1
|
Hessl D, Rojas KM, Ferrer E, Espinal G, Famula J, Schneider A, Hagerman R, Tassone F, Rivera SM. FMR1 Carriers Report Executive Function Changes Prior to Fragile X-Associated Tremor/Ataxia Syndrome: A Longitudinal Study. Mov Disord 2024; 39:519-525. [PMID: 38124331 PMCID: PMC11268876 DOI: 10.1002/mds.29695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies has made it difficult to address this hypothesis. OBJECTIVE To determine whether executive function deterioration experienced by premutation carriers (PC) in daily life precedes and predicts FXTAS. METHODS This study included 66 FMR1 PC ranging from 40 to 78 years (mean, 59.5) and 31 well-matched healthy controls (HC) ages 40 to 75 (mean, 57.7) at baseline. Eighty-four participants returned for 2 to 5 follow up visits over a duration of 1 to 9 years (mean, 4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. RESULTS Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, increased self-report executive function problems at baseline significantly predicted later development of FXTAS. CONCLUSIONS Executive function changes experienced by male PC represent a prodrome of the later movement disorder. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David Hessl
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Karina Mandujano Rojas
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
| | - Emilio Ferrer
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Glenda Espinal
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jessica Famula
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
- Family Caregiving Institute, Betty Irene Moore School of Nursing, University of California Davis, Sacramento, California, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, California, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Fielding-Gebhardt H, Kelly SE, Unruh KE, Schmitt LM, Pulver SL, Khemani P, Mosconi MW. Sensorimotor and inhibitory control in aging FMR1 premutation carriers. Front Hum Neurosci 2023; 17:1271158. [PMID: 38034068 PMCID: PMC10687573 DOI: 10.3389/fnhum.2023.1271158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Aging FMR1 premutation carriers are at risk of developing neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome (FXTAS), and there is a need to identify biomarkers that can aid in identification and treatment of these disorders. While FXTAS is more common in males than females, females can develop the disease, and some evidence suggests that patterns of impairment may differ across sexes. Few studies include females with symptoms of FXTAS, and as a result, little information is available on key phenotypes for tracking disease risk and progression in female premutation carriers. Our aim was to examine quantitative motor and cognitive traits in aging premutation carriers. We administered oculomotor tests of visually guided/reactive saccades (motor) and antisaccades (cognitive control) in 22 premutation carriers (73% female) and 32 age- and sex-matched healthy controls. Neither reactive saccade latency nor accuracy differed between groups. FMR1 premutation carriers showed increased antisaccade latencies relative to controls, both when considering males and females together and when analyzing females separately. Reduced saccade accuracy and increased antisaccade latency each were associated with more severe clinically rated neuromotor impairments. Findings indicate that together male and female premutation carriers show a reduced ability to rapidly exert volitional control over prepotent responses and that quantitative differences in oculomotor behavior, including control of visually guided and antisaccades, may track with FXTAS - related degeneration in male and female premutation carriers.
Collapse
Affiliation(s)
| | | | - Kathryn E. Unruh
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - Lauren M. Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Stormi L. Pulver
- Division of Autism and Related Disorders, Emory University School of Medicine, Atlanta, GA, United States
| | - Pravin Khemani
- Movement Disorders Program, Swedish Neuroscience Institute, Seattle, WA, United States
| | - Matthew W. Mosconi
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
3
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Hessl D, Rojas KM, Ferrer E, Espinal G, Famula J, Schneider A, Elagerman R, Tassone F, Rivera SM. A Longitudinal Study of Executive Function in Daily Life in Male Fragile X Premutation Carriers and Association with FXTAS Conversion. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.31.23294855. [PMID: 37693384 PMCID: PMC10491369 DOI: 10.1101/2023.08.31.23294855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies have made it difficult to address this hypothesis. Methods This study included 66 FMR1 premutation carriers (PC) ranging from 40-78 years (Mean=59.5) and 31 well-matched healthy controls (HC) ages 40-75 (Mean 57.7) at baseline. Eighty-four participants returned for 2-5 follow up visits over a duration of 1 to 9 years (Mean=4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. Results Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, BRIEF-A executive function problems at baseline significantly predicted later development of FXTAS. Conclusions These findings suggest that executive function changes represent a prodrome of the later movement disorder.
Collapse
Affiliation(s)
- David Hessl
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Karina Mandujano Rojas
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
| | - Emilio Ferrer
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Glenda Espinal
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jessica Famula
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
- Family Caregiving Institute, Betty Irene Moore School of Nursing, University of California Davis, Sacramento, California, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi Elagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, California, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
Segal O, Kowal T, Banet-Levi Y, Gabis LV. Executive Function and Working Memory Deficits in Females with Fragile X Premutation. Life (Basel) 2023; 13:life13030813. [PMID: 36983968 PMCID: PMC10053193 DOI: 10.3390/life13030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The Fragile X premutation is a genetic instability of the FMR1 gene caused by 55–199 recurrences of the CGG sequence, whereas there are only 7–54 repeats of the CGG sequence in the normal condition. While males with the premutation of Fragile X were found to have difficulties in executive functions and working memory, little data have been collected on females. This study is among the first to address executive functions and phonological memory in females with the Fragile X premutation. Twenty-three female carriers aged 20–55 years and twelve non carrier females matched in age and levels of education (in years) participated in this study. Executive functions and phonological memory were assessed using the self-report questionnaire The Behavior Rating Inventory of Executive Function (BRIEF) and behavioral measures (nonword repetitions, forward and backward digit span). Females who were carriers of the premutation of the FMR1 gene reported less efficient executive functions in the BRIEF questionnaire compared to the control group. In addition, a relationship was found between the number of repetitions on the CGG sequence of nucleotides, nonword repetitions, and forward digit span. The findings suggest that the premutation of Fragile X in females affects their performance of executive functions and may have impact on everyday functioning.
