1
|
De Giorgi F, Roscher C, Durka W. Effects of species diversity on trait expression of the clonal herb Taraxacum officinale and its relation to genotype diversity and phenotypic plasticity. Ecol Evol 2024; 14:e11430. [PMID: 38766311 PMCID: PMC11099733 DOI: 10.1002/ece3.11430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Plant species respond to varying plant species diversity and associated changes in their abiotic and biotic environment with changes in their phenotype. However, it is not clear to what degree this phenotypic differentiation is due to genotype diversity within populations or phenotypic plasticity of plant individuals. We studied individuals of 16 populations of the clonal herb Taraxacum officinale grown in plant communities of different species richness in a 17-year-old grassland biodiversity experiment (Jena Experiment). We collected 12 individuals in each population to measure phenotypic traits and identify distinct genotypes using microsatellite DNA markers. Plant species richness did not influence population-level genotype and trait diversity. However, it affected the expression of several phenotypic traits, e.g. leaf and inflorescence number, maximum leaf length and seed mass, which increased with increasing plant species richness. Moreover, population-level trait diversity correlated positively with genotype richness for leaf dry matter content (LDMC) and negatively with inflorescence number. For several traits (i.e. seed mass, germination rate, LDMC, specific leaf area (SLA)), a larger portion of variance was explained by genotype identity, while variance in other traits (i.e. number of inflorescences, leaf nitrogen concentration, leaf number, leaf length) resided within genotypes and thus was mostly due to phenotypic plasticity. Overall, our findings show that plant species richness positively affected the population means of some traits related to whole-plant performance, whose variation was achieved through both phenotypic plasticity and genotype composition of a population.
Collapse
Affiliation(s)
- Francesca De Giorgi
- Department of Physiological DiversityHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Christiane Roscher
- Department of Physiological DiversityHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Community EcologyHelmholtz Centre for Environmental Research – UFZHalleGermany
| |
Collapse
|
2
|
Dietrich P, Schumacher J, Eisenhauer N, Roscher C. Eco-evolutionary dynamics modulate plant responses to global change depending on plant diversity and species identity. eLife 2022; 11:74054. [PMID: 35353037 PMCID: PMC9110027 DOI: 10.7554/elife.74054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Global change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to diversity loss and how this affects their responses to global change. Here, we performed a common garden experiment testing whether plant responses to global change are influenced by their selection history and the conditioning history of soil at different plant diversity levels. Using seeds of four grass species and soil samples from a 14-year-old biodiversity experiment, we grew the offspring of the plants either in their own soil or in soil of a different community, and exposed them either to drought, increased nitrogen input, or a combination of both. Under nitrogen addition, offspring of plants selected at high diversity produced more biomass than those selected at low diversity, while drought neutralized differences in biomass production. Moreover, under the influence of global change drivers, soil history, and to a lesser extent plant history, had species-specific effects on trait expression. Our results show that plant diversity modulates plant-soil interactions and growth strategies of plants, which in turn affects plant eco-evolutionary pathways. How this change affects species' response to global change and whether this can cause a feedback loop should be investigated in more detail in future studies. Over the last hundred years, human activities including burning of fossil fuels, clearing of forests, and fertilizer use have caused environmental changes that have resulted in many species of plants, animals and other forms of life becoming extinct. Loss of plant species can change the local environment by, for example, altering the availability of nutrients and local communities of microbes in the soil. This may, in turn, cause remaining plant species to develop differently: they may take up fewer resources or become more prone to pathogens, both of which may alter their physical appearance. However, little is known about whether this happens and, if so, how rapidly such changes occur. Since 2002, researchers in Germany have been running a long-term project known as the Jena Experiment to study how plants behave when they grow in communities with different numbers of other plant species. For the experiment, various species of grass and other plants commonly found in grasslands were grown together in different combinations. Some plots contained many species (referred to as “high diversity”) and others contained only a few (“low diversity”). Here, Dietrich et al. collected seeds from four grasses grown for 12 years in Jena Experiment plots with two or six plant species. The seeds were then transferred to pots and grown in a greenhouse using soil either from the plot where the seeds originated or from another plot with a different diversity level. To simulate human-made changes in the environment, the team added nitrogen fertilizer or decreased how much they watered some of the plants. The greenhouse experiment showed that after receiving nitrogen fertilizer, the seeds from the high diversity Jena Experiment plots grew into larger plants than the seeds from the low diversity plots. But there was no difference in size when the plants were watered less. Moreover, both fertilizer and watering treatment had different effects on the plants’ physical appearance (root and leaf architecture) depending on the soil in which they were growing in. The findings of Dietrich et al. suggest that plants may respond differently to changes in their environment based on their origins and the soil they are growing in. This study provides the first indication that species loss could accelerate a further loss of species due to changes in how the plants develop and the communities of organisms living in the soil.
