeling the osteomicroenvironment and fostering tissue repair. This study provides an enlightened strategy to resolve the blood circulation/cell internalization dilemma of cell membrane-coated nanosystems, and it renders a promising modality for RA treatment.
Collapse
Affiliation(s)
- Bingchen Shan
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Mengyuan Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Yekun Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Zhongmin Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Renxiang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Qirong Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiaozhong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
27
|
Vakrakou AG, Karachaliou E, Chroni E, Zouvelou V, Tzanetakos D, Salakou S, Papadopoulou M, Tzartos S, Voumvourakis K, Kilidireas C, Giannopoulos S, Tsivgoulis G, Tzartos J. Immunotherapies in MuSK-positive Myasthenia Gravis; an IgG4 antibody-mediated disease. Front Immunol 2023; 14:1212757. [PMID: 37564637 PMCID: PMC10410455 DOI: 10.3389/fimmu.2023.1212757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle-specific kinase (MuSK) Myasthenia Gravis (MG) represents a prototypical antibody-mediated disease characterized by predominantly focal muscle weakness (neck, facial, and bulbar muscles) and fatigability. The pathogenic antibodies mostly belong to the immunoglobulin subclass (Ig)G4, a feature which attributes them their specific properties and pathogenic profile. On the other hand, acetylcholine receptor (AChR) MG, the most prevalent form of MG, is characterized by immunoglobulin (Ig)G1 and IgG3 antibodies to the AChR. IgG4 class autoantibodies are impotent to fix complement and only weakly bind Fc-receptors expressed on immune cells and exert their pathogenicity via interfering with the interaction between their targets and binding partners (e.g. between MuSK and LRP4). Cardinal differences between AChR and MuSK-MG are the thymus involvement (not prominent in MuSK-MG), the distinct HLA alleles, and core immunopathological patterns of pathology in neuromuscular junction, structure, and function. In MuSK-MG, classical treatment options are usually less effective (e.g. IVIG) with the need for prolonged and high doses of steroids difficult to be tapered to control symptoms. Exceptional clinical response to plasmapheresis and rituximab has been particularly observed in these patients. Reduction of antibody titers follows the clinical efficacy of anti-CD20 therapies, a feature implying the role of short-lived plasma cells (SLPB) in autoantibody production. Novel therapeutic monoclonal against B cells at different stages of their maturation (like plasmablasts), or against molecules involved in B cell activation, represent promising therapeutic targets. A revolution in autoantibody-mediated diseases is pharmacological interference with the neonatal Fc receptor, leading to a rapid reduction of circulating IgGs (including autoantibodies), an approach already suitable for AChR-MG and promising for MuSK-MG. New precision medicine approaches involve Chimeric autoantibody receptor T (CAAR-T) cells that are engineered to target antigen-specific B cells in MuSK-MG and represent a milestone in the development of targeted immunotherapies. This review aims to provide a detailed update on the pathomechanisms involved in MuSK-MG (cellular and humoral aberrations), fostering the understanding of the latest indications regarding the efficacy of different treatment strategies.
Collapse
Affiliation(s)
- Aigli G. Vakrakou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Karachaliou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Tzartos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Ning Z, Huang Y, Lu H, Zhou Y, Tu T, Ouyang F, Liu Y, Liu Q. Novel Drug Targets for Atrial Fibrillation Identified Through Mendelian Randomization Analysis of the Blood Proteome. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07467-8. [PMID: 37212950 DOI: 10.1007/s10557-023-07467-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE Novel, effective, and safe preventive therapy targets for AF are still needed. Circulating proteins with causal genetic evidence are promising candidates. We aimed to systematically screen circulating proteins for AF drug targets and determine their safety and efficacy using genetic methods. METHODS The protein quantitative trait loci (pQTL) of up to 1949 circulating proteins were retrieved from nine large genome-proteome-wide association studies. Two-sample Mendelian Randomization (MR) and colocalization analyses were used to estimate the causal effects of proteins on the risk of AF. Furthermore, phenome-wide MR was conducted to depict side effects and the drug-target databases were searched for drug validation and repurposing. RESULTS Systematic MR screen identified 30 proteins as promising AF drug targets. Genetically predicted 12 proteins increased AF risk (TES, CFL2, MTHFD1, RAB1A, DUSP13, SRL, ANXA4, NEO1, FKBP7, SPON1, LPA, MANBA); 18 proteins decreased AF risk (PMVK, UBE2F, SYT11, CHMP3, PFKM, FBP1, TNFSF12, CTSZ, QSOX2, ALAD, EFEMP1, FLRT2, LRIG1, OLA1, SH3BGRL3, IL6R, B3GNT8, FCGR2A). DUSP13 and TNFSF12 possess strong colocalization evidence. For the proteins that were identified, extended phe-MR analysis was conducted to assess their side-effect profiles, while drug-target databases provided information on their approved or investigated indications. CONCLUSION We identified 30 circulating proteins as potential preventive targets for AF.
Collapse
Affiliation(s)
- Zuodong Ning
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yunying Huang
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Haocheng Lu
- Department of Pharmacology, Southern University of Science and Technology, Guangdong, China
| | - Yong Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Tao Tu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Feifan Ouyang
- Department of Cardiology, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Yaozhong Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor MI, MI, USA.
