1
|
Hrabak M, Ahmed R, Soriano MG, Powell A, Thanos PK, Steiner H. Vilazodone, a Novel SSRI Antidepressant with 5-HT1A Partial Agonist Properties: Diminished Potentiation of Chronic Oral Methylphenidate-Induced Dynorphin Expression in the Striatum in Adolescent Male Rats. Mol Neurobiol 2024:10.1007/s12035-024-04569-8. [PMID: 39466575 DOI: 10.1007/s12035-024-04569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants such as fluoxetine are used in combination with the medical psychostimulant methylphenidate (Ritalin) in a variety of treatments in children and adults. Unintended co-exposure to these psychotropic medications also occurs in patients on SSRIs who abuse methylphenidate as a "cognitive enhancer" or recreational drug. Preclinical research shows that SSRIs such as fluoxetine when given in conjunction with methylphenidate potentiate addiction-related gene regulation by methylphenidate in the striatum, consistent with the known facilitatory role for serotonin in psychostimulant-induced neuronal and behavioral changes. Moreover, fluoxetine combined with methylphenidate also facilitated subsequent acquisition of cocaine self-administration in adolescent rats, suggesting an increased addiction liability for methylphenidate. In the present study, we investigated the impact of a novel SSRI, vilazodone, on methylphenidate-induced gene regulation in adolescent male rats. In contrast to prototypical SSRIs such as fluoxetine, vilazodone also acts as a partial 5-HT1A serotonin receptor agonist and is thus proposed to temper serotonin input to the striatum. We compared the effects of chronic treatment (4 weeks) with vilazodone (10 mg/kg, twice daily) with those of fluoxetine (5 mg/kg, twice daily) on striatal dynorphin expression induced by oral methylphenidate treatment (30/60 mg/kg/day in drinking water, 8 h access daily). Our results demonstrate that, in contrast to fluoxetine, vilazodone had minimal or no potentiating effects on methylphenidate-induced dynorphin expression. This diminished impact on gene regulation was seen throughout the striatum, including the nucleus accumbens, where increased dynorphin expression has previously been associated with various aspects of addiction. Our findings suggest that vilazodone may serve as a better adjunct SSRI with reduced addiction-facilitating properties.
Collapse
Affiliation(s)
- Michael Hrabak
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Rania Ahmed
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Michelle G Soriano
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
2
|
Lamoureux L, Beverley J, Steiner H, Marinelli M. Methylphenidate with or without fluoxetine triggers reinstatement of cocaine seeking behavior in rats. Neuropsychopharmacology 2024; 49:953-960. [PMID: 38086900 PMCID: PMC11039773 DOI: 10.1038/s41386-023-01777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 04/25/2024]
Abstract
Methylphenidate (MP) is commonly prescribed to treat attention-deficit hyperactivity disorder (ADHD). MP is also taken for non-medical purposes as a recreational drug or "cognitive enhancer". Combined exposure to MP and selective serotonin reuptake inhibitors such as fluoxetine (FLX) can also occur, such as in the treatment of ADHD with depression comorbidity or when patients taking FLX use MP for non-medical purposes. It is unclear if such exposure could subsequently increase the risk for relapse in former cocaine users. We investigated if an acute challenge with MP, FLX, or the combination of MP + FLX could trigger reinstatement of cocaine seeking behavior in a model for relapse in rats. Juvenile rats self-administered cocaine (600 µg/kg/infusion, 1-2 h/day, 7-8 days) and then underwent extinction and withdrawal during late adolescence-early adulthood. Reinstatement was tested at a low dose of MP (2 mg/kg, I.P., comparable to doses used therapeutically) or a high dose of MP (5 mg/kg, comparable to doses used recreationally or as a cognitive enhancer), with or without FLX (2.5-5 mg/kg, I.P.). An acute challenge with the high dose of MP (5 mg/kg), with or without FLX, reinstated cocaine seeking behavior to levels comparable to those seen after an acute challenge with cocaine (15 mg/kg, I.P.). The low dose of MP (2 mg/kg) with or without FLX did not reinstate cocaine seeking behavior. Our results suggest that acute exposure to a high dose of MP, with or without FLX, may increase the risk for relapse in individuals who used cocaine during the juvenile period.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL, USA
| | - Joel Beverley
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Heinz Steiner
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Michela Marinelli
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
- Department of Neuroscience and the Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA.