Collapse
Affiliation(s)
- Peter Dietrich
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jens Schumacher
- Institute of Mathematics, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Eisenhauer
- Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig,, Leipzig, Germany
| | - Christiane Roscher
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
3
|
Dietrich P, Eisenhauer N, Otto P, Roscher C. Plant history and soil history jointly influence the selection environment for plant species in a long-term grassland biodiversity experiment. Ecol Evol 2021; 11:8156-8169. [PMID: 34188877 PMCID: PMC8216899 DOI: 10.1002/ece3.7647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/08/2022] Open
Abstract
Long-term biodiversity experiments have shown increasing strengths of biodiversity effects on plant productivity over time. However, little is known about rapid evolutionary processes in response to plant community diversity, which could contribute to explaining the strengthening positive relationship. To address this issue, we performed a transplant experiment with offspring of seeds collected from four grass species in a 14-year-old biodiversity experiment (Jena Experiment). We used two- and six-species communities and removed the vegetation of the study plots to exclude plant-plant interactions. In a reciprocal design, we transplanted five "home" phytometers (same origin and actual environment), five "away-same" phytometers (same species richness of origin and actual environment, but different plant composition), and five "away-different" phytometers (different species richness of origin and actual environment) of the same species in the study plots. In the establishment year, plants transplanted in home soil produced more shoots than plants in away soil indicating that plant populations at low and high diversity developed differently over time depending on their associated soil community and/or conditions. In the second year, offspring of individuals selected at high diversity generally had a higher performance (biomass production and fitness) than offspring of individuals selected at low diversity, regardless of the transplant environment. This suggests that plants at low and high diversity showed rapid evolutionary responses measurable in their phenotype. Our findings provide first empirical evidence that loss of productivity at low diversity is not only caused by changes in abiotic and biotic conditions but also that plants respond to this by a change in their micro-evolution. Thus, we conclude that eco-evolutionary feedbacks of plants at low and high diversity are critical to fully understand why the positive influence of diversity on plant productivity is strengthening through time.
Collapse
Affiliation(s)
- Peter Dietrich
- Department of Physiological DiversityUFZHelmholtz Centre for Environmental ResearchLeipzigGermany
- German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Experimental Interaction EcologyInstitute of BiologyLeipzig UniversityLeipzigGermany
| | - Peter Otto
- Institute of BiologyHerbarium Universitatis Lipsiensis (LZ)Leipzig UniversityLeipzigGermany
| | - Christiane Roscher
- Department of Physiological DiversityUFZHelmholtz Centre for Environmental ResearchLeipzigGermany
- German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
4
|
Eisenhauer N, Bonkowski M, Brose U, Buscot F, Durka W, Ebeling A, Fischer M, Gleixner G, Heintz-Buschart A, Hines J, Jesch A, Lange M, Meyer S, Roscher C, Scheu S, Schielzeth H, Schloter M, Schulz S, Unsicker S, van Dam N, Weigelt A, Weisser W, Wirth C, Wolf J, Schmid B. Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. RESEARCH IDEAS AND OUTCOMES 2019. [DOI: 10.3897/rio.5.e47042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The functioning and service provisioning of ecosystems in the face of anthropogenic environmental and biodiversity change is a cornerstone of ecological research. The last three decades of biodiversity–ecosystem functioning (BEF) research have provided compelling evidence for the significant positive role of biodiversity in the functioning of many ecosystems. Despite broad consensus of this relationship, the underlying ecological and evolutionary mechanisms have not been well understood. This complicates the transition from a description of patterns to a predictive science. The proposed Research Unit aims at filling this gap of knowledge by applying novel experimental and analytical approaches in one of the longest-running biodiversity experiments in the world: the Jena Experiment. The central aim of the Research Unit is to uncover the mechanisms that determine BEF relationships in the short- and in the long-term. Increasing BEF relationships with time in long-term experiments do not only call for a paradigm shift in the appreciation of the relevance of biodiversity change, they likely are key to understanding the mechanisms of BEF relationships in general. The subprojects of the proposed Research Unit fall into two tightly linked main categories with two research areas each that aim at exploring variation in community assembly processes and resulting differences in biotic interactions as determinants of the long-term BEF relationship. Subprojects under “Microbial community assembly” and “Assembly and functions of animal communities” mostly focus on plant diversity effects on the assembly of communities and their feedback effects on biotic interactions and ecosystem functions. Subprojects under “Mediators of plant-biotic interactions” and “Intraspecific diversity and micro-evolutionary changes” mostly focus on plant diversity effects on plant trait expression and micro-evolutionary adaptation, and subsequent feedback effects on biotic interactions and ecosystem functions. This unification of evolutionary and ecosystem processes requires collaboration across the proposed subprojects in targeted plant and soil history experiments using cutting-edge technology and will produce significant synergies and novel mechanistic insights into BEF relationships. The Research Unit of the Jena Experiment is uniquely positioned in this context by taking an interdisciplinary and integrative approach to capture whole-ecosystem responses to changes in biodiversity and to advance a vibrant research field.