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
29
|
Berentsen S. Sutimlimab for the Treatment of Cold Agglutinin Disease. Hemasphere 2023; 7:e879. [PMID: 37153870 PMCID: PMC10155901 DOI: 10.1097/hs9.0000000000000879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Cold agglutinin disease (CAD) is a rare autoimmune hemolytic anemia and a bone marrow clonal lymphoproliferative disorder. Hemolysis in CAD is complement-dependent and mediated by the classical activation pathway. Patients also frequently suffer from fatigue and cold-induced circulatory symptoms. Although not all patients need treatment, the symptom burden has previously been underestimated. Effective therapies target the clonal lymphoproliferation or the complement activation. Sutimlimab, a humanized monoclonal IgG4 antibody that binds and inactivates complement protein C1s, is the most extensively investigated complement inhibitor for the treatment of CAD. This review addresses the preclinical studies of sutimlimab and the studies of pharmacokinetics and pharmacodynamics. We then describe and discuss the prospective clinical trials that established sutimlimab as a rapidly acting, highly efficacious, and low-toxic therapeutic agent. This complement inhibitor does not improve the cold-induced circulatory symptoms, which are not complement-mediated. Sutimlimab is approved for the treatment of CAD in the US, Japan, and the European Union. A tentative therapeutic algorithm is presented. The choice of therapy for CAD should be based on an individual assessment, and patients requiring therapy should be considered for inclusion in clinical trials.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway
| |
Collapse
|
30
|
Stascheit F, Della Marina A, Meisel A. [Myasthenia in adults, children, and adolescents: what's new?]. DER NERVENARZT 2023:10.1007/s00115-023-01463-x. [PMID: 36995386 DOI: 10.1007/s00115-023-01463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/31/2023]
Abstract
Therapy of myasthenia gravis (MG) is increasingly oriented to the patient's antibody status. In addition to symptomatic therapy, steroids, classic long-term immunosuppressive therapies and thymectomy are regularly used. In recent years, new therapeutic approaches have been developed that particularly benefit acetylcholine receptor (AChR) antibody (Abs) positive patients with highly active disease. While the C5 complement inhibitor eculizumab was reserved for treatment-refractory generalized courses of AChR-Abs positive MG, two new drugs, the neonatal Fc receptor inhibitor efgartigimod and the more advanced C5 complement inhibitor ravulizumab, have recently been approved as add-on therapy for AChR-Abs positive generalized MG (gMG). In highly active courses of MG with Abs against the muscle-specific receptor tyrosine kinase (MuSK), the use of rituximab should be considered early in the course of the disease. The efficacy of the new drugs in children and adolescents with juvenile MG (JMG) is currently being tested in clinical trials. The new guideline recommends the use of modern immunomodulators based on a step-by-step approach depending on disease activity. With the German Myasthenia Register (MyaReg), the changing therapeutic landscape and quality of life of patients with myasthenic syndromes can be assessed, thus providing real-world data on the care of MG patients. Despite treatment based on the previous guideline, many MG patients suffer considerable impairment to their quality of life. With the new immunomodulators, there is the possibility of early intensified immunotherapy, which, in contrast to long-term immunosuppressants, can lead to a rapid improvement in the course of the disease.
Collapse
Affiliation(s)
- Frauke Stascheit
- Klinik für Neurologie, Charité - Universitätsmedizin Berlin, korporatives Mitglied der Freien Universität und Humboldt-Universität zu Berlin, Berlin, Deutschland.
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, korporatives Mitglied der Freien Universität und Humboldt-Universität zu Berlin, Berlin, Deutschland.
- Klinik für Neurologie und experimentelle Neurologie, NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
| | - Adela Della Marina
- Klinik für Kinderheilkunde 1, Abteilung für Neuropädiatrie, Entwicklungsneurologie und Sozialpädiatrie, Zentrum für Neuromuskuläre Erkrankungen, Zentrum für Translationale Neuro- und Verhaltenswissenschaften, Universitätsklinikum Essen, Hufelandstraße, 45147, Essen, Deutschland.
| | - Andreas Meisel
- Klinik für Neurologie, Charité - Universitätsmedizin Berlin, korporatives Mitglied der Freien Universität und Humboldt-Universität zu Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, korporatives Mitglied der Freien Universität und Humboldt-Universität zu Berlin, Berlin, Deutschland
- Centrum für Schlaganfallforschung Berlin, Charité - Universitätsmedizin Berlin, korporatives Mitglied der Freien Universität und Humboldt-Universität zu Berlin, Berlin, Deutschland
| |
Collapse
|
31
|
von Gunten S, Schneider C, Imamovic L, Gorochov G. Antibody diversity in IVIG: Therapeutic opportunities for novel immunotherapeutic drugs. Front Immunol 2023; 14:1166821. [PMID: 37063852 PMCID: PMC10090664 DOI: 10.3389/fimmu.2023.1166821] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Significant progress has been made in the elucidation of human antibody repertoires. Furthermore, non-canonical functions of antibodies have been identified that reach beyond classical functions linked to protection from pathogens. Polyclonal immunoglobulin preparations such as IVIG and SCIG represent the IgG repertoire of the donor population and will likely remain the cornerstone of antibody replacement therapy in immunodeficiencies. However, novel evidence suggests that pooled IgA might promote orthobiotic microbial colonization in gut dysbiosis linked to mucosal IgA immunodeficiency. Plasma-derived polyclonal IgG and IgA exhibit immunoregulatory effects by a diversity of different mechanisms, which have inspired the development of novel drugs. Here we highlight recent insights into IgG and IgA repertoires and discuss potential implications for polyclonal immunoglobulin therapy and inspired drugs.