Collapse
Affiliation(s)
- Osnat Segal
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-522998404
| | - Tamar Kowal
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | | | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Zhang S, Shen L, Jiao B. Cognitive Dysfunction in Repeat Expansion Diseases: A Review. Front Aging Neurosci 2022; 14:841711. [PMID: 35478698 PMCID: PMC9036481 DOI: 10.3389/fnagi.2022.841711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of the sequencing technique, more than 40 repeat expansion diseases (REDs) have been identified during the past two decades. Moreover, the clinical features of these diseases show some commonality, and the nervous system, especially the cognitive function was affected in part by these diseases. However, the specific cognitive domains impaired in different diseases were inconsistent. Here, we survey literature on the cognitive consequences of the following disorders presenting cognitive dysfunction and summarizing the pathogenic genes, epidemiology, and different domains affected by these diseases. We found that the cognitive domains affected in neuronal intranuclear inclusion disease (NIID) were widespread including the executive function, memory, information processing speed, attention, visuospatial function, and language. Patients with C9ORF72-frontotemporal dementia (FTD) showed impairment in executive function, memory, language, and visuospatial function. While in Huntington's disease (HD), the executive function, memory, and information processing speed were affected, in the fragile X-associated tremor/ataxia syndrome (FXTAS), executive function, memory, information processing speed, and attention were impaired. Moreover, the spinocerebellar ataxias showed broad damage in almost all the cognitive domains except for the relatively intact language ability. Some other diseases with relatively rare clinical data also indicated cognitive dysfunction, such as myotonic dystrophy type 1 (DM1), progressive myoclonus epilepsy (PME), Friedreich ataxia (FRDA), Huntington disease like-2 (HDL2), and cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We drew a cognitive function landscape of the related REDs that might provide an aspect for differential diagnosis through cognitive domains and effective non-specific interventions for these diseases.
Collapse
Affiliation(s)
- Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Bin Jiao
| |
Collapse
|
7
|
Famula J, Ferrer E, Hagerman RJ, Tassone F, Schneider A, Rivera SM, Hessl D. Neuropsychological changes in FMR1 premutation carriers and onset of fragile X-associated tremor/ataxia syndrome. J Neurodev Disord 2022; 14:23. [PMID: 35321639 PMCID: PMC8942145 DOI: 10.1186/s11689-022-09436-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background Carriers of the FMR1 premutation are at increased risk of developing a late-onset progressive neurodegenerative disease, fragile X-associated tremor/ataxia syndrome (FXTAS), characterized by intention tremor, gait ataxia, and cognitive decline. Cross-sectional studies to date have provided evidence that neuropsychological changes, such as executive function alterations, or subtle motor changes, may precede the onset of formal FXTAS, perhaps characterizing a prodromal state. However, the lack of longitudinal data has prevented the field from forming a clear picture of progression over time within individuals, and we lack consensus regarding early markers of risk and measures that may be used to track response to intervention. Methods This was a longitudinal study of 64 male FMR1 premutation carriers (Pm) without FXTAS at study entry and 30 normal controls (Nc), aged 40 to 80 years (Pm M = 60.0 years; Nc M = 57.4 years). Fifty of the Pm and 22 of the Nc were re-assessed after an average of 2.33 years, and 37 Pm and 20 Nc were re-assessed a third time after an average of another 2.15 years. Eighteen of 64 carriers (28%) converted to FXTAS during the study to date. Neuropsychological assessments at each time point, including components of the Cambridge Neuropsychological Test Automated Battery (CANTAB), tapped domains of episodic and working memory, inhibitory control, visual attention, planning, executive control of movement, and manual speed and dexterity. Age-based mixed models were used to examine group differences in change over time on the outcomes in the full sample, and differences were further evaluated in 15 trios (n = 45; 15 Pm “converters,” 15 Pm “nonconverters,” 15 Nc) that were one-one matched on age, education, and socioeconomic status. Results Compared to Nc, Pm showed significantly greater rates of change over time in visual working memory, motor dexterity, inhibitory control, and manual movement speed. After multiple comparison correction, significant effects remained for motor dexterity. Worsening inhibitory control and slower manual movements were related to progression in FXTAS stage, but these effects became statistically non-significant after correcting for multiple comparisons. Higher FMR1 mRNA correlated with worsening manual reaction time but did not survive multiple comparisons and no other molecular measures correlated with neuropsychological changes. Finally, trio comparisons revealed greater rate of decline in planning and manual movement speed in Pm converters compared to Pm nonconverters. Conclusions Accelerated decline in executive function and subtle motor changes, likely mediated by frontocerebellar circuits, may precede, and then track with the emergence of formal FXTAS symptoms. Further research to develop and harmonize clinical assessment of FMR1 carriers across centers is needed to prepare for future prophylactic and treatment trials for this disorder.
Collapse
Affiliation(s)
- Jessica Famula
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Emilio Ferrer
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Randi J Hagerman
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Susan M Rivera
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Psychology, University of California Davis, Davis, CA, USA.,Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - David Hessl
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA. .,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
8
|
Zagaria T, Antonucci G, Buono S, Recupero M, Zoccolotti P. Executive Functions and Attention Processes in Adolescents and Young Adults with Intellectual Disability. Brain Sci 2021; 11:brainsci11010042. [PMID: 33401550 PMCID: PMC7823832 DOI: 10.3390/brainsci11010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: We made a comprehensive evaluation of executive functions (EFs) and attention processes in a group of adolescents and young adults with mild intellectual disability (ID). (2) Methods: 27 adolescents and young adults (14 females and 13 males) with ID, aged between 15.1 and 23 years (M = 17.4; SD = 2.04), were compared to a control group free of cognitive problems and individually matched for gender and age. (3) Results: As for EFs, individuals with ID were severely impaired on all subtests of the Behavioral Assessment of Dysexecutive Syndrome (BADS) battery. However, we also found appreciable individual differences, with eight individuals (approximately 30%) scoring within normal limits. On the attention tests, individuals with ID were not generally slower but presented specific deficits only on some attention tests (i.e., Choice Reaction Times, Color Naming and Color–Word Interference, and Shifting of Attention for Verbal and for Visual Targets).The role of a global factor (i.e., cognitive speed) was modest in contributing to the group differences; i.e., when present, group differences were selectively associated with specific task manipulations, not global differences in cognitive speed. (4) Conclusions: The study confirmed large group differences in EFs; deficits in attentional processing were more specific and occurred primarily in tasks taxing the selective dimension of attention, with performance on intensive tasks almost entirely spared.