Collapse
|
5
|
van Moorsel SJ, Schmid MW, Wagemaker NCAM, van Gurp T, Schmid B, Vergeer P. Evidence for rapid evolution in a grassland biodiversity experiment. Mol Ecol 2019; 28:4097-4117. [PMID: 31336411 DOI: 10.1111/mec.15191] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
In long-term grassland experiments, positive biodiversity effects on plant productivity commonly increase with time. Subsequent glasshouse experiments showed that these strengthened positive biodiversity effects persist not only in the local environment but also when plants are transferred into a common environment. Thus, we hypothesized that community diversity had acted as a selective agent, resulting in the emergence of plant monoculture and mixture types with differing genetic composition. To test our hypothesis, we grew offspring from plants that were grown for eleven years in monoculture or mixture environments in a biodiversity experiment (Jena Experiment) under controlled glasshouse conditions in monocultures or two-species mixtures. We used epiGBS, a genotyping-by-sequencing approach combined with bisulphite conversion, to provide integrative genetic and epigenetic (i.e., DNA methylation) data. We observed significant divergence in genetic and DNA methylation data according to selection history in three out of five perennial grassland species, namely Galium mollugo, Prunella vulgaris and Veronica chamaedrys, with DNA methylation differences mostly reflecting the genetic differences. In addition, current diversity levels in the glasshouse had weak effects on epigenetic variation. However, given the limited genome coverage of the reference-free bisulphite method epiGBS, it remains unclear how much of the differences in DNA methylation was independent of underlying genetic differences. Our results thus suggest that selection of genetic variants, and possibly epigenetic variants, caused the rapid emergence of monoculture and mixture types within plant species in the Jena Experiment.
Collapse
Affiliation(s)
- Sofia J van Moorsel
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
| | - Marc W Schmid
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland.,MWSchmid GmbH, Zürich, Switzerland
| | - Niels C A M Wagemaker
- Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland.,Department of Geography, University of Zürich, Zürich, Switzerland
| | - Philippine Vergeer
- Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.,Department of Environmental Sciences, Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Chacón‐Labella J, García Palacios P, Matesanz S, Schöb C, Milla R. Plant domestication disrupts biodiversity effects across major crop types. Ecol Lett 2019; 22:1472-1482. [PMID: 31270929 PMCID: PMC7163516 DOI: 10.1111/ele.13336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/08/2019] [Accepted: 06/12/2019] [Indexed: 01/20/2023]
Abstract
Plant diversity fosters productivity in natural ecosystems. Biodiversity effects might increase agricultural yields at no cost in additional inputs. However, the effects of diversity on crop assemblages are inconsistent, probably because crops and wild plants differ in a range of traits relevant to plant-plant interactions. We tested whether domestication has changed the potential of crop mixtures to over-yield by comparing the performance and traits of major crop species and those of their wild progenitors under varying levels of diversity. We found stronger biodiversity effects in mixtures of wild progenitors, due to larger selection effects. Variation in selection effects was partly explained by within-mixture differences in leaf size. Our results indicate that domestication might disrupt the ability of crops to benefit from diverse neighbourhoods via reduced trait variance. These results highlight potential limitations of current crop mixtures to over-yield and the potential of breeding to re-establish variance and increase mixture performance.