Collapse
Affiliation(s)
- Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- *Correspondence: Stephan von Gunten,
| | | | - Lejla Imamovic
- Sorbonne Université, Inserm, Assistance Publique Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm, Assistance Publique Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
32
|
Mader S, Ho S, Wong HK, Baier S, Winklmeier S, Riemer C, Rübsamen H, Fernandez IM, Gerhards R, Du C, Chuquisana O, Lünemann JD, Lux A, Nimmerjahn F, Bradl M, Kawakami N, Meinl E. Dissection of complement and Fc-receptor-mediated pathomechanisms of autoantibodies to myelin oligodendrocyte glycoprotein. Proc Natl Acad Sci U S A 2023; 120:e2300648120. [PMID: 36943883 PMCID: PMC10068779 DOI: 10.1073/pnas.2300648120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 03/23/2023] Open
Abstract
Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) have recently been established to define a new disease entity, MOG-antibody-associated disease (MOGAD), which is clinically overlapping with multiple sclerosis. MOG-specific antibodies (Abs) from patients are pathogenic, but the precise effector mechanisms are currently still unknown and no therapy is approved for MOGAD. Here, we determined the contributions of complement and Fc-receptor (FcR)-mediated effects in the pathogenicity of MOG-Abs. Starting from a recombinant anti-MOG (mAb) with human IgG1 Fc, we established MOG-specific mutant mAbs with differential FcR and C1q binding. We then applied selected mutants of this MOG-mAb in two animal models of experimental autoimmune encephalomyelitis. First, we found MOG-mAb-induced demyelination was mediated by both complement and FcRs about equally. Second, we found that MOG-Abs enhanced activation of cognate MOG-specific T cells in the central nervous system (CNS), which was dependent on FcR-, but not C1q-binding. The identification of complement-dependent and -independent pathomechanisms of MOG-Abs has implications for therapeutic strategies in MOGAD.
Collapse
Affiliation(s)
- Simone Mader
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Samantha Ho
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Hoi Kiu Wong
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Selia Baier
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Carolina Riemer
- Chair of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, 91058Erlangen, Germany
| | - Heike Rübsamen
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Iris Marti Fernandez
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Ramona Gerhards
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Cuilian Du
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149Münster, Germany
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149Münster, Germany
| | - Anja Lux
- Chair of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, 91058Erlangen, Germany
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, 91058Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen91058, Germany
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090Vienna, Austria
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| |
Collapse
|
33
|
Nakajima-Kato Y, Komai M, Yoshida T, Kanai A. A novel monoclonal antibody with improved FcγR blocking ability demonstrated non-inferior efficacy compared to IVIG in cynomolgus monkey ITP model at considerably lower dose. Clin Exp Immunol 2023; 211:23-30. [PMID: 36480334 PMCID: PMC9993454 DOI: 10.1093/cei/uxac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is a well-established treatment for various autoimmune and inflammatory diseases. However, the standard dose prescribed for autoimmune diseases, including immune thrombocytopenic purpura (ITP), is 2 g/kg, which is markedly high and leads to a high treatment burden. In this study, we generated fragment crystallizable (Fc)-modified anti-haptoglobin (Hp) monoclonal antibodies with non-inferior efficacy compared to IVIG at considerably lower doses than IVIG, as shown by in vitro experiments. We evaluated binding activity of anti-Hp antibodies to Fc gamma receptors (FcγRs) with ELISA and inhibitory activity against the ADCC reaction. Furthermore, we successfully established a novel cynomolgus monkey ITP model and demonstrated that the anti-Hp antibody exerted its effect in this model with only a single dose. This Fc-modified anti-Hp monoclonal antibody could be a valuable therapeutic replacement for IVIG for the treatment of ITP.
Collapse
Affiliation(s)
- Yuko Nakajima-Kato
- Correspondence: Yuko Nakajima-Kato, Biomedical Science Research Laboratories 2, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Japan
| | - Masato Komai
- Biomedical Science Research Laboratories 2, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Japan
| | - Tadashi Yoshida
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akiko Kanai
- Biomedical Science Research Laboratories 1, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Japan
| |
Collapse
|
34
|
Hahn PA, Martins MA. Adeno-associated virus-vectored delivery of HIV biologics: the promise of a "single-shot" functional cure for HIV infection. J Virus Erad 2023; 9:100316. [PMID: 36915910 PMCID: PMC10005911 DOI: 10.1016/j.jve.2023.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The ability of immunoglobulin-based HIV biologics (Ig-HIV), including broadly neutralizing antibodies, to suppress viral replication in pre-clinical and clinical studies illustrates how these molecules can serve as alternatives or adjuncts to antiretroviral therapy for treating HIV infection. However, the current paradigm for delivering Ig-HIVs requires repeated passive infusions, which faces both logistical and economic challenges to broad-scale implementation. One promising way to overcome these obstacles and achieve sustained expression of Ig-HIVs in vivo involves the transfer of Ig-HIV genes to host cells utilizing adeno-associated virus (AAV) vectors. Because AAV vectors are non-pathogenic and their genomes persist in the cell nucleus as episomes, transgene expression can last for as long as the AAV-transduced cell lives. Given the long lifespan of myocytes, skeletal muscle is a preferred tissue for AAV-based immunotherapies aimed at achieving persistent delivery of Ig-HIVs. Consistent with this idea, recent studies suggest that lifelong immunity against HIV can be achieved from a one-time intramuscular dose of AAV/Ig-HIV vectors. However, realizing the promise of this approach faces significant hurdles, including the potential of AAV-delivered Ig-HIVs to induce anti-drug antibodies and the high AAV seroprevalence in the human population. Here we describe how these host immune responses can hinder AAV/Ig-HIV therapies and review current strategies for overcoming these barriers. Given the potential of AAV/Ig-HIV therapy to maintain ART-free virologic suppression and prevent HIV reinfection in people living with HIV, optimizing this strategy should become a greater priority in HIV/AIDS research.