- Department of Neurology, Department of Psychiatry and Behavioral Science, and the Mulva Clinic for the Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, the University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Klein SR, Blum K, Gold MS, Thanos PK. Chronic Methylphenidate Effects on Brain Gene Expression: An Exploratory Review. Psychol Res Behav Manag 2024; 17:577-592. [PMID: 38379637 PMCID: PMC10876479 DOI: 10.2147/prbm.s445719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Methylphenidate (MP) is a psychostimulant commonly prescribed for individuals with attention deficit hyperactivity disorder (ADHD) but it is also taken with and without a prescription for performance enhancement. Prior research has characterized the effects of MP on behavior, cognition, and neurochemistry. This exploratory review covers the uses of MP and examined the effects of MP on gene expression in the brain following exposure. Overall, MP causes a wide-spread potentiation of genes, in a region-specific manner; consequently, inducing neuronal alterations, such as synaptic plasticity and transmission, resulting in observed behaviors and affects. Monoamine neurotransmitters and post-synaptic density protein genes generally had a potentiating effect in gene expression after exposure to MP.
Collapse
Affiliation(s)
- Shannon Rae Klein
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Center for Sports, Exercise, & Mental Health, Western University Health Sciences, Pomona, CA, 91766, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA
| |
Collapse
|
4
|
Lamoureux L, Beverley JA, Marinelli M, Steiner H. Fluoxetine potentiates methylphenidate-induced behavioral responses: Enhanced locomotion or stereotypies and facilitated acquisition of cocaine self-administration. ADDICTION NEUROSCIENCE 2023; 9:100131. [PMID: 38222942 PMCID: PMC10785378 DOI: 10.1016/j.addicn.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The medical psychostimulant methylphenidate (MP) is used to treat attention-deficit hyperactivity disorder and recreationally as a "cognitive enhancer". MP is a dopamine reuptake inhibitor, but does not affect serotonin. Serotonin contributes to addiction-related gene regulation and behavior. Previously, we showed that enhancing serotonin action by adding a selective serotonin reuptake inhibitor, fluoxetine (FLX), to MP potentiates MP-induced gene regulation in striatum and nucleus accumbens, mimicking cocaine effects. Here, we investigated the behavioral consequences of MP+FLX treatment. Young adult male rats received MP (5 mg/kg, i.p.) or MP+FLX (5 mg/kg each) daily for 6-8 days. Behavioral effects were assessed in an open-field test during the repeated treatment. Two weeks later the motor response to a cocaine challenge (25 mg/kg) and the rate of acquisition of cocaine self-administration behavior were determined. Our results demonstrate that FLX potentiates effects of MP on open-field behavior. However, we found differential behavioral responses to MP+FLX treatment, as approximately half of the rats developed high rates of focal stereotypies (termed "MP+FLX/high reactivity" group), whereas the other half did not, and only showed increased locomotion ("MP+FLX/low reactivity" group). Two weeks later, cocaine-induced locomotion and stereotypies were positively correlated with MP+FLX-induced behavior seen at the end of the repeated MP+FLX treatment. Moreover, the MP+FLX/high reactivity group, but not the low reactivity group, showed facilitated acquisition of cocaine self-administration. These results demonstrate that repeated MP+FLX treatment can facilitate subsequent cocaine taking behavior in a subpopulation of rats. These findings suggest that MP+FLX exposure in some individuals may increase the risk for psychostimulant use later in life.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Present address: Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joel A. Beverley
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Michela Marinelli
