1
|
Masui N, Agathokleous E, Tani A, Matsuura H, Koike T. Plant-insect communication in urban forests: Similarities of plant volatile compositions among tree species (host vs. non-host trees) for alder leaf beetle Agelastica coerulea. ENVIRONMENTAL RESEARCH 2022; 204:111996. [PMID: 34480944 DOI: 10.1016/j.envres.2021.111996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 05/22/2023]
Abstract
Behavior of insects, such as pollination and grazing, is usually determined by biogenic volatile organic compounds (BVOCs). However, particularly in O3-polluted urban forests, the BVOCs-based plant-insect communication can be disrupted by the reaction of O3 with leaf-emitted BVOCs, such as between Japanese white birch (Betula platyphylla var. japonica) and a leaf beetle (Agelastica coerulea). To understand plant-insect communication in O3-polluted environments, it is necessary to identify chemical species of BVOCs that contribute to attractiveness toward insects but are diminished by elevated O3. In this study, we conducted olfactory response tests and gas chromatography mass spectrometry (GC-MS) analyses to clarify whether there is a similarity of BVOC components among Betulaceae host trees that can explain the attraction of the stenophagous insect A. coerulea. The olfactory response tests indicated that Betulaceae host trees attract A. coerulea via leaf-emitted BVOCs, while there was no preference of the leaf beetles to non-host trees (Sorbus commixta and Morus bombycis). However, GC-MS analyses indicated that the composition of BVOC blends considerably differed among Betulaceae host trees, although alders (Alnus hirsuta and A. japonica) had a similar composition of BVOC blend in each season (June and September) during which the adult leaf beetle is active. A distinct characteristic of the emission from B. platyphylla was that 2-carene and limonene, which are O3-reactive species, were emitted with a high monoterpene ratio irrespective of the season. Thus, these volatiles and the blend could be expected to lead the disrupted communication found between B. platyphylla and A. coerulea under elevated O3 in previous field studies. In addition, our results indicated that A. coerulea is attracted to more than one blend within Betulaceae host trees, suggesting that grazing damages can be affected by different host preferences and O3 reactivity with specific BVOCs in the field. BVOCs-based plant-insect interactions should be further studied in multi-species communities to better understand plant-insect communication in O3-polluted environments.
Collapse
Affiliation(s)
- Noboru Masui
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 0608589, Japan.
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, People's Republic of China.
| | - Akira Tani
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 4228526, Japan.
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 0608589, Japan.
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 0608589, Japan.
| |
Collapse
|
2
|
Ueno AC, Gundel PE, Molina-Montenegro MA, Ramos P, Ghersa CM, Martínez-Ghersa MA. Getting ready for the ozone battle: Vertically transmitted fungal endophytes have transgenerational positive effects in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2716-2728. [PMID: 33721328 DOI: 10.1111/pce.14047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Ground-level ozone is a global air pollutant with high toxicity and represents a threat to plants and microorganisms. Although beneficial microorganisms can improve host performance, their role in connecting environmentally induced maternal plant phenotypes to progeny (transgenerational effects [TGE]) is unknown. We evaluated fungal endophyte-mediated consequences of maternal plant exposure to ozone on performance of the progeny under contrasting scenarios of the same factor (high and low) at two stages: seedling and young plant. With no variation in biomass, maternal ozone-induced oxidative damage in the progeny that was lower in endophyte-symbiotic plants. This correlated with an endophyte-mediated higher concentration of proline, a defence compound associated with stress control. Interestingly, ozone-induced TGE was not associated with reductions in plant survival. On the contrary, there was an overall positive effect on seedling survival in the presence of endophytes. The positive effect of maternal ozone increasing young plant survival was irrespective of symbiosis and only expressed under high ozone condition. Our study shows that hereditary microorganisms can modulate the capacity of plants to transgenerationally adjust progeny phenotype to atmospheric change.
Collapse
Affiliation(s)
- Andrea C Ueno
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Pedro E Gundel
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Marco A Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile
- Centro de Investigación y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Núcleo Científico Multidisciplinario-DI, Universidad de Talca, Talca, Chile
| | - Claudio M Ghersa
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | |
Collapse
|
3
|
Maternal Exposure to Ozone Modulates the Endophyte-Conferred Resistance to Aphids in Lolium multiflorum Plants. INSECTS 2020; 11:insects11090548. [PMID: 32824905 PMCID: PMC7564161 DOI: 10.3390/insects11090548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/29/2023]
Abstract
Plants are challenged by biotic and abiotic stress factors and the incidence of one can increase or decrease resistance to another. These relations can also occur transgenerationally. For instance, progeny plants whose mothers experienced herbivory can be more resistant to herbivores. Certain fungal endophytes that are vertically transmitted endow plants with alkaloids and resistance to herbivores. However, endophyte-symbiotic plants exposed to the oxidative agent ozone became susceptible to aphids. Here, we explored whether this effect persists transgenerationally. We exposed Lolium multiflorum plants with and without fungal endophyte Epichloë occultans to ozone (120 or 0 ppb), and then, challenged the progeny with aphids (Rhopalosiphum padi). The endophyte was the main factor determining the resistance to aphids, but its importance diminished in plants with ozone history. This negative ozone effect on the endophyte-mediated resistance was apparent on aphid individual weights. Phenolic compounds in seeds were increased by the symbiosis and diminished by the ozone. The endophyte effect on phenolics vanished in progeny plants while the negative ozone effect persisted. Independently of ozone, the symbiosis increased the plant biomass (≈24%). Although ozone can diminish the importance of endophyte symbiosis for plant resistance to herbivores, it would be compensated by host growth stimulation.