Collapse
Affiliation(s)
- Patricia A. Hahn
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Mauricio A. Martins
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
35
|
Spatola M, Chuquisana O, Jung W, Lopez JA, Wendel EM, Ramanathan S, Keller CW, Hahn T, Meinl E, Reindl M, Dale RC, Wiendl H, Lauffenburger DA, Rostásy K, Brilot F, Alter G, Lünemann JD. Humoral signatures of MOG-antibody-associated disease track with age and disease activity. Cell Rep Med 2023; 4:100913. [PMID: 36669487 PMCID: PMC9975090 DOI: 10.1016/j.xcrm.2022.100913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 12/24/2022] [Indexed: 01/20/2023]
Abstract
Myelin oligodendrocyte glycoprotein (MOG)-antibody (Ab)-associated disease (MOGAD) is an inflammatory demyelinating disease of the CNS. Although MOG is encephalitogenic in different mammalian species, the mechanisms by which human MOG-specific Abs contribute to MOGAD are poorly understood. Here, we use a systems-level approach combined with high-dimensional characterization of Ab-associated immune features to deeply profile humoral immune responses in 123 patients with MOGAD. We show that age is a major determinant for MOG-antibody-related immune signatures. Unsupervised clustering additionally identifies two dominant immunological endophenotypes of MOGAD. The pro-inflammatory endophenotype characterized by increased binding affinities for activating Fcγ receptors (FcγRs), capacity to activate innate immune cells, and decreased frequencies of galactosylated and sialylated immunoglobulin G (IgG) glycovariants is associated with clinically active disease. Our data support the concept that FcγR-mediated effector functions control the pathogenicity of MOG-specific IgG and suggest that FcγR-targeting therapies should be explored for their therapeutic potential in MOGAD.
Collapse
Affiliation(s)
- Marianna Spatola
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA.
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA; Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph A Lopez
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eva-Maria Wendel
- Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia; Department of Neurology, Concord Hospital, Sydney, NSW 2139, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152 Munich, Germany
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Russell C Dale
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Kevin Rostásy
- Department of Pediatric Neurology, Children's Hospital Datteln, University Witten/Herdecke, 45711 Datteln, Germany
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany.
| |
Collapse
|
36
|
Yang J, Tabuchi Y, Katsuki R, Taki M. bioTCIs: Middle-to-Macro Biomolecular Targeted Covalent Inhibitors Possessing Both Semi-Permanent Drug Action and Stringent Target Specificity as Potential Antibody Replacements. Int J Mol Sci 2023; 24:3525. [PMID: 36834935 PMCID: PMC9968108 DOI: 10.3390/ijms24043525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Monoclonal antibody therapies targeting immuno-modulatory targets such as checkpoint proteins, chemokines, and cytokines have made significant impact in several areas, including cancer, inflammatory disease, and infection. However, antibodies are complex biologics with well-known limitations, including high cost for development and production, immunogenicity, a limited shelf-life because of aggregation, denaturation, and fragmentation of the large protein. Drug modalities such as peptides and nucleic acid aptamers showing high-affinity and highly selective interaction with the target protein have been proposed alternatives to therapeutic antibodies. The fundamental limitation of short in vivo half-life has prevented the wide acceptance of these alternatives. Covalent drugs, also known as targeted covalent inhibitors (TCIs), form permanent bonds to target proteins and, in theory, eternally exert the drug action, circumventing the pharmacokinetic limitation of other antibody alternatives. The TCI drug platform, too, has been slow in gaining acceptance because of its potential prolonged side-effect from off-target covalent binding. To avoid the potential risks of irreversible adverse drug effects from off-target conjugation, the TCI modality is broadening from the conventional small molecules to larger biomolecules possessing desirable properties (e.g., hydrolysis resistance, drug-action reversal, unique pharmacokinetics, stringent target specificity, and inhibition of protein-protein interactions). Here, we review the historical development of the TCI made of bio-oligomers/polymers (i.e., peptide-, protein-, or nucleic-acid-type) obtained by rational design and combinatorial screening. The structural optimization of the reactive warheads and incorporation into the targeted biomolecules enabling a highly selective covalent interaction between the TCI and the target protein is discussed. Through this review, we hope to highlight the middle to macro-molecular TCI platform as a realistic replacement for the antibody.
Collapse
Affiliation(s)
- Jay Yang
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of GI Surgery II, Graduate School of Medicine, Hokkaido University, Sapporo 068-8638, Japan
| | - Yudai Tabuchi
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Riku Katsuki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Masumi Taki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- Institute for Advanced Science, UEC, Chofu 182-8585, Japan
| |
Collapse
|
37
|
Qi J, Zhou X, Bai Z, Lu Z, Zhu X, Liu J, Wang J, Jin M, Liu C, Li X. FcγRIIIA activation-mediated up-regulation of glycolysis alters MDSCs modulation in CD4 + T cell subsets of Sjögren syndrome. Cell Death Dis 2023; 14:86. [PMID: 36746935 PMCID: PMC9902521 DOI: 10.1038/s41419-023-05631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Our and other researchers' previous studies found that myeloid-derived suppressor cells (MDSCs) were increased, and these MDSCs, supposed to play immunosuppressive roles, showed significant pro-inflammatory effects in Sjögren's syndrome (SS). However, the key factors and potential mechanisms leading MDSCs to be inflammatory remain unclear. In this study, we found that MDSCs from SS patients were positively correlated with the percentages of Th17 cells, disease activity and serum autoantibodies, and showed higher levels of Fc gamma receptor (FcγR) IIIA and glycolysis. Most importantly, SS MDSCs or heat-aggregated IgG (HAIG)-treated MDSCs down-regulated Th1/Th2 ratio and up-regulated Th17/Treg ratio, which could be obviously rescued by IgG monomer or glycolysis inhibitor 2-DG. As well, the levels of FcγRIV and glycolysis in MDSCs and the ratio of Th17/Treg were increased, and the ratio of Th1/Th2 was decreased in SS-like NOD mice. Our study indicated that MDSCs showed pro-inflammatory phenotypes by disturbing CD4+ T-cell balances in SS. The pro-inflammatory effects of MDSCs might be directly linked to the enhanced glycolysis mediated by FcγRIIIA activation.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Xinyang Zhou
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Zhimin Lu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226006, People's Republic of China
| | - Xiaolu Zhu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Jiaqing Liu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Junli Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Chang Liu
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital, Dalian, Liaoning, 116083, People's Republic of China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China.