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Present address: Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Heinz Steiner
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
5
|
Davidson CJ, Mascarin AT, Yahya MA, Rubio FJ, Gheidi A. Approaches and considerations of studying neuronal ensembles: a brief review. Front Cell Neurosci 2023; 17:1310724. [PMID: 38155864 PMCID: PMC10752959 DOI: 10.3389/fncel.2023.1310724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
First theorized by Hebb, neuronal ensembles have provided a framework for understanding how the mammalian brain operates, especially regarding learning and memory. Neuronal ensembles are discrete, sparsely distributed groups of neurons that become activated in response to a specific stimulus and are thought to provide an internal representation of the world. Beyond the study of region-wide or projection-wide activation, the study of ensembles offers increased specificity and resolution to identify and target specific memories or associations. Neuroscientists interested in the neurobiology of learning, memory, and motivated behavior have used electrophysiological-, calcium-, and protein-based proxies of neuronal activity in preclinical models to better understand the neurobiology of learned and motivated behaviors. Although these three approaches may be used to pursue the same general goal of studying neuronal ensembles, technical differences lead to inconsistencies in the output and interpretation of data. This mini-review highlights some of the methodologies used in electrophysiological-, calcium-, and protein-based studies of neuronal ensembles and discusses their strengths and weaknesses.
Collapse
Affiliation(s)
- Cameron J. Davidson
- William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| | - Alixandria T. Mascarin
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Majd A. Yahya
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - F. Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Bethesda, MD, United States
| | - Ali Gheidi
- Department of Biomedical Sciences, Mercer University, Macon, GA, United States
| |
Collapse
|
6
|
Senior D, McCarthy M, Ahmed R, Klein S, Lee WX, Hadjiargyrou M, Komatsu D, Steiner H, Thanos PK. Chronic oral methylphenidate plus fluoxetine treatment in adolescent rats increases cocaine self-administration. ADDICTION NEUROSCIENCE 2023; 8:100127. [PMID: 38274857 PMCID: PMC10809890 DOI: 10.1016/j.addicn.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Background Depression and attention deficit hyperactivity disorder are known to be comorbid. Treatment of these commonly coexisting diseases typically involves the combined prescription of methylphenidate (MP), a psychostimulant, and fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI). MP and cocaine have similar mechanisms of action and this study examined the effects of chronic treatment of MP combined with FLX on cocaine consumption in rats. Methods Four groups of rats received access to drinking solutions of water (control), MP (30/60 mg/kg/day), FLX (20 mg/kg/day), or the combination of MP (30/60 mg/kg/day) plus FLX (20 mg/kg/day), during 8 h per day for one month. Following these drug treatments, rats were allowed to self-administer cocaine for 14 days. Results Our results showed that, during the first week of cocaine self-administration, the MP-treated rats had significantly greater numbers of active lever presses (plus 127%) and increased consumption of cocaine compared to the control rats. In contrast, during week two of cocaine self-administration, the rats treated with the MP + FLX combination showed significantly more lever presses (plus 198%) and significantly greater cocaine consumption (plus 84%) compared to the water controls. Conclusion Chronic oral treatment during adolescence with the combination of MP plus FLX resulted in increased cocaine use after 2 weeks of cocaine self-administration in rats. These novel findings suggest that the combined exposure to these two drugs chronically, during adolescence, may produce increased vulnerability towards cocaine abuse during young adulthood.