Collapse
Affiliation(s)
- Tommasa Zagaria
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.B.); (M.R.)
- Correspondence:
| | - Gabriella Antonucci
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (G.A.); (P.Z.)
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Serafino Buono
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.B.); (M.R.)
| | | | - Pierluigi Zoccolotti
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (G.A.); (P.Z.)
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| |
Collapse
|
9
|
Schneider A, Summers S, Tassone F, Seritan A, Hessl D, Hagerman P, Hagerman R. Women with Fragile X-associated Tremor/Ataxia Syndrome. Mov Disord Clin Pract 2020; 7:910-919. [PMID: 33163562 PMCID: PMC7604678 DOI: 10.1002/mdc3.13084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/16/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fragile X-associated tremor and ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder linked to the FMR1 premutation. OBJECTIVES FXTAS in women is far less common than in men, and this study represents the largest sample reported to date. METHODS A total of 53 female premutation carriers with FXTAS (meanage, 66.83 years; FXTAS stages 2-5) and 55 age-matched and demographic background-matched control participants (meanage, 61.94 years) underwent a comprehensive molecular, physiological, neuropsychological, and psychiatric assessment. RESULTS The large sample of female premutation carriers showed a wide range of variability of clinical signs and symptom progression. The imaging results showed a middle cerebellar peduncles sign in only 6 patients; another symptom included high-signal intensity in the splenium of the corpus callosum, and diffuse cerebral deep white matter changes (e.g., in the pons) are more common. The rate of psychiatric disorders, especially depression, is higher than in the general population. There is a clear impairment in executive functioning and fine motor skills in connection with a higher FXTAS stage. CONCLUSIONS The manifestation of FXTAS symptoms in female carriers can be diverse with a milder phenotype and a lower penetrance than those observed in male premutation carriers. The middle cerebellar peduncles sign is present in only a small percentage of the sample, and we propose that the imaging criteria for FXTAS in women need to be expanded.
Collapse
Affiliation(s)
- Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders InstituteSacramentoCaliforniaUSA
- Department of Pediatrics, School of MedicineUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Scott Summers
- Department of Psychiatry and Behavioral SciencesUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Flora Tassone
- Department of BiochemistryUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Andreea Seritan
- Department of Psychiatry, UCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders InstituteSacramentoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Paul Hagerman
- Department of BiochemistryUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders InstituteSacramentoCaliforniaUSA
- Department of Pediatrics, School of MedicineUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| |
Collapse
|
10
|
Intelligence and specific cognitive functions in intellectual disability: implications for assessment and classification. Curr Opin Psychiatry 2018; 31:88-95. [PMID: 29206685 DOI: 10.1097/yco.0000000000000387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Current diagnostic criteria for intellectual disability categorize ability as measured by IQ tests. However, this does not suit the new conceptualization of intellectual disability, which refers to a range of neuropsychiatric syndromes that have in common early onset, cognitive impairments, and consequent deficits in learning and adaptive functioning. A literature review was undertaken on the concept of intelligence and whether it encompasses a range of specific cognitive functions to solve problems, which might be better reported as a profile, instead of an IQ, with implications for diagnosis and classification of intellectual disability. RECENT FINDINGS Data support a model of intelligence consisting of distinct but related processes. Persons with intellectual disability with the same IQ level have different cognitive profiles, based on varying factors involved in aetiopathogenesis. Limitations of functioning and many biopsychological factors associated with intellectual disability are more highly correlated with impairments of specific cognitive functions than with overall IQ. SUMMARY The current model of intelligence, based on IQ, is of limited utility for intellectual disability, given the wide range and variability of cognitive functions and adaptive capacities. Assessing level of individual impairment in executive and specific cognitive functions may be a more useful alternative. This has considerable implications for the revision of the International Classification of Diseases and for the cultural attitude towards intellectual disability in general.
Collapse
|
11
|
Gabis LV, Hochberg O, Leon Attia O, Banet-Levi Y, Topf D, Shefer S. Prolonged Time Lag to Final Diagnosis of Fragile X Syndrome. J Pediatr 2018; 193:217-221.e1. [PMID: 29217098 DOI: 10.1016/j.jpeds.2017.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/24/2017] [Accepted: 10/11/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the diagnostic process in children ultimately diagnosed with fragile X syndrome (FXS), with an emphasis on the time lag between initial presentation and on diagnosis in female vs male children. STUDY DESIGN Interviews were conducted with 89 families of children with a final diagnosis of FXS and assessment of time intervals between initial presentation and confirmed molecular diagnosis. RESULTS Screening of 117 patients (25 female patients) from the 89 families revealed that less than 20% of patients obtained a diagnosis within the first year of seeking medical attention. Mean age at the time of initial presentation was 12.3 months in male patients and 23 months in female patients, while definitive diagnosis of FXS was made at a mean of 4 and 9 years, respectively. Presenting symptoms of developmental delays were recognized by 72% of parents, and 84% had another child with FXS before the index case diagnosis. Average age of diagnosis for children with FXS born since 2007 was significantly lower at 31.9 months, compared with 69.5 months for children born before 2007. CONCLUSIONS Although FXS is a significant and prevalent cause of disability in children, it is underdiagnosed and diagnosed late, especially in female patients. In every male and female patient presenting with developmental delay or autism, FXS should be considered. Dysmorphic physical features may not be present in infancy, and the absence of those features cannot exclude a diagnosis of FXS.