| |
Collapse
|
38
|
Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2187-3. [PMID: 36738430 PMCID: PMC9898710 DOI: 10.1007/s11427-021-2187-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
With the exception of an extremely small number of cases caused by single gene mutations, most autoimmune diseases result from the complex interplay between environmental and genetic factors. In a nutshell, etiology of the common autoimmune disorders is unknown in spite of progress elucidating certain effector cells and molecules responsible for pathologies associated with inflammatory and tissue damage. In recent years, population genetics approaches have greatly enriched our knowledge regarding genetic susceptibility of autoimmunity, providing us with a window of opportunities to comprehensively re-examine autoimmunity-associated genes and possible pathways. In this review, we aim to discuss etiology and pathogenesis of common autoimmune disorders from the perspective of human genetics. An overview of the genetic basis of autoimmunity is followed by 3 chapters detailing susceptibility genes involved in innate immunity, adaptive immunity and inflammatory cell death processes respectively. With such attempts, we hope to expand the scope of thinking and bring attention to lesser appreciated molecules and pathways as important contributors of autoimmunity beyond the 'usual suspects' of a limited subset of validated therapeutic targets.
Collapse
|
39
|
Fallahi P, Ragusa F, Paparo SR, Elia G, Balestri E, Mazzi V, Patrizio A, Botrini C, Benvenga S, Ferrari SM, Antonelli A. Teprotumumab for the treatment of thyroid eye disease. Expert Opin Biol Ther 2023; 23:123-131. [PMID: 36695097 DOI: 10.1080/14712598.2023.2172328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Thyroid eye disease (TED) is an autoimmune disease characterized by inflammation of orbital and extraocular muscles. It induces proptosis and diplopia, leading to a worsening of quality of life (QoL) because of its impact on physical appearance, and visual function. The natural history involves an 'active TED,' which is an autoimmune inflammatory response targeting orbital soft tissues, and 'inactive TED,' where there is tissue expansion remodeling. To date, glucocorticoids represent the main medical therapy, even if often ineffective and associated with side effects. AREAS COVERED In TED, the autoimmune process leads to production of TSH-R and IGF-1 R autoantibodies. This induces inflammatory changes in the orbital tissue, and activation of fibroblasts with accumulation of glycosaminoglycans, leading to consequent proptosis, and diplopia. In two previous randomized, double-masked, placebo-controlled, parallel-group, multicenter trials, teprotumumab has been shown to be effective in improving proptosis, inflammation, diplopia, and QoL. More recently, it has been shown that teprotumumab is also effective in chronic-inactive TED. Teprotumumab was approved by the FDA on 21 January 2020 for the treatment of TED. EXPERT OPINION For the above-mentioned reasons teprotumumab represents a potential first line therapy for TED that could replace the use of steroids in the next future.
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Translational Research of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Sabrina Rosaria Paparo
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy.,Interdepartmental Program of Molecular & Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| | | | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|
40
|
Loriamini M, Lewis-Bakker MM, Frias Boligan K, Wang S, Holton MB, Kotra LP, Branch DR. Small Molecule Drugs That Inhibit Phagocytosis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020757. [PMID: 36677815 PMCID: PMC9867408 DOI: 10.3390/molecules28020757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/14/2023]
Abstract
In our initial publication on the in vitro testing of more than 200 compounds, we demonstrated that small molecules can inhibit phagocytosis. We therefore theorized that a small molecule drug discovery-based approach to the treatment of immune cytopenias (ITP, AIHA, HTR, DHTR) is feasible. Those earlier studies showed that small molecules with anti-phagocytic groups, such as the pyrazole core, are good models for producing efficacious phagocytosis inhibitors with low toxicity. We recently screened a chemical library of 80 compounds containing pyrazole/isoxazole/pyrrole core structures and found four hit molecules for further follow-up, all having the pyrazole core structure. Subsequent evaluation via MTT viability, LDH release, and apoptosis, led to the selection of two lead compounds with negligible toxicity and high efficacy. In an in vitro assay for inhibition of phagocytosis, their IC50 values were 2-4 µM. The rational development of these discoveries from hit to lead molecule stage, viz. independent synthesis/scale up of hit molecules, and in vivo activities in mouse models of autoimmune disease, will result in the selection of a lead compound(s) for further pre-clinical evaluation.