Collapse
Affiliation(s)
- Daniela Senior
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Madison McCarthy
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Rania Ahmed
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Shannon Klein
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Wen Xuan Lee
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | - David Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA
| |
Collapse
|
7
|
Chirokikh AA, Uddin SMZ, Areikat N, Jones R, Duque E, Connor C, Hadjiargyrou M, Thanos PK, Komatsu DE. Combined methylphenidate and fluoxetine treatment in adolescent rats significantly impairs weight gain with minimal effects on skeletal development. Bone 2023; 167:116637. [PMID: 36462772 DOI: 10.1016/j.bone.2022.116637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Methylphenidate (MP) is frequently prescribed to treat Attention-Deficit/Hyperactivity Disorder (ADHD); however, many patients with ADHD experience depression and anxiety. As such, concomitant administration of selective serotonin reuptake inhibitors such as fluoxetine (FLX) is common. Our laboratory and others have shown that MP impairs skeletal development in preclinical and clinical settings, and FLX has also been linked to skeletal deficits. Unfortunately, little is known about the effects of combined MP and FLX treatment on skeletal development. The objective of this study was to investigate the effects of MP and FLX on bone morphology and biomechanical properties in adolescent rats. Four-week-old male Sprague-Dawley rats were randomly divided into the following 4 groups: Water, MP, FLX, and MP + FLX. As body weights in the MP, FLX, and MP + FLX groups were all lower than Water, the data were compared directly and after adjusting to body weight via linear regression. The direct comparison revealed that MP + FLX rats had significantly shorter (~12 %) and narrower femora and tibiae (~10 %) compared to most other groups, along with shorter (26-35 %), disorganized tibial growth plates. MicroCT analyses of the trabecular compartment of the proximal tibia identified reductions of 47 % for TV, 86 % for BV, 74 % for BV/TV, 68 % for Tb.N, 25 % in Tb.Th, and 74 % in vBMD concomitant with increases of 44 % for Tb.Sp for MP + FLX compared to Water. Similar analyses of femoral midshaft cortical bone identified reductions of 29 % for Ct.V, 30 % for Ps.V, 30 % for Ec. V, and 51 % for pMOI, as well as increases of 17 % for Ct.Th and 2 % for TMD for MP + FLX compared to Water. Biomechanically, MP + FLX femora were weaker, as indicated by a reduction in ultimate force (14 %) in MP + FLX compared to Water. The microstructural and biomechanical effects of MP + FLX were eliminated after adjustment for body weight, though the detrimental effects on growth plate morphology remained. We conclude that while the adverse microstructural and biomechanical effects of MP + FLX seen via direct comparison are predominantly attributable to reductions in body weight rather than direct effects on bone, MP and FLX, particularly in combination show detrimental effects on growth plate structure and chondrocyte morphology. These findings warrant further research into the effect of these drugs on weight gain, skeletal development and growth plate morphology, as well as consideration by physicians treating children and adolescents with ADHD.
Collapse
Affiliation(s)
- Alexander A Chirokikh
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Sardar M Z Uddin
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY, United States of America
| | - Nadine Areikat
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY, United States of America
| | - Rachel Jones
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY, United States of America
| | - Edie Duque
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY, United States of America
| | - Carly Connor
- BNNLA -Research Institute on Addictions, Department of Pharmacology and Toxicology SUNY University at Buffalo, Buffalo, NY, United States of America
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, United States of America
| | - Panayotis K Thanos
- BNNLA -Research Institute on Addictions, Department of Pharmacology and Toxicology SUNY University at Buffalo, Buffalo, NY, United States of America
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY, United States of America.