Collapse
|
4
|
Telesnicki MC, Martínez-Ghersa MA, Ghersa CM. Plant oxidative status under ozone pollution as predictor for aphid population growth: The case of Metopolophium dirhodum (Hemiptera: Aphididae) in Triticum aestivum (Poales: Poaceae). BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Foyer CH, Rasool B, Davey JW, Hancock RD. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2025-37. [PMID: 26936830 DOI: 10.1093/jxb/erw079] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Brwa Rasool
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Jack W Davey
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
6
|
Ueno AC, Gundel PE, Omacini M, Ghersa CM, Bush LP, Martínez‐Ghersa MA. Mutualism effectiveness of a fungal endophyte in an annual grass is impaired by ozone. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12519] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea C. Ueno
- Facultad de Agronomía (UBA) IFEVA‐CONICET, Cátedra de Ecología Av. San Martín 4453 Buenos Aires 1417 CP Argentina
| | - Pedro E. Gundel
- Facultad de Agronomía (UBA) IFEVA‐CONICET, Cátedra de Ecología Av. San Martín 4453 Buenos Aires 1417 CP Argentina
| | - Marina Omacini
- Facultad de Agronomía (UBA) IFEVA‐CONICET, Cátedra de Ecología Av. San Martín 4453 Buenos Aires 1417 CP Argentina
| | - Claudio M. Ghersa
- Facultad de Agronomía (UBA) IFEVA‐CONICET, Cátedra de Ecología Av. San Martín 4453 Buenos Aires 1417 CP Argentina
| | - Lowell P. Bush
- Department of Plant & Soil Sciences University of Kentucky Lexington KY 40546‐0091 USA
| | | |
Collapse
|
7
|
Ode PJ, Johnson SN, Moore BD. Atmospheric change and induced plant secondary metabolites - are we reshaping the building blocks of multi-trophic interactions? CURRENT OPINION IN INSECT SCIENCE 2014; 5:57-65. [PMID: 32846743 DOI: 10.1016/j.cois.2014.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/10/2014] [Indexed: 06/11/2023]
Abstract
At least for the foreseeable future, atmospheric concentrations of greenhouse gases - particularly carbon dioxide (CO2) and ozone (O3) - are projected to rise inexorably. Recent studies have begun to unveil the complex nature of how these gases modulate the expression of plant signaling hormones, the defensive chemistries produced, and the responses of the myriad trophic interactions involving plant pathogens as well as insect herbivores and their natural enemies. Given the ubiquity of complex trophic interactions in both natural and managed systems, it is crucial that we understand how CO2 and O3 interact with defense signaling hormones of plants and their consequences for their trophic associates if we are to adapt to, and even mitigate, the effects of climate change.
Collapse
Affiliation(s)
- Paul J Ode
- Bioagricultural Sciences & Pest Management and The Graduate Degree Program in Ecology, Colorado State University, CO, USA.
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, University of Western Sydney, NSW, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, University of Western Sydney, NSW, Australia
| |
Collapse
|
8
|
Souza SR, Blande JD, Holopainen JK. Pre-exposure to nitric oxide modulates the effect of ozone on oxidative defenses and volatile emissions in lima bean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 179:111-119. [PMID: 23669460 DOI: 10.1016/j.envpol.2013.03.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
The roles that ozone and nitric oxide (NO), the chief O₃ precursor, play in the antioxidative balance and inducible volatile emissions of lima bean were assessed. Exposure to O₃ inhibited APX, CAT, and GR, decreased GSH content and induced emissions of (E)-β-ocimene, limonene, 1,8-cineole, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (E)-DMNT, 2-butanone and nonanal. O₃ did not induce emissions of (E)-β-caryophyllene and appeared to reduce the antioxidative capacity of plants to a greater extent than NO and NO followed by O₃ (NO/O₃) treatments. There were significant differences in emissions of (E)-β-ocimene and linalool between NO/O₃ treated plants and controls, but no differences in antioxidant concentrations. A model to explain the relationships between the ascorbate-glutathione cycle and O₃ and NO inducible volatiles was proposed. Our findings suggest that prior exposure to NO modulates the oxidative effect of ozone by the process of cross-tolerance, which might regulate the antioxidative system and induction of volatile organic compounds.
Collapse
Affiliation(s)
- Silvia R Souza
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | |
Collapse
|