Collapse
Affiliation(s)
- Melika Loriamini
- Centre for Innovation, Canadian Blood Services, Toronto, ON M5G 2M1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | - Siming Wang
- Krembil Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mairead B. Holton
- Centre for Innovation, Canadian Blood Services, Toronto, ON M5G 2M1, Canada
| | - Lakshmi P. Kotra
- Krembil Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Correspondence: (L.P.K.); (D.R.B.); Tel.: +1-416-581-7602 (L.P.K.); +1-416-313-4458 (D.R.B.)
| | - Donald R. Branch
- Centre for Innovation, Canadian Blood Services, Toronto, ON M5G 2M1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre, Canadian Blood Services, Toronto, ON M5B 1W8, Canada
- Correspondence: (L.P.K.); (D.R.B.); Tel.: +1-416-581-7602 (L.P.K.); +1-416-313-4458 (D.R.B.)
| |
Collapse
|
41
|
Ruslan A, Okosieme OE. Non-thionamide antithyroid drug options in Graves' hyperthyroidism. Expert Rev Endocrinol Metab 2023; 18:67-79. [PMID: 36740774 DOI: 10.1080/17446651.2023.2167709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The thionamide anti-thyroid drugs namely carbimazole, methimazole, and propylthiouracil, have been the predominant therapy modality for Graves' hyperthyroidism for over 60 years. Although these agents have proven efficacy and favorable side-effect profiles, non-thionamide alternatives are occasionally indicated in patients who are intolerant or unresponsive to thionamides alone. This review examines the available non-thionamide drug options for the control of Graves' hyperthyroidism and summarizes their clinical utility, efficacy, and limitations. AREAS COVERED We reviewed existing literature on mechanisms, therapeutic utility, and side-effect profiles of non-thionamide anti-thyroid drugs. Established non-thionamide agents act on various phases of the synthesis, release, and metabolism of thyroid hormones and comprise historical agents such as iodine compounds and potassium perchlorate as well as drug repurposing candidates like lithium, glucocorticoids, beta-blockers, and cholestyramine. Novel experimental agents in development target key players in Graves' disease pathogenesis including B-cell depletors (Rituximab), CD40 blockers (Iscalimab), TSH-receptor antagonists, blocking antibodies, and immune-modifying peptides. EXPERT OPINION Non-thionamide anti-thyroid drugs are useful alternatives in Graves' hyperthyroidism and more clinical trials are needed to establish their safety and long-term efficacy in hyperthyroidism control. Ultimately, the promise for a cure will lie in novel approaches that target the well-established immunopathogenesis of Graves' disease.
Collapse
Affiliation(s)
- Aliya Ruslan
- Endocrine and Diabetes Department, Prince Charles Hospital, Cwm Taf University Health Board, Merthyr Tydfil, CF47 9DT, UK
| | - Onyebuchi E Okosieme
- Endocrine and Diabetes Department, Prince Charles Hospital, Cwm Taf University Health Board, Merthyr Tydfil, CF47 9DT, UK
- Thyroid Research Group, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
42
|
Targeted inhibition of FcRn reduces NET formation to ameliorate experimental ulcerative colitis by accelerating ANCA clearance. Int Immunopharmacol 2022; 113:109474. [DOI: 10.1016/j.intimp.2022.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
|
43
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
44
|
Sánchez-Tejerina D, Sotoca J, Llaurado A, López-Diego V, Juntas-Morales R, Salvado M. New Targeted Agents in Myasthenia Gravis and Future Therapeutic Strategies. J Clin Med 2022; 11:6394. [PMID: 36362622 PMCID: PMC9658349 DOI: 10.3390/jcm11216394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/22/2023] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disease for which multiple immunomodulatory therapies are available. Nevertheless, MG has a significant impact on patient quality of life. In recent years, experts' main efforts have focused on optimizing treatment strategies, since disease burden is considerably affected by their safety and tolerability profiles, especially in patients with refractory phenotypes. This article aims to offer neurologists caring for MG patients an overview of the most innovative targeted drugs specifically designed for this disease and summarizes the recent literature and more recent evidence on agents targeting B cells and plasmablasts, complement inhibitors, and neonatal fragment crystallizable receptor (FcRn) antagonists. Positive clinical trial results have been reported, and other studies are ongoing. Finally, we briefly discuss how the introduction of these novel targeted immunological therapies in a changing management paradigm would affect not only clinical outcomes, disease burden, safety, and tolerability, but also health spending in a condition that is increasingly managed based on a patient-centred model.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Salvado
- Clinic of Neuromuscular Disorders and Rare Diseases, Neurology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, European Reference Network for Neuromuscular and Rare Diseases EURO-NMD, 08035 Barcelona, Spain
| |
Collapse
|
45
|
Abstract
INTRODUCTION Lupus nephritis (LN) is a key predictor for kidney failure and death in patients with systemic lupus erythematosus (SLE). While conventional immunosuppressive treatments have improved the outcome of LN, novel therapies continue to emerge. These new agents target specific immune-reactive cells (B cell repertoire or T lymphocytes) and crucial cytokines/signalling pathways in LN pathogenesis. AREAS COVERED New therapeutic approaches that target specific immune-reactive cells (B cell repertoire or T lymphocytes), crucial cytokines and their signalling pathways in LN pathogenesis. EXPERT OPINION Although earlier studies of rituximab fail to show benefit, a newer generation anti-CD20 biologic, obinutuzumab, is promising in LN. Inhibition of B-cell activating factor by belimumab confers superior renal response when added to the standard of care (SOC) regimens, leading to its recent approval for LN. Therapies targeting plasma cells (proteasome inhibitors, anti-CD38) in LN are being developed. A newer generation calcineurin inhibitor, voclosporin, when combined with SOC, results in better renal responses in LN. Other innovative strategies include targeting type I interferon, co-stimulatory signals, complement cascade (anti-C5b) and intracellular proliferation signals (e.g. mTOR, JAK1/2, BTK). While these novel agents improve the short-term renal responses without increased toxicities, long-term data on disease progression and safety remain to be established. Patient stratification by clinical phenotypes, biomarkers and molecular profiles helps enhance the efficacy and cost-effectiveness of novel therapies of LN.