Collapse
Affiliation(s)
- Lidia V Gabis
- Weinberg Child Development Center, Edmond and Lilly Safra Children's Hospital, Tel Hashomer, Israel; Sackler School of Medicine at Tel Aviv University, Tel Aviv, Israel.
| | - Oded Hochberg
- Weinberg Child Development Center, Edmond and Lilly Safra Children's Hospital, Tel Hashomer, Israel
| | - Odelia Leon Attia
- Weinberg Child Development Center, Edmond and Lilly Safra Children's Hospital, Tel Hashomer, Israel
| | - Yonit Banet-Levi
- Weinberg Child Development Center, Edmond and Lilly Safra Children's Hospital, Tel Hashomer, Israel
| | - Dana Topf
- Weinberg Child Development Center, Edmond and Lilly Safra Children's Hospital, Tel Hashomer, Israel
| | - Shahar Shefer
- Weinberg Child Development Center, Edmond and Lilly Safra Children's Hospital, Tel Hashomer, Israel
| |
Collapse
|
12
|
Shelton AL, Cornish KM, Kraan CM, Lozano R, Bui M, Fielding J. Executive Dysfunction in Female FMR1 Premutation Carriers. THE CEREBELLUM 2017; 15:565-9. [PMID: 27126308 DOI: 10.1007/s12311-016-0782-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is now growing evidence of cognitive weakness in female premutation carriers (between 55 and 199 CGG repeats) of the fragile X mental retardation gene, including impairments associated with executive function. While an age-related decline in assessments of executive function has been found for male premutation carriers, few studies have explored whether female carriers show a similar trajectory with age. A total of 20 female premutation carriers and 21 age- and IQ-matched healthy controls completed a battery of tasks assessing executive function tasks, including the behavioural dyscontrol scale (BDS), symbol digit modalities test (SDMT), paced auditory serial addition test (PASAT), Haylings sentence completion test and the digit span task (forward and backward). Performance was compared between premutation carriers and healthy controls, and the association between task performance and age was also ascertained. Compared to controls, female premutation carriers had significant impairment on the BDS, SDMT, PASAT, and Haylings sentence completion task, all of which rely on quick, or timed, responses. Further analyses revealed no significant association between age and task performance for either premutation carriers or controls. This study demonstrates that a cohort of female premutation carriers have deficits on a range of tasks of executive function that require the rapid temporal resolution of responses. We propose that the understanding of the phenotype of premutation carriers will be advanced through use of such measures.
Collapse
Affiliation(s)
- Annie L Shelton
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Melbourne, VIC, Australia
| | - Kim M Cornish
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Melbourne, VIC, Australia
| | - Claudine M Kraan
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Melbourne, VIC, Australia
| | - Reymundo Lozano
- Seaver Autism Center for Research and Treatment, Departments of Genetics and Genomic Sciences, Psychiatry, and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Joanne Fielding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Melbourne, VIC, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Shelton AL, Cornish K, Fielding J. Long term verbal memory recall deficits in fragile X premutation females. Neurobiol Learn Mem 2017; 144:131-135. [PMID: 28689930 DOI: 10.1016/j.nlm.2017.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/20/2017] [Accepted: 07/05/2017] [Indexed: 02/09/2023]
Abstract
Carriers of a FMR1 premutation allele (between 55 and 199 CGG repeats) are at risk of developing a wide range of medical, psychiatric and cognitive disorders, including executive dysfunction. These cognitive deficits are often less severe for female premutation carriers compared to male premutation carriers, albeit similar in nature. However, it remains unclear whether female premutation carriers who exhibit executive dysfunction also report verbal learning and memory deficits like those of their male counterparts. Here we employed the CVLT to assess verbal learning and memory function in 19 female premutation carriers, contrasting performance with 19 age- and IQ-matched controls. Group comparisons revealed similar performance during the learning and short delay recall phases of the CVLT. However, after a long delay period, female premutation carriers remembered fewer words for both free and cued recall trials, but not during recognition trials. These findings are consistent with reports for male premutation carriers, and suggest that aspects of long term memory may be adversely affect in a subgroup of premutation carriers with signs of executive dysfunction.
Collapse
Affiliation(s)
- Annie L Shelton
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia
| | - Kim Cornish
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia
| | - Joanne Fielding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Prefrontal Cortex Dysfunction in Fragile X Mice Depends on the Continued Absence of Fragile X Mental Retardation Protein in the Adult Brain. J Neurosci 2017; 37:7305-7317. [PMID: 28652410 DOI: 10.1523/jneurosci.0571-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/09/2017] [Accepted: 06/10/2017] [Indexed: 01/28/2023] Open
Abstract
Fragile X Syndrome (FX) is generally considered a developmental disorder, arising from a mutation that disrupts the transcription of Fragile X Mental Retardation Protein (FMRP). However, FMRP regulates the transcription of other proteins and participates in an unknown number of protein-protein interactions throughout life. In addition to known developmental issues, it is thus likely that some dysfunction is also due to the ongoing absence of FMRP. Dissociating dysfunction due to developmental dysregulation from dysfunction due to the continued absence of FMRP is necessary to understand the different roles of FMRP and to treat patients effectively throughout life. We show here that FX model mice display substantial deficits in a PFC-dependent task. We then use conditional knock-out mice to eliminate FMRP only in the PFC alone of adult mice. We observe an increase in the proportion of nonlearners and a delay in the onset of learning in both FX and conditional knock-out mice. The results suggest that these deficits (1) are due to the absence of FMRP in the PFC alone and (2) are not the result of developmental dysregulation. Furthermore, PFC-associated deficits are rescued by initiating production of FMRP in adult conditional restoration mice, suggesting that PFC dysfunction may persist as long as FMRP is absent and therefore can be rescued after development. The data suggest that it is possible to dissociate the roles of FMRP in neural function from developmental dysregulation, and that PFC function can be restored in the adult FX brain.SIGNIFICANCE STATEMENT The absence of Fragile X Mental Retardation Protein (FMRP) from birth results in developmental disabilities and lifelong impairments. We show here that in mouse models PFC dysfunction in Fragile X Syndrome (FX) can be attributed to the continued absence of FMRP from the PFC, independent of FMRP status during development. Furthermore, initiation of FMRP production in the PFC of adult FX animals rescues PFC function. The results suggest that at least some FX-specific neurological defects can be rescued in the adult FX brain after development.
Collapse
|
15
|
Chan W, Smith LE, Greenberg JS, Hong J, Mailick MR. Executive Functioning Mediates the Effect of Behavioral Problems on Depression in Mothers of Children With Developmental Disabilities. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2017; 122:11-24. [PMID: 28095060 PMCID: PMC5303617 DOI: 10.1352/1944-7558-122.1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The present investigation explored long-term relationships of behavioral symptoms of adolescents and adults with developmental disabilities with the mental health of their mothers. Fragile X premutation carrier mothers of an adolescent or adult child with fragile X syndrome (n = 95), and mothers of a grown child with autism (n = 213) were included. Behavioral symptoms at Time 1 were hypothesized to predict maternal depressive symptoms at Time 3 via maternal executive dysfunction at Time 2. Results provided support for the mediating pathway of executive dysfunction. Additionally, the association of behavioral symptoms with executive dysfunction differed across the two groups, suggesting that premutation carriers may be more susceptible to caregiving stress due to their genotype.