Collapse
Affiliation(s)
- Julia Chacón‐Labella
- Universidad Rey Juan Carlos. C/ Tulipán s/n. Móstoles C.P. 28933MadridSpain
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology, ETH Zürich8092ZürichSwitzerland
- Department of Environment and AgronomyINIA, Avda. A Coruña km 7.5, C.P. 28040MadridSpain
| | | | - Silvia Matesanz
- Universidad Rey Juan Carlos. C/ Tulipán s/n. Móstoles C.P. 28933MadridSpain
| | - Christian Schöb
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology, ETH Zürich8092ZürichSwitzerland
| | - Rubén Milla
- Universidad Rey Juan Carlos. C/ Tulipán s/n. Móstoles C.P. 28933MadridSpain
| |
Collapse
|
7
|
Eisenhauer N, Schielzeth H, Barnes AD, Barry K, Bonn A, Brose U, Bruelheide H, Buchmann N, Buscot F, Ebeling A, Ferlian O, Freschet GT, Giling DP, Hättenschwiler S, Hillebrand H, Hines J, Isbell F, Koller-France E, König-Ries B, de Kroon H, Meyer ST, Milcu A, Müller J, Nock CA, Petermann JS, Roscher C, Scherber C, Scherer-Lorenzen M, Schmid B, Schnitzer SA, Schuldt A, Tscharntke T, Türke M, van Dam NM, van der Plas F, Vogel A, Wagg C, Wardle DA, Weigelt A, Weisser WW, Wirth C, Jochum M. A multitrophic perspective on biodiversity-ecosystem functioning research. ADV ECOL RES 2019; 61:1-54. [PMID: 31908360 PMCID: PMC6944504 DOI: 10.1016/bs.aecr.2019.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Concern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon. In this paper, we argue that a multitrophic perspective of biotic interactions in random and non-random biodiversity change scenarios is key to advance future BEF research and to address some of its most important remaining challenges. We discuss that the study and the quantification of multitrophic interactions in space and time facilitates scaling up from small-scale biodiversity manipulations and ecosystem function assessments to management-relevant spatial scales across ecosystem boundaries. We specifically consider multitrophic conceptual frameworks to understand and predict the context-dependency of BEF relationships. Moreover, we highlight the importance of the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that FAIR data (meeting the standards of findability, accessibility, interoperability, and reusability) and reproducible processing will be key to advance this field of research by making it more integrative. Finally, we show how these BEF insights may be implemented for ecosystem management, society, and policy. Given that human well-being critically depends on the multiple services provided by diverse, multitrophic communities, integrating the approaches of evolutionary ecology, community ecology, and ecosystem ecology in future BEF research will be key to refine conservation targets and develop sustainable management strategies.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Holger Schielzeth
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Andrew D Barnes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Kathryn Barry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- EcoNetLab, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitätstr. 2, 8092 Zurich, Switzerland
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Soil Ecology Department, Theodor-Lieser-Straße 4, 06120 Halle Saale, Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Grégoire T Freschet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Darren P Giling
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Stephan Hättenschwiler
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Helmut Hillebrand
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute for Chemistry and Biology of Marine Environments [ICBM], Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | - Eva Koller-France
- Karlsruher Institut für Technologie (KIT), Institut für Geographie und Geoökologie, Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany
| | - Birgitta König-Ries
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Computer Science, Friedrich Schiller Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Hans de Kroon
- Radboud University, Institute for Water and Wetland Research, Animal Ecology and Physiology & Experimental Plant Ecology, PO Box 9100, 6500 GL Nijmegen, The Netherlands
| | - Sebastian T Meyer
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Alexandru Milcu
- Ecotron Européen de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Service 3248, Campus Baillarguet, Montferrier-sur-Lez, France
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, Freyunger Str. 2, 94481 Grafenau, Germany
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
- Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Canada, T6G 2H1
| | - Jana S Petermann
- Department of Biosciences, University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Department Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Christoph Scherber
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
| | - Michael Scherer-Lorenzen
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | | | - Andreas Schuldt
- Forest Nature Conservation, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Buesgenweg 3, 37077 Goettingen, Germany
| | - Teja Tscharntke
- Agroecology, Dept. of Crop Sciences, University of Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Germany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München (HMGU) - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Fons van der Plas