| |
Collapse
|
8
|
Thanos PK, McCarthy M, Senior D, Watts S, Connor C, Hammond N, Blum K, Hadjiargyrou M, Komatsu D, Steiner H. Combined Chronic Oral Methylphenidate and Fluoxetine Treatment During Adolescence: Effects on Behavior. Curr Pharm Biotechnol 2023; 24:1307-1314. [PMID: 36306463 DOI: 10.2174/1389201024666221028092342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Attention Deficit Hyperactivity Disorder (ADHD) can be comorbid with depression, often leading to the prescription of both methylphenidate (MP) and selective serotonin reuptake inhibitor (SSRI) antidepressants, such as fluoxetine (FLX). Moreover, these drugs are often misused as cognitive enhancers. This study examined the effects of chronic oral co-administration of MP and FLX on depressive- and anxiety-like behaviors. METHODS Adolescent rats received daily either water (control), MP, FLX, or the combination of MP plus FLX in their drinking water over the course of 4 weeks. RESULTS Data analysis shows a decrease in food consumption and body weight for rats exposed to FLX or the combination of MP and FLX. Sucrose consumption was significantly greater in FLX or MP+FLX groups compared to controls. FLX-treated rats showed no effect in the elevated plus maze (EPM; open arm time) and forced swim test (FST; latency to immobility). However, rats treated with the combination (MP+FLX) showed significant anxiolytic-like and anti-depressive-like behaviors (as measured by EPM and FST), as well as significant increases in overall activity (distance traveled in open field test). Finally, the combined MP+FLX treatment induced a decrease in anxiety and depressive- like behaviors significantly greater than the response from either of these drugs alone. CONCLUSION These behavioral results characterize the long-term effects of these drugs (orally administered) that are widely co-administered and co-misused and provide important insight into the potential neurobiological and neurochemical effects. Future research will determine the potential risks of the long-term use of MP and FLX together.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Madison McCarthy
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Daniela Senior
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Samantha Watts
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Carly Connor
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Kenneth Blum
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | - David Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
9
|
Moon C, Marion M, Thanos PK, Steiner H. Fluoxetine Potentiates Oral Methylphenidate-Induced Gene Regulation in the Rat Striatum. Mol Neurobiol 2021; 58:4856-4870. [PMID: 34213723 DOI: 10.1007/s12035-021-02466-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Methylphenidate (MP) is combined with selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (FLX) to treat various disorders. MP, a dopamine reuptake inhibitor, helps manage attention-deficit hyperactivity disorder (ADHD) and is abused as a cognitive enhancer; it has a reduced addiction liability. We showed that combining FLX (serotonin) with MP potentiates MP-induced gene regulation in the striatum. These studies used intraperitoneal drug administration, which is relevant for MP abuse. Clinically, MP and FLX are taken orally (slower bioavailability). Here, we investigated whether chronic oral administration of MP and FLX also altered striatal gene regulation. MP (30/60 mg/kg/day), FLX (20 mg/kg/day), and MP + FLX were administered in rats' drinking water for 8 h/day over 4 weeks. We assessed the expression of dynorphin and substance P (both markers for striatal direct pathway neurons) and enkephalin (indirect pathway) by in situ hybridization histochemistry. Chronic oral MP alone produced a tendency for increased dynorphin and substance P expression and no changes in enkephalin expression. Oral FLX alone did not increase gene expression. In contrast, when given together, FLX greatly enhanced MP-induced expression of dynorphin and substance P and to a lesser degree enkephalin. Thus, FLX potentiated oral MP-induced gene regulation predominantly in direct pathway neurons, mimicking cocaine effects. The three functional domains of the striatum were differentially affected. MP + SSRI concomitant therapies are indicated in ADHD/depression comorbidity and co-exposure occurs with MP misuse as a cognitive enhancer by patients on SSRIs. Our findings indicate that MP + SSRI combinations, even given orally, may enhance addiction-related gene regulation.