Collapse
Affiliation(s)
- Wai Chan
- Wai Chan, Leann E. Smith, Jan S. Greenberg, Jinkuk Hong, and Marsha R. Mailick, University of Wisconsin, Madison, Waisman Center
| | - Leann E Smith
- Wai Chan, Leann E. Smith, Jan S. Greenberg, Jinkuk Hong, and Marsha R. Mailick, University of Wisconsin, Madison, Waisman Center
| | - Jan S Greenberg
- Wai Chan, Leann E. Smith, Jan S. Greenberg, Jinkuk Hong, and Marsha R. Mailick, University of Wisconsin, Madison, Waisman Center
| | - Jinkuk Hong
- Wai Chan, Leann E. Smith, Jan S. Greenberg, Jinkuk Hong, and Marsha R. Mailick, University of Wisconsin, Madison, Waisman Center
| | - Marsha R Mailick
- Wai Chan, Leann E. Smith, Jan S. Greenberg, Jinkuk Hong, and Marsha R. Mailick, University of Wisconsin, Madison, Waisman Center
| |
Collapse
|
16
|
Brain structure and intragenic DNA methylation are correlated, and predict executive dysfunction in fragile X premutation females. Transl Psychiatry 2016; 6:e984. [PMID: 27959330 PMCID: PMC5290342 DOI: 10.1038/tp.2016.250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
DNA methylation of the Fragile X mental retardation 1 (FMR1) exon 1/intron 1 boundary has been associated with executive dysfunction in female carriers of a FMR1 premutation (PM: 55-199 CGG repeats), whereas neuroanatomical changes have been associated with executive dysfunction in PM males. To our knowledge, this study for the first time examined the inter-relationships between executive function, neuroanatomical structure and molecular measures (DNA methylation and FMR1 mRNA levels in blood) in PM and control (<44 CGG repeats) females. In the PM group, FMR1 intron 1 methylation was positively associated with executive function and cortical thickness in middle and superior frontal gyri, and left inferior parietal gyrus. By contrast, in the control group, FMR1 intron 1 methylation was negatively associated with cortical thickness of the left middle frontal gyrus and superior frontal gyri. No significant associations were revealed for either group between FMR1 mRNA and neuroanatomical structure or executive function. In the PM group, the lack of any significant association between FMR1 mRNA levels and phenotypic measures found in this study suggests that either FMR1 expression is not well conserved between tissues, or that FMR1 intron 1 methylation is linked to neuroanatomical and cognitive phenotype in PM females via a different mechanism.
Collapse
|
17
|
Seritan AL, Kim K, Benjamin I, Seritan I, Hagerman RJ. Risk Factors for Cognitive Impairment in Fragile X-Associated Tremor/Ataxia Syndrome. J Geriatr Psychiatry Neurol 2016; 29:328-337. [PMID: 27647792 PMCID: PMC5357600 DOI: 10.1177/0891988716666379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disease with motor, psychiatric, and cognitive manifestations that occurs in carriers of the fragile X mental retardation 1 ( FMR1) gene premutations. This was a retrospective chart review of 196 individuals (127 men and 69 women) with FXTAS. Forty-six (23%) participants were cognitively impaired, of whom 19 (10%) had dementia. Risk factors for dementia were examined (CGG repeat size; alcohol, benzodiazepine, and opioid use; diabetes; hyperlipidemia; hypertension; hypothyroidism; obesity; sleep apnea; surgeries with general anesthesia; depression; family history of dementia). Thirteen individuals with FXTAS and dementia were then compared to 13 cognitively intact individuals matched on age, gender, and FXTAS stage. CGG repeat size was significantly higher (mean = 98.5, standard deviation [SD] = 22.2) in the dementia group, compared to the cognitively intact group (mean = 81.6, SD = 11.5; P = .0256). These results show that CGG repeat size is a risk factor for FXTAS dementia.
Collapse
Affiliation(s)
- Andreea L. Seritan
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
| | - Kyoungmi Kim
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, Davis California,Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, Sacramento, California
| | | | - Ioana Seritan
- University of California, Berkeley, Berkeley, California
| | - Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, Sacramento, California,Department of Pediatrics, University of California, Davis Medical Center, Sacramento, California
| |
Collapse
|
18
|
Shelton AL, Cornish K, Clough M, Gajamange S, Kolbe S, Fielding J. Disassociation between brain activation and executive function in fragile X premutation females. Hum Brain Mapp 2016; 38:1056-1067. [PMID: 27739609 DOI: 10.1002/hbm.23438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 11/11/2022] Open
Abstract
Executive dysfunction has been demonstrated among premutation (PM) carriers (55-199 CGG repeats) of the Fragile X mental retardation 1 (FMR1) gene. Further, alterations to neural activation patterns have been reported during memory and comparison based functional magnetic resonance imaging (fMRI) tasks in these carriers. For the first time, the relationships between fMRI neural activation during an interleaved ocular motor prosaccade/antisaccade paradigm, and concurrent task performance (saccade measures of latency, accuracy and error rate) in PM females were examined. Although no differences were found in whole brain activation patterns, regions of interest (ROI) analyses revealed reduced activation in the right ventrolateral prefrontal cortex (VLPFC) during antisaccade trials for PM females. Further, a series of divergent and group specific relationships were found between ROI activation and saccade measures. Specifically, for control females, activation within the right VLPFC and supramarginal gyrus correlated negatively with antisaccade latencies, while for PM females, activation within these regions was found to negatively correlate with antisaccade accuracy and error rate (right VLPFC only). For control females, activation within frontal and supplementary eye fields and bilateral intraparietal sulci correlated with prosaccade latency and accuracy; however, no significant prosaccade correlations were found for PM females. This exploratory study extends previous reports of altered prefrontal neural engagement in PM carriers, and clearly demonstrates dissociation between control and PM females in the transformation of neural activation into overt measures of executive dysfunction. Hum Brain Mapp 38:1056-1067, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annie L Shelton
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Kim Cornish
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Meaghan Clough
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Sanuji Gajamange
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Scott Kolbe