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Anja Vogel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Cameron Wagg
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, E3B 8B7, Fredericton, Canada
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | - David A Wardle
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
8
|
Roeder A, Schweingruber FH, Fischer M, Roscher C. Increasing plant diversity of experimental grasslands alters the age and growth of
Plantago lanceolata
from younger and faster to older and slower. OIKOS 2019. [DOI: 10.1111/oik.05739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Roeder
- UFZ, Helmholtz Centre for Environmental Research, Physiological Diversity, Permoserstrasse 15 DE‐04318 Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig, Deutscher Platz 5e DE‐04103 Leipzig Germany
| | | | - Markus Fischer
- Inst. of Plant Sciences, Plant Ecology, Univ. of Bern Bern Switzerland
| | - Christiane Roscher
- UFZ, Helmholtz Centre for Environmental Research, Physiological Diversity, Permoserstrasse 15 DE‐04318 Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig, Deutscher Platz 5e DE‐04103 Leipzig Germany
| |
Collapse
|
9
|
Miedema LJ, Capmourteres V, Anand M. Impact of land composition and configuration on the functional trait assembly of forest communities in southern Ontario. Ecosphere 2019. [DOI: 10.1002/ecs2.2633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Liane J. Miedema
- School of Environmental Sciences University of Guelph 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Virginia Capmourteres
- School of Environmental Sciences University of Guelph 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Madhur Anand
- School of Environmental Sciences University of Guelph 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
10
|
Vogel A, Ebeling A, Gleixner G, Roscher C, Scheu S, Ciobanu M, Koller-France E, Lange M, Lochner A, Meyer ST, Oelmann Y, Wilcke W, Schmid B, Eisenhauer N. A new experimental approach to test why biodiversity effects strengthen as ecosystems age. ADV ECOL RES 2019. [DOI: 10.1016/bs.aecr.2019.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2017.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
van Moorsel SJ, Hahl T, Wagg C, De Deyn GB, Flynn DFB, Zuppinger-Dingley D, Schmid B. Community evolution increases plant productivity at low diversity. Ecol Lett 2017; 21:128-137. [PMID: 29148170 DOI: 10.1111/ele.12879] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/13/2017] [Accepted: 10/16/2017] [Indexed: 12/24/2022]
Abstract
Species extinctions from local communities negatively affect ecosystem functioning. Ecological mechanisms underlying these impacts are well studied, but the role of evolutionary processes is rarely assessed. Using a long-term field experiment, we tested whether natural selection in plant communities increased biodiversity effects on productivity. We re-assembled communities with 8-year co-selection history adjacent to communities with identical species composition but no history of co-selection ('naïve communities'). Monocultures, and in particular mixtures of two to four co-selected species, were more productive than their corresponding naïve communities over 4 years in soils with or without co-selected microbial communities. At the highest diversity level of eight plant species, no such differences were observed. Our findings suggest that plant community evolution can lead to rapid increases in ecosystem functioning at low diversity but may take longer at high diversity. This effect was not modified by treatments simulating co-evolutionary processes between plants and soil organisms.
Collapse
Affiliation(s)
- Sofia J van Moorsel
- URPP Global Change and Biodiversity and Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Terhi Hahl
- URPP Global Change and Biodiversity and Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Cameron Wagg
- URPP Global Change and Biodiversity and Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Gerlinde B De Deyn
- Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 4, 6708, PB Wageningen, The Netherlands
| | - Dan F B Flynn
- URPP Global Change and Biodiversity and Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Debra Zuppinger-Dingley
- URPP Global Change and Biodiversity and Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Bernhard Schmid
- URPP Global Change and Biodiversity and Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
13
|
Weisser WW, Roscher C, Meyer ST, Ebeling A, Luo G, Allan E, Beßler H, Barnard RL, Buchmann N, Buscot F, Engels C, Fischer C, Fischer M, Gessler A, Gleixner G, Halle S, Hildebrandt A, Hillebrand H, de Kroon H, Lange M, Leimer S, Le Roux X, Milcu A, Mommer L, Niklaus PA, Oelmann Y, Proulx R, Roy J, Scherber C, Scherer-Lorenzen M, Scheu S, Tscharntke T, Wachendorf M, Wagg C, Weigelt A, Wilcke W, Wirth C, Schulze ED, Schmid B, Eisenhauer N. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic Appl Ecol 2017. [DOI: 10.1016/j.baae.2017.06.002] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Meyer ST, Scheithe L, Hertzog L, Ebeling A, Wagg C, Roscher C, Weisser WW. Consistent increase in herbivory along two experimental plant diversity gradients over multiple years. Ecosphere 2017. [DOI: 10.1002/ecs2.1876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Sebastian T. Meyer
- Terrestrial Ecology Research Group; Department of Ecology and Ecosystem Management; School of Life Sciences Weihenstephan; Technical University of Munich; Hans-Carl-von-Carlowitz-Platz 2 85354 Freising Germany