Collapse
Affiliation(s)
| | - Chi Chiu Mok
- Division of Rheumatology, Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong
| |
Collapse
|
46
|
Ye Q, Huang Z, Lu W, Yan F, Zeng W, Xie J, Zhong W. Identification of the common differentially expressed genes and pathogenesis between neuropathic pain and aging. Front Neurosci 2022; 16:994575. [PMCID: PMC9626798 DOI: 10.3389/fnins.2022.994575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuropathic pain is a debilitating disease caused by damage or diseases of the somatosensory nervous system. Previous research has indicated potential associations between neuropathic pain and aging. However, the mechanisms by which they are interconnected remain unclear. In this study, we aim to identify the common differentially expressed genes (co-DEGs) between neuropathic pain and aging through integrated bioinformatics methods and further explore the underlying molecular mechanisms. Methods The microarray datasets GSE24982, GSE63442, and GSE63651 were downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and co-DEGs were first identified. Functional enrichment analyses, protein-protein Interaction (PPI) network, module construction and hub genes identification were performed. Immune infiltration analysis was conducted. Targeted transcription factors (TFs), microRNAs (miRNAs) and potential effective drug compounds for hub genes were also predicted. Results A total of 563 and 1,250 DEGs of neuropathic pain and aging were screened, respectively. 16 genes were further identified as co-DEGs. The functional analysis emphasizes the vital roles of the humoral immune response and complement and coagulation cascades in these two diseases. Cxcl14, Fblim1, RT1-Da, Serping1, Cfd, and Fcgr2b were identified as hub genes. Activated B cell, mast cell, activated dendritic cell, CD56 bright natural killer cell, effector memory CD8 + T cell, and type 2 T helper cell were significantly up-regulated in the pain and aging condition. Importantly, hub genes were found to correlate with the activated B cell, activated dendritic cell, Gamma delta T cell, central memory CD4 + T cell and mast cell in pain and aging diseases. Finally, Spic, miR-883-5p, and miR-363-5p et al. were predicted as the potential vital regulators for hub genes. Aldesleukin, Valziflocept, MGD-010, Cinryze, and Rhucin were the potential effective drugs in neuropathic pain and aging. Conclusion This study identified co-DEGs, revealed molecular mechanisms, demonstrated the immune microenvironment, and predicted the possible TFs, miRNAs regulation networks and new drug targets for neuropathic pain and aging, providing novel insights into further research.
Collapse
|
47
|
Haeger SC, Kridin K, Pieper M, Griewahn L, Nimmerjahn F, Zillikens D, König P, Ludwig RJ, Hundt JE. Therapeutic effects of Fc gamma RIV inhibition are mediated by selectively blocking immune complex-induced neutrophil activation in epidermolysis bullosa acquisita. Front Immunol 2022; 13:938306. [PMID: 36311755 PMCID: PMC9606225 DOI: 10.3389/fimmu.2022.938306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is a subepidermal autoimmune bullous disease caused by autoantibodies targeting type VII collagen (COL7). It is characterized by inflammation and subepidermal blistering mainly through immune complex (IC)-mediated activation of neutrophils. In experimental EBA, binding of neutrophils to ICs in the skin and induction of clinical disease depends on the expression of the Fc gamma receptor (FcγR) IV. As activating FcγR mediate both neutrophil extravasation and activation, we used multiphoton imaging to obtain further insights into the mechanistic contribution of FcγRIV in the pathogenesis of EBA. First, we demonstrated that blocking FcγRIV function completely protects LysM-eGFP mice against induction of antibody transfer-induced EBA. To visualize the interactions of anti-COL7 IgG and neutrophils in vivo, fluorescently labeled anti-COL7 IgG was injected into LysM-eGFP mice. Multiphoton microscopy was sequentially performed over a period of 8 days. At all time points, we observed a significantly higher extravasation of neutrophils into the skin of mice treated with anti-FcγRIV antibody compared to controls. However, the percentage of detected neutrophils localized to the target antigen along the dermal-epidermal junction was comparable between both groups. Additionally, reactive oxygen release and migration in vitro assay data demonstrate that FcγRIV antibody treatment inhibits the activation, but not the migration, of neutrophils. Our findings underscore the importance of advanced in vivo imaging techniques to understand the complexity of IC-mediated neutrophil-dependent inflammation, and indicate that the therapeutic utility of FcγRIV blockade is achieved through impairment of IC-mediated neutrophil activation.
