1
|
Zhao Y, Qiu P, Shen T. Gut microbiota and eye diseases: A review. Medicine (Baltimore) 2024; 103:e39866. [PMID: 39331938 PMCID: PMC11441905 DOI: 10.1097/md.0000000000039866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Recent studies reveal that alterations in gut microbiota play a significant role in the progression of various diseases, including those affecting the eyes. The association between gut microbiota and eye health is an emerging focus of research. This review seeks to summarize the connection between the gut microbiome and specific eye conditions, such as ocular surface diseases, funduscopic disorders and immune-mediated eye diseases. Gut microbiota may influence these conditions by regulating the immune system or altering metabolites, thereby contributing to disease development. Strategies like probiotics, antibiotics, dietary modifications, and fecal transplants show promise in addressing these issues. This review examines how the gut microbiome may be linked to the pathogenesis of eye diseases, providing fresh therapeutic perspectives for ophthalmology.
Collapse
Affiliation(s)
- Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Peijin Qiu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Shen
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Kammoun S, Rekik M, Dlensi A, Aloulou S, Smaoui W, Sellami S, Trigui K, Gargouri R, Chaari I, Sellami H, Elatoui D, Khemakhem N, Hadrich I, Neji S, Abdelmoula B, Bouayed Abdelmoula N. The gut-eye axis: the retinal/ocular degenerative diseases and the emergent therapeutic strategies. Front Cell Neurosci 2024; 18:1468187. [PMID: 39391760 PMCID: PMC11464360 DOI: 10.3389/fncel.2024.1468187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
The interplay between human microbiota and various physiological systems has garnered significant attention in recent years. The gut microbiota plays a critical role in maintaining physiological homeostasis and influences various aspects of human health, particularly via the gut brain axis. Since 2017, the challenging concept of the gut-retina axis has emerged thanks to a network analysis emphasizing the potential role of the gut microbiota disruption in the development of the age-related macular degeneration and further retinal damages. Many other ocular disorders have been linked to the dysbiosis of the gut microbiota, including uveitis and glaucoma. It has been shown that age related macular degeneration can be prevented or reversed using a diet that induces changes in the gut microbiota. The potential link between the gut microbiota as well as others types of microbiota such as the ocular surface microbiota and the development/progression of age related as well as inherited retinal degenerations and other degenerative eye diseases, has recently been broadened. Therefore, the pathogenesis of several eye diseases has recently been associated with a larger perception called the gut eye axis. This mini-review examines the potential mechanisms underlying the gut eye axis and suggests implications for the management of eye diseases. By understanding the modulation of the gut microbiota and its impact on eye disease, this mini-review provides insight into potential therapeutic interventions and avenues for future research.
Collapse
Affiliation(s)
- Sonda Kammoun
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Mona Rekik
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Aryj Dlensi
- Ophthalmology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Samir Aloulou
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Medical Carcinology Department, Faculty of Medicine, Mohamed Ben Sassi University Hospital of Gabes, University of Sfax, Sfax, Tunisia
| | - Walid Smaoui
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Urology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Sahla Sellami
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Khaled Trigui
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Rahma Gargouri
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
| | - Imen Chaari
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
| | - Hayet Sellami
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
- Parasitology and Mycology Department, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Dhawia Elatoui
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
| | - Nahed Khemakhem
- Fungal and Parasitic Molecular Biology Laboratory LR05ES11 FMS, University of Sfax, Sfax, Tunisia
| | - Ines Hadrich
- Fungal and Parasitic Molecular Biology Laboratory LR05ES11 FMS, University of Sfax, Sfax, Tunisia
| | - Sourour Neji
- Parasitology and Mycology Department, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Fungal and Parasitic Molecular Biology Laboratory LR05ES11 FMS, University of Sfax, Sfax, Tunisia
| | - Balkiss Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Nouha Bouayed Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Wang Q, Wu Y, Lu Q, Zhao M. Contribution of gut-derived T cells to extraintestinal autoimmune diseases. Trends Immunol 2024; 45:639-648. [PMID: 39181734 DOI: 10.1016/j.it.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024]
Abstract
The mammalian intestine harbors abundant T cells with high motility, where these cells can affect both intestinal and extraintestinal disorders. Growing evidence shows that gut-derived T cells migrate to extraintestinal organs, contributing to the pathogenesis of certain autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). However, three key questions require further elucidation. First, how do intestinal T cells egress from the intestine? Second, how do gut-derived T cells enter organs outside the gut? Third, what is the pathogenicity of gut-derived T cells and their correlation with the gut microenvironment? In this Opinion, we propose answers to these questions. Understanding the migration and functional regulation of gut-derived T cells might inform precise targeting for achieving safe and effective approaches to treat certain extraintestinal autoimmune diseases.
Collapse
Affiliation(s)
- Qiaolin Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Yutong Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
4
|
Zheng Y, Mou Z, Tan S, Wang X, Yuan J, Li H. IL-17A enhances the inflammatory response of glaucoma through Act1/TRAF6/NF-κB pathway. Neurochem Int 2024; 178:105787. [PMID: 38830510 DOI: 10.1016/j.neuint.2024.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVES To investigate the possible roles of Interleukin 17A (IL-17A) and IL-17A neutralizing antibodies (IL-17Ab) in glaucoma and the potential mechanisms. METHODS The two glaucoma animal models, chronic ocular hypertension (COH) and N-methyl-D-aspartate (NMDA)-induced retinal ganglion cell (RGC) damage, were established and treated with intravitreal injection of IL-17A or IL-17Ab. Intraocular pressure (IOP) was measured by a rebound tonometer. The retina and RGC injury were evaluated by HE staining, TUNLE assay and Brn3a immunofluorescence staining. The frequency of IL-17A+CD4+T cells in peripheral blood was detected by flow cytometry. The expression of glial fibrillary acidic protein (GFAP) was detected by immunofluorescence staining, Western Blot and qPCR in retina. The RNA and protein expression of Act1/TRAF6/NF-κB were detected by Western Blot and qPCR in retina. RESULTS The expression of IL-17A increased in glaucoma models. After intravitreal injection of IL-17A, in the retina, the number of RGCs decreased, the apoptosis of RGCs increased, the Müller cell gliosis was more obvious. In addition, peripheral inflammation aggravated. Whereas the intravitreal injection of IL-17Ab alleviated the relevant manifestations and peripheral inflammation, reduced the gliosis of Müller cells. In the COH model, IOP increased after the injection of IL-17A, while the intravitreal injection of IL-17Ab led to a decrease in IOP. Furthermore, IL-17A promotes the apoptosis of RGCs by binding to IL-17A receptor, activating Act1/TRAF6/NF-κB pathways. CONCLUSION IL-17A plays a role in and aggravates RGC damage in glaucoma. IL-17Ab can neutralize the pro-inflammatory effect of IL-17A and have a protective function in glaucoma. These findings reveal the importance of IL-17A in the pathogenesis of glaucoma, which will shed light on a novel direction for the prevention and treatment of glaucoma, and also provide a reference for further research on other retinal diseases.
Collapse
Affiliation(s)
- Yunfan Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhenni Mou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Sisi Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiaochen Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jingchang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hong Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
5
|
Li SH, Cheng CY. Risks of glaucoma among individuals with psoriasis: a population-based cohort study. Clin Exp Dermatol 2024; 49:1007-1015. [PMID: 38469696 DOI: 10.1093/ced/llae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/04/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Psoriasis is a chronic systemic disorder with ocular involvement. OBJECTIVES To evaluate the risk of glaucoma among patients with psoriasis. METHODS Participants in this cohort study were selected based on Chang Gung Research Database from 1 January 2003 to 31 December 2012. Follow-up ended on 31 December 2017. The participants in the control group were matched with the psoriasis group by sex, age and index date with a 4 : 1 ratio. The hazard ratios of glaucoma were estimated using Cox regression analysis. We also evaluated the relationship between the risk of glaucoma and systemic therapies as well as phototherapy and topical corticosteroid in patients with psoriasis. RESULTS In total, 6682 patients with psoriasis and 26 728 matched controls were enrolled. The study population was composed mainly of males accounting for 64.2% (21 445/33 410) of the study population. The psoriasis group had higher incidence rates than the control group for glaucoma (adjusted hazard ratio 1.405, 95% confidence interval, 1.051-1.879). Patients with psoriasis receiving psoralen-ultraviolet A (PUVA) therapy for > 200 sessions had an increased risk of glaucoma. CONCLUSIONS Patients with psoriasis had an increased risk of glaucoma. Long-term PUVA therapy raised the risk of glaucoma in people with psoriasis.