| | - Lukas Scheithe
- Terrestrial Ecology Research Group; Department of Ecology and Ecosystem Management; School of Life Sciences Weihenstephan; Technical University of Munich; Hans-Carl-von-Carlowitz-Platz 2 85354 Freising Germany
| | - Lionel Hertzog
- Terrestrial Ecology Research Group; Department of Ecology and Ecosystem Management; School of Life Sciences Weihenstephan; Technical University of Munich; Hans-Carl-von-Carlowitz-Platz 2 85354 Freising Germany
| | - Anne Ebeling
- Institute of Ecology; University of Jena; Dornburger Street 159 07743 Jena Germany
| | - Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstr. 190 8057 Zurich Switzerland
| | - Christiane Roscher
- Physiological Diversity; Helmholtz Centre for Environmental Research - UFZ; Permoserstraße 15 04318 Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e 04103 Leipzig Germany
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group; Department of Ecology and Ecosystem Management; School of Life Sciences Weihenstephan; Technical University of Munich; Hans-Carl-von-Carlowitz-Platz 2 85354 Freising Germany
| |
Collapse
|
15
|
Abakumova M, Zobel K, Lepik A, Semchenko M. Plasticity in plant functional traits is shaped by variability in neighbourhood species composition. THE NEW PHYTOLOGIST 2016; 211:455-63. [PMID: 26996338 DOI: 10.1111/nph.13935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/15/2016] [Indexed: 05/08/2023]
Abstract
Plant functional traits can vary widely as a result of phenotypic plasticity to abiotic conditions. Trait variation may also reflect responses to the identity of neighbours, although not all species are equally responsive to their biotic surroundings. We hypothesized that responses to neighbours are shaped by spatial community patterns and resulting variability in neighbour composition. More precisely, we tested the theoretical prediction that plasticity is most likely to evolve if alternative environments (in this case, different neighbour species) are common and encountered at similar frequencies. We estimated the frequencies of encountering different neighbour species in the field for 27 grassland species and measured the aboveground morphological responses of each species to conspecific vs heterospecific neighbours in a common garden. Responses to neighbour identity were dependent on how frequently the experimental neighbours were encountered by the focal species in their home community, with the greatest plasticity observed in species that encountered both neighbours (conspecific and heterospecific) with high and even frequency. Biotic interactions with neighbouring species can impose selection on plasticity in functional traits, which may feed back through trait divergence and niche differentiation to influence species coexistence and community structure.
Collapse
Affiliation(s)
- Maria Abakumova
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005, Tartu, Estonia
| | - Kristjan Zobel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005, Tartu, Estonia
| | - Anu Lepik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005, Tartu, Estonia
| | - Marina Semchenko
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005, Tartu, Estonia
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
16
|
Hong J, Ma X, Wang X. Leaf meristems: an easily ignored component of the response to human disturbance in alpine grasslands. Ecol Evol 2016; 6:2325-32. [PMID: 27110348 PMCID: PMC4834318 DOI: 10.1002/ece3.2059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 11/08/2022] Open
Abstract
Grazing and fencing are two important factors that influence productivity and biomass allocation in alpine grasslands. The relationship between root (R) and shoot (S) biomass and the root:shoot ratio (R/S) are critical parameters for estimating the terrestrial carbon stocks and biomass allocation mechanism responses to human activities. Previous studies have often used the belowground:aboveground biomass ratio (Mb/Ma) to replace the R/S in alpine ecosystems. However, these studies may have neglected the leaf meristem biomass, which belongs to the shoot but occurs below the soil surface, leading to a significant overestimation of the R/S ratio. We conducted a comparative study to explore the differences between the R/S and Mb/Ma at both the species (Stipa purpurea, Carex moorcroftii, and Artemisia nanschanica) and community levels on a Tibetan alpine grassland with grazing and fencing management blocks. The results revealed that the use of the Mb/Ma to express the R/S appeared to overestimate the actual value of the R/S, both at species and community levels. For S. purpurea, the Mb/Ma was three times higher than the R/S. The Mb/Ma was approximately two times higher than the R/S for the species of C. moorcroftii and A. nanschanica and at the community level. The relationships between the R‐S and Mb‐Ma exhibited different slopes for the alpine plants across all the management practices. Compared to the fenced grasslands, the plants in the grazing blocks not only allocated more biomass to the roots but also to the leaf meristems. The present study highlights the contribution of leaf meristems to the accurate assessment of shoot and belowground biomasses. The R/S and Mb/Ma should be cautiously used in combination in the future research. The understanding of the distinction between the R‐S and Mb‐Ma may help to improve the biomass allocation mechanism response to human disturbances in an alpine area.