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Joanne Fielding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Robertson EE, Hall DA, McAsey AR, O'Keefe JA. Fragile X-associated tremor/ataxia syndrome: phenotypic comparisons with other movement disorders. Clin Neuropsychol 2016; 30:849-900. [PMID: 27414076 PMCID: PMC7336900 DOI: 10.1080/13854046.2016.1202239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/12/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The purpose of this paper is to review the typical cognitive and motor impairments seen in fragile X-associated tremor/ataxia syndrome (FXTAS), essential tremor (ET), Parkinson disease (PD), spinocerebellar ataxias (SCAs), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) in order to enhance diagnosis of FXTAS patients. METHODS We compared the cognitive and motor phenotypes of FXTAS with each of these other movement disorders. Relevant neuropathological and neuroimaging findings are also reviewed. Finally, we describe the differences in age of onset, disease severity, progression rates, and average lifespan in FXTAS compared to ET, PD, SCAs, MSA, and PSP. We conclude with a flow chart algorithm to guide the clinician in the differential diagnosis of FXTAS. RESULTS By comparing the cognitive and motor phenotypes of FXTAS with the phenotypes of ET, PD, SCAs, MSA, and PSP we have clarified potential symptom overlap while elucidating factors that make these disorders unique from one another. In summary, the clinician should consider a FXTAS diagnosis and testing for the Fragile X mental retardation 1 (FMR1) gene premutation if a patient over the age of 50 (1) presents with cerebellar ataxia and/or intention tremor with mild parkinsonism, (2) has the middle cerebellar peduncle (MCP) sign, global cerebellar and cerebral atrophy, and/or subcortical white matter lesions on MRI, or (3) has a family history of fragile X related disorders, intellectual disability, autism, premature ovarian failure and has neurological signs consistent with FXTAS. Peripheral neuropathy, executive function deficits, anxiety, or depression are supportive of the diagnosis. CONCLUSIONS Distinct profiles in the cognitive and motor domains between these movement disorders may guide practitioners in the differential diagnosis process and ultimately lead to better medical management of FXTAS patients.
Collapse
Affiliation(s)
- Erin E Robertson
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Deborah A Hall
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| | - Andrew R McAsey
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Joan A O'Keefe
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| |
Collapse
|
20
|
Bourgeois JA. Neuropsychiatry of fragile X-premutation carriers with and without fragile X-associated tremor-ataxia syndrome: implications for neuropsychology. Clin Neuropsychol 2016; 30:913-28. [PMID: 27355575 DOI: 10.1080/13854046.2016.1192134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Clinical neuropsychologists benefit from clinical currency in recently ascertained neuropsychiatric illness, such as fragile X premutation (FXPM) disorders. The author reviewed the clinical literature through 2016 for neuropsychiatric phenotypes in FXPM disorders, including patients with fragile X-associated tremor/ataxia syndrome (FXTAS). METHODS A PubMed search using the search terms 'Fragile X,' 'Premutation,' 'Carriers,' 'Psychiatric,' 'Dementia,' 'Mood,' and 'Anxiety' for citations in the clinical literature through 2016 was reviewed for studies specifically examining the neuropsychiatric phenotype in FXPM patients. The relevant articles were classified according to specific neuropsychiatric syndromes, including child onset, adult onset with and without FXTAS, as well as common systemic comorbidities in FXPM patients. RESULTS Eighty-six articles were reviewed for the neuropsychiatric and other phenotypes in FXPM patients. The neuropsychiatric phenotype in FXPM patients is distinct from that of full mutation (Fragile X Syndrome) patients. FXTAS is associated with a specific cortical-subcortical major or mild neurocognitive disorder (NCD). CONCLUSIONS FXPM patients are at risk for neuropsychiatric illness. In addition, FXPM patients are at risk for other systemic conditions that should raise suspicion for FXPM-associated illnesses. Clinicians should consider a diagnosis of FXPM-associated neuropsychiatric illness when patients with specific clinical scenarios are encountered; especially in patient pedigrees consistent with a typical (often multigenerational) presentation of fragile X-associated conditions, confirmatory genetic testing should be considered. Clinical management should take into account the psychological challenges of a multigenerational genetic neuropsychiatric illness with a variable CNS and systemic clinical phenotype.
Collapse
Affiliation(s)
- James A Bourgeois
- a Department of Psychiatry , University of California San Francisco School of Medicine , San Francisco , CA , USA
| |
Collapse
|
21
|
Schneider A, Johnston C, Tassone F, Sansone S, Hagerman RJ, Ferrer E, Rivera SM, Hessl D. Broad autism spectrum and obsessive-compulsive symptoms in adults with the fragile X premutation. Clin Neuropsychol 2016; 30:929-43. [PMID: 27355445 DOI: 10.1080/13854046.2016.1189536] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Clinical observations and a limited number of research studies provide evidence that the fragile X premutation may confer risk for autism, executive dysfunction, and psychopathology. The link to autism spectrum symptoms and social cognition deficits with the premutation remains uncertain, and thus was the focus of the present investigation. METHOD Our sample included 131 individuals, 42 men/22 women with the FMR1 premutation (mean age = 31.83 ± 8.59 years) with a normal neurological exam, and 48 men/19 women healthy age-matched controls (mean age = 29.48 ± 7.29 years). Individuals completed a comprehensive neuropsychological battery with additional assessments for social cognition, broad autism spectrum, and obsessive-compulsive (OC) symptoms. RESULTS Premutation carriers self-reported higher rates of autism-related symptoms (Autism Quotient; p = .001). Among males only, premutation carriers showed more atypical social interaction (p < .001) and stereotyped behavior (p = .014) during standardized clinical examination on the Autism Diagnostic Observation Schedule (ADOS) relative to controls. Female premutation carriers reported significantly higher rates of OC symptoms compared to control females (p = .012). Molecular measures defining the expanded premutation (FMR1 CGG repeat length and/or mRNA) were significantly associated with a measure of theory of mind (Reading the Mind in the Eyes Task). CONCLUSIONS The results of this study indicate a higher rate of broad autism spectrum symptoms in some males with the premutation and provide evidence for an obsessive-compulsive subtype in female premutation carriers.