Collapse
Affiliation(s)
- Shu-Hao Li
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yu Cheng
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center of Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
6
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Yang Y, Lin Y, Han Z, Wang B, Zheng W, Wei L. Ferroptosis: a novel mechanism of cell death in ophthalmic conditions. Front Immunol 2024; 15:1440309. [PMID: 38994366 PMCID: PMC11236620 DOI: 10.3389/fimmu.2024.1440309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Ferroptosis, a new type of programmed cell death proposed in recent years, is characterized mainly by reactive oxygen species and iron-mediated lipid peroxidation and differs from programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is associated with a variety of physiological and pathophysiological processes. Recent studies have shown that ferroptosis can aggravate or reduce the occurrence and development of diseases by targeting metabolic pathways and signaling pathways in tumors, ischemic organ damage, and other degenerative diseases related to lipid peroxidation. Increasing evidence suggests that ferroptosis is closely linked to the onset and progression of various ophthalmic conditions, including corneal injury, glaucoma, age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinoblastoma. Our review of the current research on ferroptosis in ophthalmic diseases reveals significant advancements in our understanding of the pathogenesis, aetiology, and treatment of these conditions.
Collapse
Affiliation(s)
- Yaqi Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yumeng Lin
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo Wang
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Zheng
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Lijuan Wei
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
8
|
Liang S. Role of T cell-induced autoimmune response in the pathogenesis of glaucoma. Int Ophthalmol 2024; 44:241. [PMID: 38904796 DOI: 10.1007/s10792-024-03224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE This review aims to elucidate the role of T cell-induced autoimmune responses in the pathogenesis of glaucoma, focusing on the immunological changes contributing to retinal ganglion cell (RGC) damage. METHODS A comprehensive review of recent studies examining immunological mechanisms in glaucoma was conducted. This included analyses of T cell interactions, heat shock proteins (HSPs), and resultant autoimmune responses. Key findings from experimental models and clinical observations were synthesized to present a coherent understanding of immune dynamics in glaucoma. RESULTS Glaucoma is a neurodegenerative disease marked by optic nerve atrophy and irreversible vision loss due to RGC damage. The disease is etiologically heterogeneous, with multiple risk factors and pathogenic mechanisms. Recent research highlights the dual immunomodulatory role of T cells in immune protection and injury. T cells, pre-sensitized by bacterial HSPs, can cross-react with endogenous HSPs in RGCs under stress, leading to autoimmune damage. Elevated levels of HSP autoantibodies and abnormal T cell activity have been observed in glaucoma patients, indicating a significant autoimmune component in disease progression. CONCLUSIONS T cell-induced autoimmune responses are crucial in the pathogenesis of glaucoma, contributing to RGC degeneration beyond the effects of elevated intraocular pressure. Understanding these immunological mechanisms is vital for developing targeted neuroprotective therapies for glaucoma.
Collapse
Affiliation(s)
- Shuxin Liang
- The Red Bird Program, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong Province, China.
| |
Collapse
|
9
|
Ruan Y, Buonfiglio F, Gericke A. Adrenoceptors in the Eye - Physiological and Pathophysiological Relevance. Handb Exp Pharmacol 2024; 285:453-505. [PMID: 38082203 DOI: 10.1007/164_2023_702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The autonomic nervous system plays a crucial role in the innervation of the eye. Consequently, it comes as no surprise that catecholamines and their corresponding receptors have been extensively studied and characterized in numerous ocular structures, including the cornea, conjunctiva, lacrimal gland, trabecular meshwork, uvea, and retina. These investigations have unveiled substantial clinical implications, particularly in the context of treating glaucoma, a progressive neurodegenerative disorder responsible for irreversible vision loss on a global scale. The primary therapeutic approaches for glaucoma frequently involve the modulation of α1-, α2-, and β-adrenoceptors, making them pivotal targets. In this chapter, we offer a comprehensive overview of the expression, distribution, and functional roles of adrenoceptors within various components of the eye and its associated structures. Additionally, we delve into the pivotal role of adrenoceptors in the pathophysiology of glaucoma. Furthermore, we provide a concise historical perspective on adrenoceptor research, examine the distinct contributions of individual adrenoceptor subtypes to the treatment of various ocular conditions, and propose potential future avenues of exploration in this field.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
10
|
Huang L, Hong Y, Fu X, Tan H, Chen Y, Wang Y, Chen D. The role of the microbiota in glaucoma. Mol Aspects Med 2023; 94:101221. [PMID: 37866106 DOI: 10.1016/j.mam.2023.101221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Glaucoma is a common irreversible vision loss disorder because of the gradual loss of retinal ganglion cells (RGCs) and the optic nerve axons. Major risk factors include elder age and high intraocular pressure (IOP). However, high IOP is neither necessary nor sufficient to cause glaucoma. Some non-IOP signaling cascades can mediate RGC degeneration. In addition, gender, diet, obesity, depression, or anxiety also contribute to the development of glaucoma. Understanding the mechanism of glaucoma development is crucial for timely diagnosis and establishing new strategies to improve current IOP-reducing therapies. The microbiota exerts a marked influence on the human body during homeostasis and disease. Many glaucoma patients have abnormal compositions of the microbiota (dysbiosis) in multiple locations, including the ocular surface, intraocular cavity, oral cavity, stomach, and gut. Here, we discuss findings in the last ten years or more about the microbiota and metabolite changes in animal models, patients with three risk factors (aging, obesity, and depression), and glaucoma patients. Antigenic mimicry and heat stress protein (HSP)-specific T-cell infiltration in the retina may be responsible for commensal microbes contributing to glaucomatous RGC damage. LPS-TLR4 pathway may be the primary mechanism of oral and ocular surface dysbiosis affecting glaucoma. Microbe-derived metabolites may also affect glaucoma pathogenesis. Homocysteine accumulation, inflammatory factor release, and direct dissemination may link gastric H. pylori infection and anterior chamber viral infection (such as cytomegalovirus) to glaucoma. Potential therapeutic protocols targeting microbiota include antibiotics, modified diet, and stool transplant. Later investigations will uncover the underlying molecular mechanism connecting dysbiosis to glaucoma and its clinical applications in glaucoma management.
Collapse
Affiliation(s)
- Ling Huang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Hong
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangyu Fu
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haishan Tan
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Yujiao Wang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Danian Chen
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Guo Y, Ou C, Zhang N, Liu Q, Xiong K, Yu J, Cheng H, Chen L, Ma M, Xu J, Wu J. Roflumilast attenuates neuroinflammation post retinal ischemia/reperfusion injury by regulating microglia phenotype via the Nrf2/STING/NF-κB pathway. Int Immunopharmacol 2023; 124:110952. [PMID: 37751655 DOI: 10.1016/j.intimp.2023.110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE The abnormal polarisation of microglial cells (MGs) following retinal ischemia/reperfusion (RIR) initiates neuroinflammation and progressive death of retinal ganglion cells (RGCs), causing increasingly severe and irreversible visual dysfunction. Roflumilast (Roflu) is a promising candidate for treating neuroinflammatory diseases. This study aimed to explore whether Roflu displayed a cytoprotective effect against RIR-induced neuroinflammation and to characterise the underlying signalling pathway. METHODS The effects and mechanism of Roflu against RIR injury were investigated in C57BL/6J mice and the BV2 cell line. We used quantitative real-time PCR and enzyme-linked immunosorbent assay to examine the levels of inflammatory factors. Furthermore, haematoxylin and eosin and immunofluorescence (IF) stainings were used to assess the morphology of the retina and the states of MGs and RGCs. Reactive oxygen species (ROS) levels were examined using a ROS assay kit, while whole-genome sequencing analysis was conducted to identify altered pathways and molecules. Western blotting and IF staining were used to quantify the proteins associated with the nuclear factor erythroid 2-related factor 2 (Nrf2)/stimulator of interferon gene (STING)/nuclear factor kappa beta (NF-κB) pathway. RESULTS MG polarisation includes the pro-inflammatory and neurotoxic M1 phenotype as well as the anti-inflammatory and neuroprotective M2 phenotype. Roflu significantly attenuated MG activation and contributed to a shift in the MG phenotype from M1 to M2. Moreover, Roflu decreased ROS release and increased heme oxygenase 1 and NAD(P)H quinone oxidoreductase 1 expression. In vitro and in vivo experiments validated that Roflu exerted its neuroprotective effects primarily by upregulating the Nrf2/STING/NF-κB pathway. However, these effects were abrogated when the Nrf2 expression was inhibited by pharmacological or genetic manipulation. CONCLUSIONS Roflu suppressed RIR-induced neuroinflammation by driving the shift of MG polarisation from M1 to M2 phenotype, which was mediated by the upregulation of the Nrf2/STING/NK-κB pathway.