Collapse
Affiliation(s)
- Connor Moon
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Matt Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University At Buffalo, Buffalo, NY, 14203, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University At Buffalo, Buffalo, NY, 14203, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA. .,Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
10
|
Rohde PD, Jensen IR, Sarup PM, Ørsted M, Demontis D, Sørensen P, Kristensen TN. Genetic Signatures of Drug Response Variability in Drosophila melanogaster. Genetics 2019; 213:633-650. [PMID: 31455722 PMCID: PMC6781897 DOI: 10.1534/genetics.119.302381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022] Open
Abstract
Knowledge of the genetic basis underlying variation in response to environmental exposures or treatments is important in many research areas. For example, knowing the set of causal genetic variants for drug responses could revolutionize personalized medicine. We used Drosophila melanogaster to investigate the genetic signature underlying behavioral variability in response to methylphenidate (MPH), a drug used in the treatment of attention-deficit/hyperactivity disorder. We exposed a wild-type D. melanogaster population to MPH and a control treatment, and observed an increase in locomotor activity in MPH-exposed individuals. Whole-genome transcriptomic analyses revealed that the behavioral response to MPH was associated with abundant gene expression alterations. To confirm these patterns in a different genetic background and to further advance knowledge on the genetic signature of drug response variability, we used a system of inbred lines, the Drosophila Genetic Reference Panel (DGRP). Based on the DGRP, we showed that the behavioral response to MPH was strongly genotype-dependent. Using an integrative genomic approach, we incorporated known gene interactions into the genomic analyses of the DGRP, and identified putative candidate genes for variability in drug response. We successfully validated 71% of the investigated candidate genes by gene expression knockdown. Furthermore, we showed that MPH has cross-generational behavioral and transcriptomic effects. Our findings establish a foundation for understanding the genetic mechanisms driving genotype-specific responses to medical treatment, and highlight the opportunities that integrative genomic approaches have in optimizing medical treatment of complex diseases.
Collapse
Affiliation(s)
- Palle Duun Rohde
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus C, Denmark
- Center for Integrative Sequencing, Aarhus University, 8000, Denmark
| | - Iben Ravnborg Jensen
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
| | - Pernille Merete Sarup
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Michael Ørsted
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus C, Denmark
- Center for Integrative Sequencing, Aarhus University, 8000, Denmark
- Department of Biomedicine, Aarhus University, 8000, Denmark
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Torsten Nygaard Kristensen
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, 8000, Denmark
| |
Collapse
|
11
|
Alter D, Beverley JA, Patel R, Bolaños-Guzmán CA, Steiner H. The 5-HT1B serotonin receptor regulates methylphenidate-induced gene expression in the striatum: Differential effects on immediate-early genes. J Psychopharmacol 2017; 31:1078-1087. [PMID: 28720013 PMCID: PMC5540766 DOI: 10.1177/0269881117715598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Drug combinations that include a psychostimulant such as methylphenidate (Ritalin) and a selective serotonin reuptake inhibitor such as fluoxetine are indicated in several medical conditions. Co-exposure to these drugs also occurs with "cognitive enhancer" use by individuals treated with selective serotonin reuptake inhibitors. Methylphenidate, a dopamine reuptake inhibitor, by itself produces some addiction-related gene regulation in the striatum. We have demonstrated that co-administration of selective serotonin reuptake inhibitors potentiates these methylphenidate-induced molecular effects, thus producing a more "cocaine-like" profile. There is evidence that the 5-HT1B serotonin receptor subtype mediates some of the cocaine-induced gene regulation. We thus investigated whether the 5-HT1B receptor also modifies methylphenidate-induced gene regulation, by assessing effects of a selective 5-HT1B receptor agonist (CP94253) on immediate-early gene markers ( Zif268, c- Fos, Homer1a) in adolescent male rats. Gene expression was measured by in situ hybridization histochemistry. Our results show that CP94253 (3, 10 mg/kg) produced a dose-dependent potentiation of methylphenidate (5 mg/kg)-induced expression of Zif268 and c- Fos. This potentiation was widespread in the striatum and was maximal in lateral (sensorimotor) sectors, thus mimicking the effects seen after cocaine alone, or co-administration of fluoxetine. However, in contrast to fluoxetine, this 5-HT1B agonist did not influence methylphenidate-induced expression of Homer1a. CP94253 also potentiated methylphenidate-induced locomotor activity. These findings indicate that stimulation of the 5-HT1B receptor can enhance methylphenidate (dopamine)-induced gene regulation. This receptor may thus participate in the potentiation induced by fluoxetine (serotonin) and may serve as a pharmacological target to attenuate methylphenidate + selective serotonin reuptake inhibitor-induced "cocaine-like" effects.
Collapse
Affiliation(s)
- David Alter
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Joel A. Beverley
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Ronak Patel
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|