Collapse
Affiliation(s)
- Swantje C. Haeger
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
| | - Khalaf Kridin
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Mario Pieper
- Institute of Anatomy, University of Luebeck, Lubeck, Germany
| | - Laura Griewahn
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, University of Erlangen-Nuremberg, Erlangen-Nuremberg, Germany
| | - Detlef Zillikens
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- Department of Dermatology, University of Luebeck, Lubeck, Germany
| | - Peter König
- Institute of Anatomy, University of Luebeck, Lubeck, Germany
| | - Ralf J. Ludwig
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- Department of Dermatology, University of Luebeck, Lubeck, Germany
| | - Jennifer E. Hundt
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- *Correspondence: Jennifer E. Hundt,
| |
Collapse
|
48
|
Langi Sasongko P, van Kraaij M, So‐Osman C. Using a scenario approach to assess for the current and future demand of immunoglobulins: An interview and literature study from The Netherlands. Transfus Med 2022; 32:410-421. [PMID: 35751376 PMCID: PMC9795925 DOI: 10.1111/tme.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To explore the current and future demand of immunoglobulins globally and specifically for the Netherlands by assessing: (I) which specialties contribute to current demand, (II) new areas of medical need, (III) which transformational factors may impact demand and to what effect, by using a scenario approach. BACKGROUND As immunoglobulin demand continues to increase globally, there is concern of increasing shortages and questions of whether and how future demand will continue based on medical need. METHODS/MATERIALS In line with scenario principles, a scoping review of Pubmed, Web of Science, Embase and Cochrane and grey literature was conducted. Semi-structured interviews with subject matter experts were held. The results of the review and interviews were analysed for major themes. RESULTS The scoping review resulted in 97 articles, 74 regarding clinical uses, and 23 regarding organisational and other themes. Fifteen clinical and non-clinical experts were interviewed. I) Neurology, immunology, and haematology were specialties that contribute most to current demand. II) Regarding potential new areas of medical need, the literature review resulted in more indications than the interviews, for example, post-renal transplants. III) Four groups of key transformational factors were found: factors that could increase immunoglobulin demand (e.g., EMA revisions), decrease demand (e.g., replacement products, Dutch Transfer Act 2021), factors that remain to be seen how it impacts demand (e.g., further evidence), and miscellaneous factors (e.g., supply-related). CONCLUSION Having identified the specialties and relevant transformational factors that affect immunoglobulin demand, more research is needed on what clinical or organisational strategies would be effective in controlling demand in general for the Netherlands and abroad. Other blood establishments may also use a scenario approach to increase preparedness for future (un)expected developments.
Collapse
Affiliation(s)
- Praiseldy Langi Sasongko
- Department of Donor Medicine ResearchUnits Transfusion Technology Assessment and Donor Studies, Sanquin ResearchAmsterdamThe Netherlands,Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Cynthia So‐Osman
- Department of Unit Transfusion MedicineSanquin Blood BankAmsterdamThe Netherlands,Department of HaematologyErasmus Medical CenterRotterdamThe Netherlands
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW This review summarizes recent insights into the immunopathogenesis of autoimmune myasthenia gravis (MG). Mechanistic understanding is presented according to MG disease subtypes and by leveraging the knowledge gained through the use of immunomodulating biological therapeutics. RECENT FINDINGS The past two years of research on MG have led to a more accurate definition of the mechanisms through which muscle-specific tyrosine kinase (MuSK) autoantibodies induce pathology. Novel insights have also emerged from the collection of stronger evidence on the pathogenic capacity of low-density lipoprotein receptor-related protein 4 autoantibodies. Clinical observations have revealed a new MG phenotype triggered by cancer immunotherapy, but the underlying immunobiology remains undetermined. From a therapeutic perspective, MG patients can now benefit from a wider spectrum of treatment options. Such therapies have uncovered profound differences in clinical responses between and within the acetylcholine receptor and MuSK MG subtypes. Diverse mechanisms of immunopathology between the two subtypes, as well as qualitative nuances in the autoantibody repertoire of each patient, likely underpin the variability in therapeutic outcomes. Although predictive biomarkers of clinical response are lacking, these observations have ignited the development of assays that might assist clinicians in the choice of specific therapeutic strategies. SUMMARY Recent advances in the understanding of autoantibody functionalities are bringing neuroimmunologists closer to a more detailed appreciation of the mechanisms that govern MG pathology. Future investigations on the immunological heterogeneity among MG patients will be key to developing effective, individually tailored therapies.
Collapse
Affiliation(s)
- Gianvito Masi
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| |
Collapse
|
50
|
Segú-Vergés C, Caño S, Calderón-Gómez E, Bartra H, Sardon T, Kaveri S, Terencio J. Systems biology and artificial intelligence analysis highlights the pleiotropic effect of IVIg therapy in autoimmune diseases with a predominant role on B cells and complement system. Front Immunol 2022; 13:901872. [PMID: 36248801 PMCID: PMC9563374 DOI: 10.3389/fimmu.2022.901872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Intravenous immunoglobulin (IVIg) is used as treatment for several autoimmune and inflammatory conditions, but its specific mechanisms are not fully understood. Herein, we aimed to evaluate, using systems biology and artificial intelligence techniques, the differences in the pathophysiological pathways of autoimmune and inflammatory conditions that show diverse responses to IVIg treatment. We also intended to determine the targets of IVIg involved in the best treatment response of the evaluated diseases. Our selection and classification of diseases was based on a previously published systematic review, and we performed the disease characterization through manual curation of the literature. Furthermore, we undertook the mechanistic evaluation with artificial neural networks and pathway enrichment analyses. A set of 26 diseases was selected, classified, and compared. Our results indicated that diseases clearly benefiting from IVIg treatment were mainly characterized by deregulated processes in B cells and the complement system. Indeed, our results show that proteins related to B-cell and complement system pathways, which are targeted by IVIg, are involved in the clinical response. In addition, targets related to other immune processes may also play an important role in the IVIg response, supporting its wide range of actions through several mechanisms. Although B-cell responses and complement system have a key role in diseases benefiting from IVIg, protein targets involved in such processes are not necessarily the same in those diseases. Therefore, IVIg appeared to have a pleiotropic effect that may involve the collaborative participation of several proteins. This broad spectrum of targets and 'non-specificity' of IVIg could be key to its efficacy in very different diseases.
Collapse
Affiliation(s)
| | - Silvia Caño
- Grifols Innovation and New Technologies (GIANT) Ltd., Dublin, Ireland
| | | | - Helena Bartra
- Health Department, Anaxomics Biotech, Barcelona, Spain
| | - Teresa Sardon
- Health Department, Anaxomics Biotech, Barcelona, Spain
| | - Srini Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - José Terencio
- Grifols Innovation and New Technologies (GIANT) Ltd., Dublin, Ireland
| |
Collapse
|