Collapse
Affiliation(s)
- Yuyan Guo
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Chunlian Ou
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Naiyuan Zhang
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qiong Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jian Yu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hao Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Linjiang Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ming Ma
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Jing Wu
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
12
|
Lin D, Wu S, Cheng Y, Yan X, Liu Q, Ren T, Zhang J, Wang N. Early Proteomic Characteristics and Changes in the Optic Nerve Head, Optic Nerve, and Retina in a Rat Model of Ocular Hypertension. Mol Cell Proteomics 2023; 22:100654. [PMID: 37793503 PMCID: PMC10665672 DOI: 10.1016/j.mcpro.2023.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
The pathogenesis of glaucoma is still unknown. There are few studies on the dynamic change of tissue-specific and time-specific molecular pathophysiology caused by ocular hypertension (OHT). This study aimed to identify the early proteomic alterations in the retina, optic nerve head (ONH), and optic nerve (ON). After establishing a rat model of OHT, we harvested the tissues from control and glaucomatous eyes and analyzed the changes in protein expression using a multiplexed quantitative proteomics approach (TMT-MS3). Our study identified 6403 proteins after 1-day OHT and 4399 proteins after 7-days OHT in the retina, 5493 proteins after 1-day OHT and 4544 proteins after 7-days OHT in ONH, and 5455 proteins after 1-day OHT and 3835 proteins after 7-days OHT in the ON. Of these, 560 and 489 differential proteins were identified on day 1 and 7 after OHT in the retina, 428 and 761 differential proteins were identified on day 1 and 7 after OHT in the ONH, and 257 and 205 differential proteins on days 1 and 7 after OHT in the ON. Computational analysis on day 1 and 7 of OHT revealed that alpha-2 macroglobulin was upregulated across two time points and three tissues stably. The differentially expressed proteins between day 1 and 7 after OHT in the retina, ONH, and ON were associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, oxidative stress, microtubule, and crystallin. And the most significant change in retina are crystallins. We validated this proteomic result with the Western blot of crystallin proteins and found that upregulated on day 1 but recovered on day 7 after OHT, which are promising as therapeutic targets. These findings provide insights into the time- and region-order mechanisms that are specifically affected in the retina, ONH, and ON in response to elevated IOP during the early stages.
Collapse
Affiliation(s)
- Danting Lin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Ying Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Tianmin Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
West CE, Karim M, Falaguera MJ, Speidel L, Green CJ, Logie L, Schwartzentruber J, Ochoa D, Lord JM, Ferguson MAJ, Bountra C, Wilkinson GF, Vaughan B, Leach AR, Dunham I, Marsden BD. Integrative GWAS and co-localisation analysis suggests novel genes associated with age-related multimorbidity. Sci Data 2023; 10:655. [PMID: 37749083 PMCID: PMC10520009 DOI: 10.1038/s41597-023-02513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Advancing age is the greatest risk factor for developing multiple age-related diseases. Therapeutic approaches targeting the underlying pathways of ageing, rather than individual diseases, may be an effective way to treat and prevent age-related morbidity while reducing the burden of polypharmacy. We harness the Open Targets Genetics Portal to perform a systematic analysis of nearly 1,400 genome-wide association studies (GWAS) mapped to 34 age-related diseases and traits, identifying genetic signals that are shared between two or more of these traits. Using locus-to-gene (L2G) mapping, we identify 995 targets with shared genetic links to age-related diseases and traits, which are enriched in mechanisms of ageing and include known ageing and longevity-related genes. Of these 995 genes, 128 are the target of an approved or investigational drug, 526 have experimental evidence of binding pockets or are predicted to be tractable, and 341 have no existing tractability evidence, representing underexplored genes which may reveal novel biological insights and therapeutic opportunities. We present these candidate targets for exploration and prioritisation in a web application.
Collapse
Affiliation(s)
- Clare E West
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
| | - Mohd Karim
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Maria J Falaguera
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Leo Speidel
- Francis Crick Institute, London, UK
- Genetics Institute, University College London, London, UK
| | | | - Lisa Logie
- Drug Discovery Unit, University of Dundee, Dundee, UK
- Medicines Discovery Catapult, 35 Mereside Alderley Park, Macclesfield, Cheshire, UK
| | - Jeremy Schwartzentruber
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - David Ochoa
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | - Chas Bountra
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Graeme F Wilkinson
- Medicines Discovery Catapult, 35 Mereside Alderley Park, Macclesfield, Cheshire, UK
| | - Beverley Vaughan
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Andrew R Leach
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Ian Dunham
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Brian D Marsden
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Buonfiglio F, Pfeiffer N, Gericke A. Immunomodulatory and Antioxidant Drugs in Glaucoma Treatment. Pharmaceuticals (Basel) 2023; 16:1193. [PMID: 37765001 PMCID: PMC10535738 DOI: 10.3390/ph16091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma, a group of diseases characterized by progressive retinal ganglion cell loss, cupping of the optic disc, and a typical pattern of visual field defects, is a leading cause of severe visual impairment and blindness worldwide. Elevated intraocular pressure (IOP) is the leading risk factor for glaucoma development. However, glaucoma can also develop at normal pressure levels. An increased susceptibility of retinal ganglion cells to IOP, systemic vascular dysregulation, endothelial dysfunction, and autoimmune imbalances have been suggested as playing a role in the pathophysiology of normal-tension glaucoma. Since inflammation and oxidative stress play a role in all forms of glaucoma, the goal of this review article is to present an overview of the inflammatory and pro-oxidant mechanisms in the pathophysiology of glaucoma and to discuss immunomodulatory and antioxidant treatment approaches.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| |
Collapse
|
15
|
Cao F, Liu ZR, Ni QY, Zha CK, Zhang SJ, Lu JM, Xu YY, Tao LM, Jiang ZX, Pan HF. Emerging roles of air pollution and meteorological factors in autoimmune eye diseases. ENVIRONMENTAL RESEARCH 2023; 231:116116. [PMID: 37182831 DOI: 10.1016/j.envres.2023.116116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Autoimmune eye diseases (AEDs), a collection of autoimmune inflammatory ocular conditions resulting from the dysregulation of immune system at the ocular level, can target both intraocular and periorbital structures leading to severe visual deficit and blindness globally. The roles of air pollution and meteorological factors in the initiation and progression of AEDs have been increasingly attractive, among which the systemic and local mechanisms are both involved in. Exposure to excessive air pollution and extreme meteorological conditions including PM2.5/PM0.1, environmental tobacco smoke, insufficient sunshine, and high temperature, etc., can disturb Th17/Treg balance, regulate macrophage polarization, activate neutrophils, induce systemic inflammation and oxidative stress, decrease retinal blood flow, promote tissue fibrosis, activate sympathetic nervous system, adversely affect nutrients synthetization, as well as induce heat stress, therefore may together deteriorate AEDs. The crosstalk among inflammation, oxidative stress and dysregulated immune system appeared to be prominent. In the present review, we will concern and summarize the potential mechanisms underlying linkages of air pollution and meteorological factors to ocular autoimmune and inflammatory responses. Moreover, we concentrate on the specific roles of air pollutants and meteorological factors in several major AEDs including uveitis, Graves' ophthalmopathy (GO), ocular allergic disease (OAD), glaucoma, diabetic retinopathy (DR), etc.
Collapse
Affiliation(s)
- Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Zhuo-Ran Liu
- Department of Ophthalmology, Ningbo Hospital, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1155 Binhaier Road, Ningbo, Zhejiang, China
| | - Qin-Yu Ni
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Chen-Kai Zha
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Shu-Jie Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jia-Min Lu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yue-Yang Xu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Li-Ming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China.