Collapse
Affiliation(s)
- A Schneider
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,c Department of Pediatrics , UC Davis School of Medicine , Sacramento , CA , USA
| | - C Johnston
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,b Department of Psychiatry and Behavioral Sciences , UC Davis School of Medicine , Sacramento , CA , USA
| | - F Tassone
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,f Department of Biochemistry and Molecular Medicine , UC Davis , Davis , CA , USA
| | - S Sansone
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,g Department of Human Development , UC Davis , Davis , CA , USA
| | - R J Hagerman
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,c Department of Pediatrics , UC Davis School of Medicine , Sacramento , CA , USA
| | - E Ferrer
- d Department of Psychology , UC Davis , Davis , CA , USA
| | - S M Rivera
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,d Department of Psychology , UC Davis , Davis , CA , USA.,e Center for Mind and Brain, UC Davis , Davis , CA , USA
| | - D Hessl
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,b Department of Psychiatry and Behavioral Sciences , UC Davis School of Medicine , Sacramento , CA , USA
| |
Collapse
|
22
|
Birch RC, Hocking DR, Trollor JN. Prevalence and predictors of subjective memory complaints in adult male carriers of the FMR1 premutation. Clin Neuropsychol 2016; 30:834-48. [PMID: 27355815 DOI: 10.1080/13854046.2016.1145905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To examine the prevalence and predictors of subjective memory complaints among a cohort of male FMR1 premutation (PM) carriers with and without fragile X-associated tremor ataxia syndrome (FXTAS). METHOD Twenty-two PM males (ages 26-80, 7 with FXTAS) and 24 matched controls with normal FMR1 alleles (ages 26-77) completed cross-sectional assessments of subjective memory complaints (memory complaints questionnaire, MAC-Q), objective memory function (Logical Memory subtest from the Wechsler Memory Scale, third edition), and psychiatric symptoms (Depression, Anxiety, and Stress Scales; the Structured Clinical Interview for DSM-IV-TR Axis I Disorders). RESULTS Although a greater proportion of PM males (36%) endorsed subjective memory complaints compared to controls (21%), formal statistical comparisons failed to reach significance. Multiple linear regression analyses revealed that subjective memory complaints were not associated with objective memory performance, but rather were predicted by elevated psychiatric symptoms. The relationship between psychiatric symptoms and subjective complaints found in the PM group was not statistically different to that found in the control group. There were no significant relationships between FMR1 molecular measures (CGG repeat length, FMR1 mRNA level) and measures of subjective memory complaints, objective memory performance, or psychiatric symptoms. CONCLUSIONS In keeping with findings from the general population, this study suggests that subjective ratings of memory performance in PM males are associated with underlying psychological factors rather than cross-sectional objective memory function. However, future longitudinal studies are required to determine whether subjective memory complaints may predict changes in objective memory function over time.
Collapse
Affiliation(s)
- Rachael Cherie Birch
- a Department of Developmental Disability Neuropsychiatry, School of Psychiatry , UNSW Australia , Sydney , Australia
| | - Darren Robert Hocking
- b Olga Tennison Autism Research Centre , School of Psychology and Public Health, La Trobe University , Melbourne , Australia
| | - Julian Norman Trollor
- a Department of Developmental Disability Neuropsychiatry, School of Psychiatry , UNSW Australia , Sydney , Australia.,c Centre for Healthy Brain Ageing, School of Psychiatry , UNSW Australia , Sydney , Australia
| |
Collapse
|
23
|
Grigsby J. The fragile X mental retardation 1 gene (FMR1): historical perspective, phenotypes, mechanism, pathology, and epidemiology. Clin Neuropsychol 2016; 30:815-33. [PMID: 27356167 DOI: 10.1080/13854046.2016.1184652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To provide an historical perspective and overview of the phenotypes, mechanism, pathology, and epidemiology of the fragile X-associated tremor/ataxia syndrome (FXTAS) for neuropsychologists. METHODS Selective review of the literature on FXTAS. RESULTS FXTAS is an X-linked neurodegenerative disorder of late onset. One of several phenotypes associated with different mutations of the fragile X mental retardation 1 gene (FMR1), FXTAS involves progressive action tremor, gait ataxia, and impaired executive functioning, among other features. It affects carriers of the FMR1 premutation, which may expand when passed from a mother to her children, in which case it is likely to cause fragile X syndrome (FXS), the most common inherited developmental disability. CONCLUSION This review briefly summarizes current knowledge of the mechanisms, epidemiology, and mode of transmission of FXTAS and FXS, as well as the neuropsychological, neurologic, neuropsychiatric, neuropathologic, and neuroradiologic phenotypes of FXTAS. Because it was only recently identified, FXTAS is not well known to most practitioners, and it remains largely misdiagnosed, despite the fact that its prevalence may be relatively high.
Collapse
Affiliation(s)
- Jim Grigsby
- a Departments of Psychology and Medicine , University of Colorado Denver , Denver , CO , USA
| |
Collapse
|
24
|
Wong LM, Tassone F, Rivera SM, Simon TJ. Temporal dynamics of attentional selection in adult male carriers of the fragile X premutation allele and adult controls. Front Hum Neurosci 2015; 9:37. [PMID: 25698960 PMCID: PMC4318336 DOI: 10.3389/fnhum.2015.00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/14/2015] [Indexed: 11/13/2022] Open
Abstract
Carriers of the fragile X premutation allele (fXPCs) have an expanded CGG trinucleotide repeat size within the FMR1 gene and are at increased risk of developing fragile x-associated tremor/ataxia syndrome (FXTAS). Previous research has shown that male fXPCs with FXTAS exhibit cognitive decline, predominantly in executive functions such as inhibitory control and working memory. Recent evidence suggests fXPCs may also exhibit impairments in processing temporal information. The attentional blink (AB) task is often used to examine the dynamics of attentional selection, but disagreements exist as to whether the AB is due to excessive or insufficient attentional control. In this study, we used a variant of the AB task and neuropsychological testing to explore the dynamics of attentional selection, relate AB performance to attentional control, and determine whether fXPCs exhibited temporal and/or attentional control impairments. Participants were adult male fXPCs, aged 18–48 years and asymptomatic for FXTAS (n = 19) and age-matched male controls (n = 20). We found that fXPCs did not differ from controls in the AB task, indicating that the temporal dynamics of attentional selection were intact. However, they were impaired in the letter-number sequencing task, a test of executive working memory. In the combined fXPC and control group, letter-number sequencing performance correlated positively with AB magnitude. This finding supports models that posit the AB is due to excess attentional control. In our two-pronged analysis approach, in control participants we replicated a previously observed effect and demonstrated that it persists under more stringent theoretical constraints, and we enhance our understanding of fXPCs by demonstrating that at least some aspects of temporal processing may be spared.