Collapse
Affiliation(s)
- Jiangtao Hong
- Institute of Mountain Hazards and Environment Chinese Academy of Sciences Chengdu 610041 China; University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingxing Ma
- Institute of Mountain Hazards and Environment Chinese Academy of Sciences Chengdu 610041 China; University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaodan Wang
- Institute of Mountain Hazards and Environment Chinese Academy of Sciences Chengdu 610041 China
| |
Collapse
|
17
|
Lundholm JT. The ecology and evolution of constructed ecosystems as green infrastructure. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Miehe-Steier A, Roscher C, Reichelt M, Gershenzon J, Unsicker SB. Light and Nutrient Dependent Responses in Secondary Metabolites of Plantago lanceolata Offspring Are Due to Phenotypic Plasticity in Experimental Grasslands. PLoS One 2015; 10:e0136073. [PMID: 26336100 PMCID: PMC4559451 DOI: 10.1371/journal.pone.0136073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/30/2015] [Indexed: 12/27/2022] Open
Abstract
A few studies in the past have shown that plant diversity in terms of species richness and functional composition can modify plant defense chemistry. However, it is not yet clear to what extent genetic differentiation of plant chemotypes or phenotypic plasticity in response to diversity-induced variation in growth conditions or a combination of both is responsible for this pattern. We collected seed families of ribwort plantain (Plantago lanceolata) from six-year old experimental grasslands of varying plant diversity (Jena Experiment). The offspring of these seed families was grown under standardized conditions with two levels of light and nutrients. The iridoid glycosides, catalpol and aucubin, and verbascoside, a caffeoyl phenylethanoid glycoside, were measured in roots and shoots. Although offspring of different seed families differed in the tissue concentrations of defensive metabolites, plant diversity in the mothers' environment did not explain the variation in the measured defensive metabolites of P. lanceolata offspring. However secondary metabolite levels in roots and shoots were strongly affected by light and nutrient availability. Highest concentrations of iridoid glycosides and verbascoside were found under high light conditions, and nutrient availability had positive effects on iridoid glycoside concentrations in plants grown under high light conditions. However, verbascoside concentrations decreased under high levels of nutrients irrespective of light. The data from our greenhouse study show that phenotypic plasticity in response to environmental variation rather than genetic differentiation in response to plant community diversity is responsible for variation in secondary metabolite concentrations of P. lanceolata in the six-year old communities of the grassland biodiversity experiment. Due to its large phenotypic plasticity P. lanceolata has the potential for a fast and efficient adjustment to varying environmental conditions in plant communities of different species richness and functional composition.
Collapse
Affiliation(s)
- Annegret Miehe-Steier
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Christiane Roscher
- Max Planck Institute for Biogeochemistry, Jena, Germany
- UFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle, Germany
| | | | | | | |
Collapse
|
19
|
Roscher C, Schumacher J, Schmid B, Schulze ED. Contrasting effects of intraspecific trait variation on trait-based niches and performance of legumes in plant mixtures. PLoS One 2015; 10:e0119786. [PMID: 25781938 PMCID: PMC4363318 DOI: 10.1371/journal.pone.0119786] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/28/2015] [Indexed: 11/29/2022] Open
Abstract
Niche differentiation, assumed to be a key mechanism of species coexistence, requires that species differ in their functional traits. So far it remains unclear to which extent trait plasticity leads to niche shifts of species at higher plant diversity, thereby increasing or decreasing niche overlap between species. To analyse this question it is convenient to measure niches indirectly via the variation in resource-uptake traits rather than directly via the resources used. We provisionally call these indirectly measured niches trait-based niches. We studied shoot- and leaf-morphological characteristics in seven legume species in monoculture and multi-species mixture in experimental grassland. Legume species varied in the extent of trait variation in response to plant diversity. Trait plasticity led to significant shifts in species niches in multiple dimensions. Single-species niches in several traits associated with height growth and filling of canopy space were expanded, while other niche dimensions were compressed or did not change with plant diversity. Niche separation among legumes decreased in dimensions related to height growth and space filling, but increased in dimensions related to leaf size and morphology. The total extent of occupied niche space was larger in mixture than in the combined monocultures for dimensions related to leaf morphology and smaller for dimensions related to whole-plant architecture. Taller growth, greater space filling and greater plasticity in shoot height were positively, while larger values and greater plasticity in specific leaf area were negatively related with increased performance of species in mixture. Our study shows that trait variation in response to plant diversity shifts species niches along trait axes. Plastically increased niche differentiation is restricted to niche dimensions that are apparently not related to size-dependent differences between species, but functional equivalence (convergence in height growth) rather than complementarity (divergence in traits associated with light acquisition) explains increased performance of legumes in mixture.