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
16
|
Chen J, Zhong H, Yu H, Sun J, Shen B, Xu X, Huang S, Huang P, Zhong Y. Interleukin-17A modulates retinal inflammation by regulating microglial activation via the p38 MAPK pathway in experimental glaucoma neuropathy. FASEB J 2023; 37:e22945. [PMID: 37144630 DOI: 10.1096/fj.202202056rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
As a prototypical member of the IL-17 family, interleukin-17A (IL-17A) has received increasing attentions for its potent proinflammatory role as well as potential to be a key therapeutic target in human autoimmune inflammatory diseases; however, its roles in other pathological scenarios like neuroinflammations are not fully elucidated yet but appear essentially correlating and promising. Glaucoma is the leading cause of irreversible blindness with complicated pathogenesis still to be understood, where neuroinflammation was reported to be critically involved in its both initiation and progression. Whether IL-17A takes part in the pathogenesis of glaucoma through interfering neuroinflammation due to its potent proinflammatory effect is still unknown. In the present study, we investigated the role of IL-17A in the pathological process of glaucoma neuropathy as well as its relationship with the predominant immune inflammation mediator microglia in retina, trying to elucidate the underlying mechanisms from the view of inflammation modulation. In our study, RNA sequencing was performed for the retinas of chronic ocular hypertension (COH) and control mice. Western blot, RT-PCR, immunofluorescence, and ELISA were used to evaluate the microglial activation and proinflammatory cytokines release at conditioned levels of IL-17A, along with assessment of optic nerve integrity including retinal ganglion cells (RGCs) counting, axonal neurofilament quantification, and flash visual-evoked potential (F-VEP) examination. And the possibly involved signaling pathways were screened out to go through further validation in scenarios with conditioned IL-17A. Subsequently, IL-17A was found to be significantly upregulated in COH retina. Furthermore, suppression of IL-17A effectively diminished the loss of RGCs, improved axonal quality, and F-VEP performance in COH mice. Mechanistically, IL-17A promoted microglial activation and proinflammatory cytokines release along with enhanced phenotypic conversion of activated microglia to M2-type in early stage and to M1-type in late stage in glaucomatous retinas. Microglia elimination decreased the proinflammatory factors secretion, enhanced the RGCs survival and axonal quality mediated by IL-17A. Furthermore, IL-17A-induced the overactivation of microglia in glaucomatous condition was alleviated after blocking the p38 MAPK pathway. Taken together, IL-17A is involved in the regulation of retinal immune response and RGCs cell death in experimental glaucoma by essentially promoting retinal microglial activation via p38 MAPK signaling pathway. IL-17A dynamically regulates the phenotypic conversion of retinal microglia in experimental glaucoma partly depending on the duration of elevated intraocular pressure. Suppression of IL-17A contributes to alleviate glaucoma neuropathy and exhibits promising potential as an innovative target for therapeutic strategy in glaucoma.
Collapse
Affiliation(s)
- Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Zhong
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Bingqiao Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
- Department of Ophthalmology, Zhoushan Branch of Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Zhoushan, China
| |
Collapse
|
17
|
Biasella F, Plössl K, Baird PN, Weber BHF. The extracellular microenvironment in immune dysregulation and inflammation in retinal disorders. Front Immunol 2023; 14:1147037. [PMID: 36936905 PMCID: PMC10014728 DOI: 10.3389/fimmu.2023.1147037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Paul N. Baird
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| |
Collapse
|
18
|
Song DJ, Fan B, Li GY. Blood cell traits and risk of glaucoma: A two-sample mendelian randomization study. Front Genet 2023; 14:1142773. [PMID: 37124610 PMCID: PMC10130872 DOI: 10.3389/fgene.2023.1142773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Importance: Glaucoma is the second leading cause of blindness in the world. The causal direction and magnitude of the association between blood cell traits and glaucoma is uncertain because of the susceptibility of observational studies to confounding and reverse causation. Objective: To explore whether there is a causal relationship of blood cell traits including white blood cell (WBC) count (WBCC) and its subtypes [basophil cell count (BASO), monocyte cell count (MONO), lymphocyte cell count (LYMPH), eosinophil cell count (EOS), neutrophil cell count (NEUT)], red blood cell (RBC) count (RBCC), red blood distribution width (RDW), platelet count (PLT), and plateletcrit (PCT) on glaucoma risk. Methods: A two-sample Mendelian randomization (MR) analysis was conducted. Genome-wide significant single nucleotide polymorphisms (SNPs) from published genome-wide association studies (GWAS) on human blood cell traits were utilized as exposure instruments and the dataset for outcome was from the GWAS summary data of glaucoma. In the univariable MR analysis, we examined the association between genetic evidence of blood cell traits and glaucoma. To further investigate the potential causal mechanisms underlying the observed association, we performed multivariable MR analysis with three models, taking into account the mediator effect of inflammation and oxidative stress. According to Bonferroni-corrected for the 10 exposures in 3 methods, the MR study yielded a statistically significant p-value of 0.0017. Results: Genetically BASO, PCT, LYMPH, and PLT were potentially positively associated with glaucoma in the European ancestry [BASO: Odds ratio (OR) = 1.00122, 95% confidence interval (CI), 1.00003-1.00242, p = 0.045; PCT: OR = 1.00078, 95% CI, 1.00012-1.00143, p = 0.019; LYMPH: OR = 1.00076, 95% CI, 1.00002-1.00151, p = 0.045; PLT: OR = 1.00065, 95% CI, 1.00006-1.00123, p = 0.030], There was insufficient evidence to support a causal association of MONO, NEUT, EOS, WBCC, RBCC and RDW (MONO: OR = 1.00050, p = 0.098; NEUT: OR = 1.00028, p = 0.524; EOS: OR = 1.00020, p = 0.562; WBCC: OR = 1.00008, p = 0.830; RBCC: OR = 0.99996, p = 0.920; RDW: OR = 0.99987, p = 0.734) with glaucoma. The multivariable MR with model 1, 2, and 3 demonstrated that BASO, PCT, LYMPH, and PLT were still potentially genetically associated with the risk of glaucoma. Conclusion: Our study reveals a genetic predisposition to higher LYMPH, BASO, PLT, and PCT are associated with a higher risk of glaucoma, whereas WBCC, MONO, EOS, NEUT, RBCC, and RDW are not associated with the occurrence of glaucoma. This finding also supports previous observational studies associating immune components with glaucoma, thus provide guidance on the predication and prevention for glaucoma.
Collapse
|
19
|
Zeng L, Yang K, Zhang T, Zhu X, Hao W, Chen H, Ge J. Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: A review. J Autoimmun 2022; 133:102919. [PMID: 36242821 DOI: 10.1016/j.jaut.2022.102919] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022]
Abstract
Autoimmunity refers to the phenomenon that the body's immune system produces antibodies or sensitized lymphocytes to its own tissues to cause an immune response. Immune disorders caused by autoimmunity can mediate autoimmune diseases. Autoimmune diseases have complicated pathogenesis due to the many types of cells involved, and the mechanism is still unclear. The emergence of single-cell research technology can solve the problem that ordinary transcriptome technology cannot be accurate to cell type. It provides unbiased results through independent analysis of cells in tissues and provides more mRNA information for identifying cell subpopulations, which provides a novel approach to study disruption of immune tolerance and disturbance of pro-inflammatory pathways on a cellular basis. It may fundamentally change the understanding of molecular pathways in the pathogenesis of autoimmune diseases and develop targeted drugs. Single-cell transcriptome sequencing (scRNA-seq) has been widely applied in autoimmune diseases, which provides a powerful tool for demonstrating the cellular heterogeneity of tissues involved in various immune inflammations, identifying pathogenic cell populations, and revealing the mechanism of disease occurrence and development. This review describes the principles of scRNA-seq, introduces common sequencing platforms and practical procedures, and focuses on the progress of scRNA-seq in 41 autoimmune diseases, which include 9 systemic autoimmune diseases and autoinflammatory diseases (rheumatoid arthritis, systemic lupus erythematosus, etc.) and 32 organ-specific autoimmune diseases (5 Skin diseases, 3 Nervous system diseases, 4 Eye diseases, 2 Respiratory system diseases, 2 Circulatory system diseases, 6 Liver, Gallbladder and Pancreas diseases, 2 Gastrointestinal system diseases, 3 Muscle, Bones and joint diseases, 3 Urinary system diseases, 2 Reproductive system diseases). This review also prospects the molecular mechanism targets of autoimmune diseases from the multi-molecular level and multi-dimensional analysis combined with single-cell multi-omics sequencing technology (such as scRNA-seq, Single cell ATAC-seq and single cell immune group library sequencing), which provides a reference for further exploring the pathogenesis and marker screening of autoimmune diseases and autoimmune inflammatory diseases in the future.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Tianqing Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaofei Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
20
|
Belamkar A, Harris A, Zukerman R, Siesky B, Oddone F, Verticchio Vercellin A, Ciulla TA. Sustained release glaucoma therapies: Novel modalities for overcoming key treatment barriers associated with topical medications. Ann Med 2022; 54:343-358. [PMID: 35076329 PMCID: PMC8794062 DOI: 10.1080/07853890.2021.1955146] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Glaucoma is a progressive optic neuropathy and a leading cause of irreversible blindness. The disease has conventionally been characterized by an elevated intraocular pressure (IOP); however, recent research has built the consensus that glaucoma is not only dependent on IOP but rather represents a multifactorial optic neuropathy. Although many risk factors have been identified ranging from demographics to co-morbidities to ocular structural predispositions, IOP is currently the only modifiable risk factor, most often treated by topical IOP-lowering medications. However, topical hypotensive regimens are prone to non-adherence and are largely inefficient, leading to disease progression in spite of treatment. As a result, several companies are developing sustained release (SR) drug delivery systems as alternatives to topical delivery to potentially overcome these barriers. Currently, Bimatoprost SR (DurystaTM) from Allergan plc is the only FDA-approved SR therapy for POAG. Other SR therapies under investigation include: bimatoprost ocular ring (Allergan) (ClinicalTrials.gov identifier: NCT01915940), iDose® (Glaukos Corporation) (NCT03519386), ENV515 (Envisia Therapeutics) (NCT02371746), OTX-TP (Ocular Therapeutix) (NCT02914509), OTX-TIC (Ocular Therapeutix) (NCT04060144), and latanoprost free acid SR (PolyActiva) (NCT04060758). Additionally, a wide variety of technologies for SR therapeutics are under investigation including ocular surface drug delivery systems such as contact lenses and nanotechnology. While challenges remain for SR drug delivery technology in POAG management, this technology may shift treatment paradigms and dramatically improve outcomes.
Collapse
Affiliation(s)
- Aditya Belamkar
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alon Harris
- Department of Opthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Zukerman
- Department of Opthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Opthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brent Siesky
- Department of Opthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Thomas A Ciulla
- Indiana University School of Medicine, Indianapolis, IN, USA.,Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
21
|
Rodrigo MJ, Bravo-Osuna I, Subias M, Montolío A, Cegoñino J, Martinez-Rincón T, Mendez-Martinez S, Aragón-Navas A, Garcia-Herranz D, Pablo LE, Herrero-Vanrell R, del Palomar AP, Garcia-Martin E. Tunable degrees of neurodegeneration in rats based on microsphere-induced models of chronic glaucoma. Sci Rep 2022; 12:20622. [PMID: 36450772 PMCID: PMC9712621 DOI: 10.1038/s41598-022-24954-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
This study compares four different animal models of chronic glaucoma against normal aging over 6 months. Chronic glaucoma was induced in 138 Long-Evans rats and compared against 43 aged-matched healthy rats. Twenty-five rats received episcleral vein sclerosis injections (EPIm cohort) while the rest were injected in the eye anterior chamber with a suspension of biodegradable microspheres: 25 rats received non-loaded microspheres (N-L Ms cohort), 45 rats received microspheres loaded with dexamethasone (MsDexa cohort), and 43 rats received microspheres co-loaded with dexamethasone and fibronectin (MsDexaFibro cohort). Intraocular pressure, neuroretinal function, structure and vitreous interface were evaluated. Each model caused different trends in intraocular pressure, produced specific retinal damage and vitreous signals. The steepest and strongest increase in intraocular pressure was seen in the EPIm cohort and microspheres models were more progressive. The EPIm cohort presented the highest vitreous intensity and percentage loss in the ganglion cell layer, the MsDexa cohort presented the greatest loss in the retinal nerve fiber layer, and the MsDexaFibro cohort presented the greatest loss in total retinal thickness. Function decreased differently among cohorts. Using biodegradable microspheres models it is possible to generate tuned neurodegeneration. These results support the multifactorial nature of glaucoma based on several noxa.
Collapse
Affiliation(s)
- María Jesús Rodrigo
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Irene Bravo-Osuna
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Manuel Subias
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Alberto Montolío
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Teresa Martinez-Rincón
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Silvia Mendez-Martinez
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Alba Aragón-Navas
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - David Garcia-Herranz
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Luis Emilio Pablo
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Rocío Herrero-Vanrell
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Amaya Pérez del Palomar
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Elena Garcia-Martin
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain ,C/Padre Arrupe, Servicio de Oftalmología, Edificio de Consultas Externas, Planta 1, 50009 Zaragoza, Spain
| |
Collapse
|
22
|
Tan X, Zhong Z, Wang Q, Su G, Cao Q, Kijlstra A, Yang P. Genetically predicted fasting blood glucose level plays a causal role in intraocular pressure: A Mendelian randomisation study. Clin Exp Ophthalmol 2022; 50:534-542. [DOI: 10.1111/ceo.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao Tan
- The First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing P. R. China
| | - Zhenyu Zhong
- The First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing P. R. China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing P. R. China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing P. R. China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing P. R. China
| | - Aize Kijlstra
- University Eye Clinic Maastricht Maastricht The Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing P. R. China
| |
Collapse
|
23
|
Rodríguez-Fernández CA, Iglesias MB, de Domingo B, Conde-Pérez K, Vallejo JA, Rodríguez-Martínez L, González-Barcia M, Llorenç V, Mondelo-Garcia C, Poza M, Fernández-Ferreiro A. Microbiome in Immune-Mediated Uveitis. Int J Mol Sci 2022; 23:ijms23137020. [PMID: 35806031 PMCID: PMC9266430 DOI: 10.3390/ijms23137020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
In the last decades, personalized medicine has been increasing its presence in different fields of medicine, including ophthalmology. A new factor that can help us direct medicine towards the challenge of personalized treatments is the microbiome. The gut microbiome plays an important role in controlling immune response, and dysbiosis has been associated with immune-mediated diseases such as non-infectious uveitis (NIU). In this review, we gather the published evidence, both in the pre-clinical and clinical studies, that support the possible role of intestinal dysbiosis in the pathogenesis of NIU, as well as the modulation of the gut microbiota as a new possible therapeutic target. We describe the different mechanisms that have been proposed to involve dysbiosis in the causality of NIU, as well as the potential pharmacological tools that could be used to modify the microbiome (dietary supplementation, antibiotics, fecal microbiota transplantation, immunomodulators, or biologic drugs) and, consequently, in the control of the NIU. Furthermore, there is increasing scientific evidence suggesting that the treatment with anti-TNF not only restores the composition of the gut microbiota but also that the study of the composition of the gut microbiome will help predict the response of each patient to anti-TNF treatment.
Collapse
Affiliation(s)
| | - Manuel Busto Iglesias
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Begoña de Domingo
- Ophthalmology Department, University Clinical Hospital of Santiago Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
| | - Kelly Conde-Pérez
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
| | - Juan A. Vallejo
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
| | - Lorena Rodríguez-Martínez
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Victor Llorenç
- Clínic Institute of Ophthalmology (ICOF), Clinic Hospital of Barcelona, 08028 Barcelona, Spain;
- Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Clínic Hospital of Barcelona, 08036 Barcelona, Spain
| | - Cristina Mondelo-Garcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Margarita Poza
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
- Correspondence: (M.P.); (A.F.-F.)
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
- Correspondence: (M.P.); (A.F.-F.)
| |
Collapse
|
24
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
25
|
Luo J, Zhao Q, Li Z, Chen L. Multiple roles of apelin/APJ system in eye diseases. Peptides 2022; 152:170767. [PMID: 35181348 DOI: 10.1016/j.peptides.2022.170767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
Abstract
Apelin is an endogenous ligand of G protein-coupled receptor (APJ), and they compose apelin/APJ system. Apelin/APJ system is widely distributed in tissues and plays pleiotropic roles. Attractively, more emphasis has recently been placed on the effects of apelin/APJ system in eye diseases, such as retinopathy of prematurity (ROP), diabetic retinopathy (DR) and diabetic macular edema (DME). In this review, we elaborated the roles of apelin/APJ system in the pathophysiological processes of eye. Concretely, apelin/APJ system induces retinal gliosis and angiogenesis. Hypoxia-inducible factors (HIFs) are involved in apelin/APJ system-triggered ROP progress. Apelin/APJ system mediates DR-induced retinopathy. Apelin/APJ system maintains retinal functions and health by protecting Müller cells from apoptosis. Apelin/APJ system suppresses the NMDA-induced retinal ganglion cell (RGC) loss to protect optic nerve damage. Overall, apelin/APJ system is a potential therapeutic target for eye disease.