Collapse
Affiliation(s)
- Christiane Roscher
- UFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle, Germany
- * E-mail:
| | - Jens Schumacher
- Institute of Stochastics, Friedrich Schiller University, Jena, Germany
| | - Bernhard Schmid
- Institute of Evolutionary Biology and Environmental Studies and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
20
|
Selection for niche differentiation in plant communities increases biodiversity effects. Nature 2014; 515:108-11. [PMID: 25317555 DOI: 10.1038/nature13869] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/17/2014] [Indexed: 11/08/2022]
Abstract
In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant-soil feedbacks in monocultures. Here we show that selection for niche differentiation between species can drive this increasing biodiversity effect. Growing 12 grassland species in test monocultures and mixtures, we found character displacement between species and increased biodiversity effects when plants had been selected over 8 years in species mixtures rather than in monocultures. When grown in mixtures, relative differences in height and specific leaf area between plant species selected in mixtures (mixture types) were greater than between species selected in monocultures (monoculture types). Furthermore, net biodiversity and complementarity effects were greater in mixtures of mixture types than in mixtures of monoculture types. Our study demonstrates a novel mechanism for the increase in biodiversity effects: selection for increased niche differentiation through character displacement. Selection in diverse mixtures may therefore increase species coexistence and ecosystem functioning in natural communities and may also allow increased mixture yields in agriculture or forestry. However, loss of biodiversity and prolonged selection of crops in monoculture may compromise this potential for selection in the longer term.
Collapse
|
21
|
Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen X, Ding B, Durka W, Erfmeier A, Gutknecht JLM, Guo D, Guo L, Härdtle W, He J, Klein A, Kühn P, Liang Y, Liu X, Michalski S, Niklaus PA, Pei K, Scherer‐Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, Oheimb G, Welk E, Wirth C, Wubet T, Yang X, Yu M, Zhang S, Zhou H, Fischer M, Ma K, Schmid B. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical
C
hina. Methods Ecol Evol 2013. [DOI: 10.1111/2041-210x.12126] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Mraja A, Unsicker SB, Reichelt M, Gershenzon J, Roscher C. Plant community diversity influences allocation to direct chemical defence in Plantago lanceolata. PLoS One 2011; 6:e28055. [PMID: 22174766 PMCID: PMC3235097 DOI: 10.1371/journal.pone.0028055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 10/31/2011] [Indexed: 11/18/2022] Open
Abstract
Background Forecasting the consequences of accelerating rates of changes in biodiversity for ecosystem functioning requires a mechanistic understanding of the relationships between the structure of biological communities and variation in plant functional characteristics. So far, experimental data of how plant species diversity influences the investment of individual plants in direct chemical defences against herbivores and pathogens is lacking. Methodology/Principal Findings We used Plantago lanceolata as a model species in experimental grasslands differing in species richness and composition (Jena Experiment) to investigate foliar concentrations of the iridoid glycosides (IG), catalpol and its biosynthetic precursor aucubin. Total IG and aucubin concentrations decreased, while catalpol concentrations increased with increasing plant diversity in terms of species or functional group richness. Negative plant diversity effects on total IG and aucubin concentrations correlated with increasing specific leaf area of P. lanceolata, suggesting that greater allocation to light acquisition reduced the investment into these carbon-based defence components. In contrast, increasing leaf nitrogen concentrations best explained increasing concentrations of the biosynthetically more advanced IG, catalpol. Observed levels of leaf damage explained a significant proportion of variation in total IG and aucubin concentrations, but did not account for variance in catalpol concentrations. Conclusions/Significance Our results clearly show that plants growing in communities of varying species richness and composition differ in their defensive chemistry, which may modulate plant susceptibility to enemy attack and consequently their interactions with higher trophic level organisms.
Collapse
Affiliation(s)
- Anne Mraja
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | | | | | | | | |
Collapse
|