Collapse
Affiliation(s)
- Jingshun Luo
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Qun Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiyue Li
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
26
|
Kim SH, Jeong SH, Kim H, Park EC, Jang SY. Development of Open-Angle Glaucoma in Adults With Seropositive Rheumatoid Arthritis in Korea. JAMA Netw Open 2022; 5:e223345. [PMID: 35311960 PMCID: PMC8938713 DOI: 10.1001/jamanetworkopen.2022.3345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Although evidence is emerging that autoimmunity may be associated with neurodegeneration in glaucoma (beyond intraocular pressure-mediated damage), there is limited evidence connecting rheumatoid arthritis (RA), the most common autoimmune disease, with the risk of developing primary open-angle glaucoma (POAG). OBJECTIVE To investigate whether RA is associated with increased risk of POAG among Korean older adults. DESIGN, SETTING, AND PARTICIPANTS A nationwide propensity-matched cohort study was conducted using data from the Korean National Health Insurance Service-Senior cohort from 2002 to 2013. Data analysis was performed from November 2020 to July 2021. EXPOSURES New onset RA. MAIN OUTCOMES AND MEASURES The main outcome was development of POAG. The Kaplan-Meier method was used to calculate the cumulative incidence of POAG, and the incidence rate of POAG was estimated using a Poisson regression. A Cox proportional hazards regression model was used to investigate associations between RA and risk of POAG. RESULTS Among 10 245 participants, 7490 (73.1%) were women, and the mean (SD) age was 67.70 (4.84) years. A total of 2049 patients with incident seropositive RA and 8196 time-dependent, propensity score-matched, risk-set controls were included. POAG developed in 86 of 2049 patients with RA and 254 of 8196 matched controls. The cumulative incidence of POAG was higher in the RA cohort than in the matched controls. In the RA cohort, the incidence rate of POAG was 981.8 cases per 100 000 person years (95% CI, 794.3-1213.7 cases per 100 000 person years), whereas in the matched controls, the incidence rate was 679.5 cases per 100 000 person years (95% CI, 600.8-768.3 cases per 100 000 person years). Patients with RA were more likely to develop POAG than the matched controls (hazard ratio [HR], 1.44; 95% CI, 1.13-1.84). Increased POAG risk in the RA cohort was predominantly observed 2 years into the follow-up period (HR, 1.83; 95% CI, 1.28-2.61) and in those aged 75 years or older (HR, 2.12; 95% CI, 1.34-3.35). CONCLUSIONS AND RELEVANCE These findings suggest that RA is associated with a higher risk of developing POAG, especially within 2 years after diagnosis or among patients aged 75 years or older. There may be a common pathophysiological pathway between RA and POAG that is possibly immune mediated, and the nature of this association warrants further investigation.
Collapse
Affiliation(s)
- Seung Hoon Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
- Department of Public Health, Yonsei University Graduate School, Seoul, Republic of Korea
| | - Sung Hoon Jeong
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
| | - Hyunkyu Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun-Cheol Park
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
| | - Suk-Yong Jang
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
- Department of Healthcare Management, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Wang L, Wei X. T Cell-Mediated Autoimmunity in Glaucoma Neurodegeneration. Front Immunol 2022; 12:803485. [PMID: 34975917 PMCID: PMC8716691 DOI: 10.3389/fimmu.2021.803485] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Glaucoma as the leading neurodegenerative disease leads to blindness in 3.6 million people aged 50 years and older worldwide. For many decades, glaucoma therapy has primarily focused on controlling intraocular pressure (IOP) and sound evidence supports its role in delaying the progress of retinal ganglial cell (RGC) damage and protecting patients from vision loss. Meanwhile, accumulating data point to the immune-mediated attack of the neural retina as the underlying pathological process behind glaucoma that may come independent of raised IOP. Recently, some scholars have suggested autoimmune aspects in glaucoma, with autoreactive T cells mediating the chief pathogenic process. This autoimmune process, as well as the pathological features of glaucoma, largely overlaps with other neurodegenerative diseases in the central nervous system (CNS), including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. In addition, immune modulation therapy, which is regarded as a potential solution for glaucoma, has been boosted in trials in some CNS neurodegenerative diseases. Thus, novel insights into the T cell-mediated immunity and treatment in CNS neurodegenerative diseases may serve as valuable inspirations for ophthalmologists. This review focuses on the role of T cell-mediated immunity in the pathogenesis of glaucoma and discusses potential applications of relevant findings of CNS neurodegenerative diseases in future glaucoma research.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, Shangjin Nanfu Hospital, Chengdu, China
| |
Collapse
|
28
|
Construction and analysis of mRNA, lncRNA, and transcription factor regulatory networks after retinal ganglion cell injury. Exp Eye Res 2021; 215:108915. [PMID: 34971620 DOI: 10.1016/j.exer.2021.108915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Retinal ganglion cell (RGC) injury is a critical pathological feature of several optic neurodegenerative diseases. The regulatory mechanisms underlying RGC injury remain poorly understood. Recent evidence has highlighted the important roles of long noncoding RNAs (lncRNAs) in degenerative neuropathy but few studies have focused on lncRNAs associated with RGC injury. In this study, we analyzed dysregulated lncRNAs associated with RGC injury, their potential regulatory functions, and the molecular mechanisms underlying the regulation of lncRNAs and transcription factors (TFs). We analyzed lncRNA and mRNA profiles in the GSE142881 dataset associated with RGC injury and identified 1049 differentially expressed genes (DEGs), with 18 differentially expressed (DE) TFs among 883 DE mRNAs and 312 DE lncRNAs. The predicted DE lncRNAs and DE mRNAs were used to construct a lncRNA-mRNA co-expression network. Functional enrichment analysis was performed to explore the functions of the lncRNAs and mRNAs. The co-expression network between DE lncRNAs and DE mRNAs was highly enriched in inflammatory and immune-related pathways, indicating that they play role in the process of RGC injury. Among the DE mRNAs, we screened 18 DE TFs, including activating transcription factor 3 (ATF3), associated with RGC injury. Co-expression analysis predicted that 13 lncRNAs were potential binding targets of ATF3. The screening of the potential targets of these 13 lncRNAs showed that they were also significantly enriched in functional pathways associated with inflammation and apoptosis. After analysis, we constructed the mRNA-ATF3-lncRNA regulatory network after RGCs injury. In summary, we identified the gene module associated with immune and inflammatory responses after optic nerve injury and constructed a regulatory network of lncRNA-TF-mRNA. The results indicate that lncRNAs, by binding to TFs, can regulate downstream genes and function during RGC injury. The results provide a foundation for further studies of the mechanism of RGC injury and provide insight into the clinical diagnosis and investigation direction of neurodegenerative diseases such as traumatic optic neuropathy and glaucoma.
Collapse
|
29
|
Rodrigo MJ, Subías M, Montolío A, Méndez-Martínez S, Martínez-Rincón T, Arias L, García-Herranz D, Bravo-Osuna I, Garcia-Feijoo J, Pablo L, Cegoñino J, Herrero-Vanrell R, Carretero A, Ruberte J, Garcia-Martin E, Pérez del Palomar A. Analysis of Parainflammation in Chronic Glaucoma Using Vitreous-OCT Imaging. Biomedicines 2021; 9:biomedicines9121792. [PMID: 34944608 PMCID: PMC8698891 DOI: 10.3390/biomedicines9121792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Glaucoma causes blindness due to the progressive death of retinal ganglion cells. The immune response chronically and subclinically mediates a homeostatic role. In current clinical practice, it is impossible to analyse neuroinflammation non-invasively. However, analysis of vitreous images using optical coherence tomography detects the immune response as hyperreflective opacities. This study monitors vitreous parainflammation in two animal models of glaucoma, comparing both healthy controls and sexes over six months. Computational analysis characterizes in vivo the hyperreflective opacities, identified histologically as hyalocyte-like Iba-1+ (microglial marker) cells. Glaucomatous eyes showed greater intensity and number of vitreous opacities as well as dynamic fluctuations in the percentage of activated cells (50–250 microns2) vs. non-activated cells (10–50 microns2), isolated cells (10 microns2) and complexes (>250 microns2). Smaller opacities (isolated cells) showed the highest mean intensity (intracellular machinery), were the most rounded at earlier stages (recruitment) and showed the greatest change in orientation (motility). Study of vitreous parainflammation could be a biomarker of glaucoma onset and progression.
Collapse
Affiliation(s)
- María Jesús Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-976765558; Fax: +34-976566234
| | - Manuel Subías
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Alberto Montolío
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Silvia Méndez-Martínez
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Teresa Martínez-Rincón
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Lorena Arias
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - David García-Herranz
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
- Health Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Irene Bravo-Osuna
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Julian Garcia-Feijoo
- Department of Ophthalmology, San Carlos Clinical Hospital, UCM, 28040 Madrid, Spain;
| | - Luis Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
| | - José Cegoñino
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Rocio Herrero-Vanrell
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Ana Carretero
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.C.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesus Ruberte
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.C.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
| | - Amaya Pérez del Palomar
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
30
|
Rodrigo MJ, Garcia-Herranz D, Aragón-Navas A, Subias M, Martinez-Rincón T, Mendez-Martínez S, Cardiel MJ, García-Feijoo J, Ruberte J, Herrero-Vanrell R, Pablo L, Garcia-Martin E, Bravo-Osuna I. Long-term corticosteroid-induced chronic glaucoma model produced by intracameral injection of dexamethasone-loaded PLGA microspheres. Drug Deliv 2021; 28:2427-2446. [PMID: 34763590 PMCID: PMC8592597 DOI: 10.1080/10717544.2021.1998245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
PURPOSE To evaluate a new chronic glaucoma model produced by intracameral injection of dexamethasone-loaded poly lactic-co-glycolic acid microspheres (Dex-PLGA-Ms) over six months. METHODS Healthy rats received two injections (at baseline and Week 4) of Dex-PLGA-Ms into the anterior chamber of the right eye. Clinical signs and intraocular pressure (IOP) were weekly recorded. The structure of the retina and optic nerve was in vivo evaluated using optical coherence tomography (OCT) every two weeks and functionally using dark- and light-adapted electroretinography at 0-12-24 weeks. Histological studies were also performed. RESULTS IOP progressively increased up to hypertension (23.22 ± 3.63 mmHg) in both eyes but did so later in left eyes. OCT quantified a decrease in full-thickness retina posterior pole (R), retinal-nerve-fiber layer (RNFL), and ganglion-cell layer (GCL) thickness up to 24 weeks. Right eyes showed higher neuroretinal thickness loss up to week 8. RNFL experienced the highest percentage thickness loss at the inferior-superior axis, while in GCL the inner sectors of the horizontal axis (Nasal-Temporal) suffered the greatest decrease in thickness. Retinal ganglion cell, photoreceptor, and intermediate cell functionality decreased over time. Increased deposition of collagen IV was also found in zonular fibers and the ciliary body. CONCLUSIONS This work shows the usefulness of drug delivery systems, not to treat pathology but to induce it. Only two injections of Dex-PLGA-Ms in the anterior chamber of rat eyes were enough to progressively create ocular hypertension and subsequent functional and structural neuroretinal degeneration, at least over 6 months.
Collapse
Affiliation(s)
- M J Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - D Garcia-Herranz
- Complutense University of Madrid. Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - A Aragón-Navas
- Complutense University of Madrid. Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - M Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - T Martinez-Rincón
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - S Mendez-Martínez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), University of Zaragoza, Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - M J Cardiel
- Miguel Servet Ophthalmology Research Group (GIMSO), University of Zaragoza, Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,Department of Pathology, Lozano Blesa University Hospital, Zaragoza, Spain
| | - J García-Feijoo
- Complutense University of Madrid. Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415. National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain.,Servicio de Oftalmología, Hospital Clínico San Carlos, Madrid, Spain.,Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM), IdISSC, Madrid, Spain
| | - J Ruberte
- Animal Biotechnology and Gene Therapy Centre (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Networked Biomedical Research Centre for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Herrero-Vanrell
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Complutense University of Madrid. Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - L Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), University of Zaragoza, Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - E Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), University of Zaragoza, Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - I Bravo-Osuna
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Complutense University of Madrid. Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| |
Collapse
|
31
|
Xue W, Li JJ, Zou Y, Zou B, Wei L. Microbiota and Ocular Diseases. Front Cell Infect Microbiol 2021; 11:759333. [PMID: 34746029 PMCID: PMC8566696 DOI: 10.3389/fcimb.2021.759333] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances have identified significant associations between the composition and function of the gut microbiota and various disorders in organ systems other than the digestive tract. Utilizing next-generation sequencing and multiomics approaches, the microbial community that possibly impacts ocular disease has been identified. This review provides an overview of the literature on approaches to microbiota analysis and the roles of commensal microbes in ophthalmic diseases, including autoimmune uveitis, age-related macular degeneration, glaucoma, and other ocular disorders. In addition, this review discusses the hypothesis of the "gut-eye axis" and evaluates the therapeutic potential of targeting commensal microbiota to alleviate ocular inflammation.
Collapse
Affiliation(s)
- Wei Xue
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Yanli Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|
33
|
Liu H, Han X, Li H, Tao Q, Hu J, Liu S, Liu H, Zhou J, Li W, Yang F, Ping Q, Wei S, Liu H, Lin H, Hou D. Wettability and contact angle affect precorneal retention and pharmacodynamic behavior of microspheres. Drug Deliv 2021; 28:2011-2023. [PMID: 34569888 PMCID: PMC8480260 DOI: 10.1080/10717544.2021.1981493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In the present study, we describe the development of betaxolol hydrochloride and montmorillonite with ion exchange in a single formulation to create a novel micro-interactive dual-functioning sustained-release delivery system (MIDFDS) for the treatment of glaucoma. Betaxolol hydrochloride molecule was loaded onto the montmorillonite by ion exchange and MIDFDS formation was confirmed by XPS data. MIDFDS showed similar physicochemical properties to those of Betoptic, such as particle size, pH, osmotic pressure, and rheological properties. Nevertheless, the microdialysis and intraocular pressure test revealed better in vivo performance of MIDFDS, such as pharmacokinetics and pharmacodynamics. With regards to wettability, MIDFDS had a larger contact angle (54.66 ± 5.35°) than Betoptic (36.68 ± 1.77°), enabling the MIDFDS (2.93 s) to spread slower on the cornea than Betoptic (2.50 s). Moderate spreading behavior and oppositely charged electrostatic micro-interactions had a comprehensive influence on micro-interactions with the tear film residue, resulting in a longer precorneal retention time. Furthermore, MIDFDS had a significant sustained-release effect, with complete release near the cornea. The dual-functioning sustained-release carrier together with prolonged pre-corneal retention time (80 min) provided sufficiently high drug concentrations in the aqueous humor to achieve a more stable and long-term IOP reduction for 10 h. In addition, cytotoxicity and hemolysis tests showed that MIDFDS had better biocompatibility than Betoptic. The dual-functioning microspheres presented in this study provide the possibility for improved compliance due to low cytotoxicity and hemolysis, which suggests promising clinical implications.
Collapse
Affiliation(s)
- Hanyu Liu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinyue Han
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huamei Li
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Tao
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Jie Hu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuo Liu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaixin Liu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Zhou
- Department of English Language and Literature, University College London, London, UK
| | - Wei Li
- Guangzhou Institute For Drug Control, Guangzhou, China
| | - Fan Yang
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qineng Ping
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shijie Wei
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongmei Liu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Huaqing Lin
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongzhi Hou
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
34
|
Non-drug interventions in glaucoma: Putative roles for lifestyle, diet and nutritional supplements. Surv Ophthalmol 2021; 67:675-696. [PMID: 34563531 DOI: 10.1016/j.survophthal.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Glaucoma is a major ocular neurodegenerative disease characterized by progressive retinal ganglion cells degeneration and sight loss. Current treatment options have been limited to reducing intraocular pressure (IOP), known as the leading risk factor for this disease; however, glaucoma can develop even with low or normal IOP and progress despite controlling IOP values. Lifestyle, dietary habits, and supplementation may influence some of the risk factors and pathophysiological mechanisms underlying glaucoma development and progression; thus, the role of this complementary and alternative medicine in glaucoma has received great interest from both patients and ophthalmologists. We provide a summary of the current evidence concerning the relationship between lifestyle, dietary habits, and effects of supplements on the incidence and progression of glaucoma and their targets and associated mechanisms. The data suggest the existence of a therapeutic potential that needs to be further explored with both preclinical and rigorous clinical studies.
Collapse
|
35
|
Predisposing Factors for Severe Complications after Cataract Surgery: A Nationwide Population-Based Study. J Clin Med 2021; 10:jcm10153336. [PMID: 34362122 PMCID: PMC8347944 DOI: 10.3390/jcm10153336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/19/2022] Open
Abstract
We conducted a retrospective group study to evaluate the potential systemic risk factors for major postoperative complications of cataract surgery. Individuals diagnosed with (n = 2046) and without (n = 8184) serious complications after cataract surgery were matched 1:4 for age, sex, and index date obtained using Taiwan’s National Health Insurance Research Database. The outcome was defined as at least one new inpatient or outpatient diagnosis of systemic disease one year before the index date. The effect of demographic data on postoperative complications was also analyzed in the multivariable model. Data were analyzed using univariate and multivariate conditional logistic regression models to calculate odds ratios (ORs) and 95% confidence intervals of the risk of developing serious complications. After the entire study interval, the major postoperative complications of cataract surgery were associated with the following systemic diseases: hypertension (adjusted OR (aOR) = 2.329, p < 0.001), diabetes mellitus (aOR = 2.818, p < 0.001), hyperlipidemia (aOR = 1.702, p < 0.001), congestive heart failure (aOR = 2.891, p < 0.001), rheumatic disease (aOR = 1.965, p < 0.001), and kidney disease needing hemodialysis (aOR = 2.942, p < 0.001). Additionally, demographic data including old age, higher urbanization level, higher level of care, and more frequent inpatient department visits were associated with a higher rate of postoperative complications. In conclusion, metabolic syndrome, chronic heart failure, end-stage renal disease, rheumatic disease, older age, and frequent inpatient department visits are correlated with the development of severe postoperative complications of cataract surgery. Therefore, cataract surgery patients should be informed about a higher possibility of postoperative complications.
Collapse
|
36
|
Siafaka PI, Çağlar EŞ, Sipahi H, Charehsaz M, Aydın A, Üstündağ Okur N. Ocular microemulsion of brinzolamide: Formulation, physicochemical characterization, and in vitro irritation studies based on EpiOcular™ eye irritation assay. Pharm Dev Technol 2021; 26:765-778. [PMID: 34154503 DOI: 10.1080/10837450.2021.1944206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent years, the hydrophobic active substances have led researchers to develop new formulations to enhance bioavailability and dissolution rate; brinzolamide, a lipophilic drug belongs to carbonic anhydrase inhibitors, which cause reduction of intraocular pressure in patients suffering from glaucoma. Currently, the marketed product of brinzolamide is in the form of ocular drops; nonetheless, the conventional drops provide decreased therapeutic efficacy owing to their low bioavailability and pulsed drug release. Thus, the development of novel ocular formulations such as topical microemulsions is of high importance. In this work, the preparation of new microemulsions containing brinzolamide (0.2, 0.5 and 1% w/w) and comprised from isopropyl myristate, tween 80 and span 20 and Cremophor EL was performed. The obtained microemulsions were further characterized for their physicochemical properties. In addition, Fourier Transformed-Infrared spectroscopy was used touate the compatibility of active ingredients and components. In vitro release studies along with kinetic modeling were performed using the dialysis membrane method in simulated tear fluid. Bioadhesion studies were performed using Texture analysis. Finally, in vitro ocular irritation based on EpiOcular™ Eye Irritation Test and cytocompatibility studies was performed to examine any possible harm on ocular cells and predict in vivo safety profile.
Collapse
Affiliation(s)
- Panoraia I Siafaka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.,KES College, Nicosia, Cyprus
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Hande Sipahi
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ahmet Aydın
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
37
|
Hysa E, Cutolo CA, Gotelli E, Paolino S, Cimmino MA, Pacini G, Pizzorni C, Sulli A, Smith V, Cutolo M. Ocular microvascular damage in autoimmune rheumatic diseases: The pathophysiological role of the immune system. Autoimmun Rev 2021; 20:102796. [PMID: 33722750 DOI: 10.1016/j.autrev.2021.102796] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Pathological eye involvement represents a quite common finding in a broad spectrum of autoimmune rheumatic diseases (ARDs). Ocular signs, often occur as early manifestations in ARDs, ranging from symptoms related to the mild dry eye disease to sight-threatening pathologies, linked to the immune response against retinal and choroidal vessels. Retinovascular damage driven by markedly inflammatory reactivity need a prompt diagnosis and treatment. Immune-complexes formation, complement activation and antibody-mediated endothelial damage seem to play a key role, particularly, in microvascular damage and ocular symptoms, occurring in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and Sjögren's syndrome (SS). Conversely, early alterations of retinal and choroidal vessels in the asymptomatic patient, often detectable coincidentally, might be indicators of widespread vascular injury in other connective tissue diseases. Particularly, endothelin-induced hypoperfusion and pathological peri-choroidal extracellular matrix deposition, might be responsible for the micro-architectural alterations and loss of capillaries detected in systemic sclerosis (SSc). Instead, interferon alpha-mediated microvascular rarefaction, combined with endothelial lesions caused by specific autoantibodies and immune-complexes, appear to play a significant role in retinal vasculopathy associated to inflammatory idiopathic myopathies (IIM). The immuno-pathophysiological mechanisms of ocular microcirculatory damage associated with the major ARDs will be discussed under the light of the most recent achievements.
Collapse
Affiliation(s)
- Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Ophtalmology Clinic DiNOGMI, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Marco Amedeo Cimmino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Greta Pacini
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Vanessa Smith
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Department of Rheumatology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| |
Collapse
|
38
|
Rolle T, Ponzetto A, Malinverni L. The Role of Neuroinflammation in Glaucoma: An Update on Molecular Mechanisms and New Therapeutic Options. Front Neurol 2021; 11:612422. [PMID: 33613418 PMCID: PMC7890114 DOI: 10.3389/fneur.2020.612422] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Glaucoma is a multifactorial optic neuropathy characterized by the continuous loss of retinal ganglion cells, leading to progressive and irreversible visual impairment. In this minireview, we report the results of the most recent experimental studies concerning cells, molecular mechanisms, genes, and microbiome involved in neuroinflammation processes correlated to glaucoma neurodegeneration. The identification of cellular mechanisms and molecular pathways related to retinal ganglion cell death is the first step toward the discovery of new therapeutic strategies. Recent experimental studies identified the following possible targets: adenosine A2A receptor, sterile alpha and TIR motif containing 1 (neurofilament light chain), toll-like receptors (TLRs) 2 and 4, phosphodiesterase type 4 (PDE4), and FasL-Fas signaling (in particular ONL1204, a small peptide antagonist of Fas receptors), and therapies directed against them. The continuous progress in knowledge provides interesting data, although the total lack of human studies remains an important limitation. Further research is required to better define the role of neuroinflammation in the neurodegeneration processes that occur in glaucomatous disease and to discover neuroprotective treatments amenable to clinical trials. The hereinafter reviewed studies are reported and evaluated according to their translational relevance.
Collapse
Affiliation(s)
- Teresa Rolle
- Eye Clinic, Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Antonio Ponzetto
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Lorenza Malinverni
- Eye Clinic, Department of Surgical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
39
|
Ikonne EU, Ikpeazu VO, Ugbogu EA. The potential health benefits of dietary natural plant products in age related eye diseases. Heliyon 2020; 6:e04408. [PMID: 32685729 PMCID: PMC7355812 DOI: 10.1016/j.heliyon.2020.e04408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
In the past decade, there has been a tremendous increase in the number of cases of age-related eye diseases such as age-related macular degeneration (AMD), cataract, diabetic retinopathy and glaucoma. These diseases are the leading causes of visual impairment and blindness all over the world and are associated with many pathological risk factors such as aging, pollution, high levels of glucose (hyperglycaemia), high metabolic rates, and light exposure. These risk factors lead to the generation of uncontrollable reactive oxygen species (ROS), which causes oxidative stress. Oxidative stress plays a crucial role in the pathogenesis of age-related eye diseases through the activation of nuclear factor kappa B (NF-κB), vascular endothelial growth factor (VEGF), and lipid peroxidation, which leads to the production of inflammatory cytokines, angiogenesis, protein and DNA damages, apoptosis that causes macular degeneration (AMD), cataract, diabetic retinopathy and glaucoma. This review provides updated information on the beneficial effects of dietary natural plant products (DPNPs) against age-related eye diseases. In this review, supplementation of DPNPs demonstrated preventive and therapeutic effects on people at risk of or with age-related eye diseases due to their capacity to scavenge free radicals, ameliorate inflammatory molecules, neutralize the oxidation reaction that occurs in photoreceptor cells, decrease vascular endothelial growth factor and the blood-retinal barrier and increase the antioxidant defence system. However, further experiments and clinical trials are required to establish the daily doses of DPNPs that will safely and effectively prevent age-related eye diseases.
Collapse
Affiliation(s)
| | - Victor Okezie Ikpeazu
- Department of Biochemistry, Abia State University, P.M.B 2000, Uturu, Abia State, Nigeria
| | - Eziuche Amadike Ugbogu
- Department of Biochemistry, Abia State University, P.M.B 2000, Uturu, Abia State, Nigeria
| |
Collapse
|
40
|
Durak S, Esmaeili Rad M, Alp Yetisgin A, Eda Sutova H, Kutlu O, Cetinel S, Zarrabi A. Niosomal Drug Delivery Systems for Ocular Disease-Recent Advances and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1191. [PMID: 32570885 PMCID: PMC7353242 DOI: 10.3390/nano10061191] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
The eye is a complex organ consisting of several protective barriers and particular defense mechanisms. Since this organ is exposed to various infections, genetic disorders, and visual impairments it is essential to provide necessary drugs through the appropriate delivery routes and vehicles. The topical route of administration, as the most commonly used approach, maybe inefficient due to low drug bioavailability. New generation safe, effective, and targeted drug delivery systems based on nanocarriers have the capability to circumvent limitations associated with the complex anatomy of the eye. Nanotechnology, through various nanoparticles like niosomes, liposomes, micelles, dendrimers, and different polymeric vesicles play an active role in ophthalmology and ocular drug delivery systems. Niosomes, which are nano-vesicles composed of non-ionic surfactants, are emerging nanocarriers in drug delivery applications due to their solution/storage stability and cost-effectiveness. Additionally, they are biocompatible, biodegradable, flexible in structure, and suitable for loading both hydrophobic and hydrophilic drugs. These characteristics make niosomes promising nanocarriers in the treatment of ocular diseases. Hereby, we review niosome based drug delivery approaches in ophthalmology starting with different preparation methods of niosomes, drug loading/release mechanisms, characterization techniques of niosome nanocarriers and eventually successful applications in the treatment of ocular disorders.
Collapse
Affiliation(s)
- Saliha Durak
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Monireh Esmaeili Rad
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Hande Eda Sutova
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|