Collapse
Affiliation(s)
- Ling M Wong
- MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA ; Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA ; Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine Sacramento, CA, USA
| | - Susan M Rivera
- MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA ; Department of Psychology, University of California Davis Davis, CA, USA ; Center for Mind and Brain, University of California Davis Davis, CA, USA
| | - Tony J Simon
- MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA ; Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine Sacramento, CA, USA
| |
Collapse
|
25
|
Shelton AL, Cornish KM, Godler DE, Clough M, Kraan C, Bui M, Fielding J. Delineation of the working memory profile in female FMR1 premutation carriers: the effect of cognitive load on ocular motor responses. Behav Brain Res 2015; 282:194-200. [PMID: 25591477 DOI: 10.1016/j.bbr.2015.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/17/2014] [Accepted: 01/06/2015] [Indexed: 01/10/2023]
Abstract
Fragile X mental retardation 1 (FMR1) premutation carriers (PM-carriers) are characterised as having mid-sized expansions of between 55 and 200 CGG repeats in the 5' untranslated region of the FMR1 gene. While there is evidence of executive dysfunction in PM-carriers, few studies have explicitly explored working memory capabilities in female PM-carriers. 14 female PM-carriers and 13 age- and IQ-matched healthy controls completed an ocular motor n-back working memory paradigm. This task examined working memory ability and the effect of measured increases in cognitive load. Female PM-carriers were found to have attenuated working memory capabilities. Increasing the cognitive load did not elicit the expected reciprocal increase in the task errors for female PM-carriers, as it did in controls. However female PM-carriers took longer to respond than controls, regardless of the cognitive load. Further, FMR1 mRNA levels were found to significantly predict PM-carrier response time. Although preliminary, these findings provide further evidence of executive dysfunction, specifically disruption to working memory processes, which were found to be associated with increases in FMR1 mRNA expression in female PM-carriers. With future validation, ocular motor paradigms such as the n-back paradigm will be critical to the development of behavioural biomarkers for identification of PM-carrier cognitive-affective phenotypes.
Collapse
Affiliation(s)
- Annie L Shelton
- School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Kim M Cornish
- School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David E Godler
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Meaghan Clough
- School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Claudine Kraan
- School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne 3010, VIC, Australia
| | - Joanne Fielding
- School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Muzar Z, Lozano R. Current research, diagnosis, and treatment of fragile X-associated tremor/ataxia syndrome. Intractable Rare Dis Res 2014; 3:101-9. [PMID: 25606360 PMCID: PMC4298640 DOI: 10.5582/irdr.2014.01029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/30/2014] [Indexed: 12/13/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is caused by a premutation CGG-repeat expansion in the 5'UTR of the fragile X mental retardation 1 (FMR1) gene. The classical clinical manifestations include tremor, cerebellar ataxia, cognitive decline and psychiatric disorders. Other less frequent features are peripheral neuropathy and autonomic dysfunction. Cognitive decline, a form of frontal subcortical dementia, memory loss and executive function deficits are also characteristics of this disorder. In this review, we present an expansion of recommendations for genetic testing for adults with suspected premutation disorders and provide an update of the clinical, radiological and molecular research of FXTAS, as well as the current research in the treatment for this intractable complex neurodegenerative genetic disorder.
Collapse
Affiliation(s)
- Zukhrofi Muzar
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| | - Reymundo Lozano
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
- Address correspondence to: Dr. Reymundo Lozano, UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA. E-mail:
| |
Collapse
|
27
|
Qin M, Huang T, Liu Z, Kader M, Burlin T, Xia Z, Zeidler Z, Hukema RK, Smith CB. Cerebral protein synthesis in a knockin mouse model of the fragile X premutation. ASN Neuro 2014; 6:6/5/1759091414551957. [PMID: 25290064 PMCID: PMC4187003 DOI: 10.1177/1759091414551957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The (CGG)n-repeat in the 5′-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in fragile X premutation (FXPM) carriers and have a high risk of expansion to a full mutation on maternal transmission. FXPM carriers have an increased risk for developing progressive neurodegenerative syndromes and neuropsychological symptoms. FMR1 mRNA levels are elevated in FXPM, and it is thought that clinical symptoms might be caused by a toxic gain of function due to elevated FMR1 mRNA. Paradoxically, FMRP levels decrease moderately with increasing CGG repeat length in FXPM. Lowered FMRP levels may also contribute to the appearance of clinical problems. We previously reported increases in regional rates of cerebral protein synthesis (rCPS) in the absence of FMRP in an Fmr1 knockout mouse model and in a FXPM knockin (KI) mouse model with 120 to 140 CGG repeats in which FMRP levels are profoundly reduced (80%–90%). To explore whether the concentration of FMRP contributes to the rCPS changes, we measured rCPS in another FXPM KI model with a similar CGG repeat length and a 50% reduction in FMRP. In all 24 brain regions examined, rCPS were unaffected. These results suggest that even with 50% reductions in FMRP, normal protein synthesis rates are maintained.
Collapse
Affiliation(s)
- Mei Qin
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Tianjian Huang
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zhonghua Liu
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Michael Kader
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Burlin
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zengyan Xia
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zachary Zeidler
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Carolyn B Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Yang JC, Simon C, Niu YQ, Bogost M, Schneider A, Tassone F, Seritan A, Grigsby J, Hagerman PJ, Hagerman RJ, Olichney JM. Phenotypes of hypofrontality in older female fragile X premutation carriers. Ann Neurol 2014; 74:275-83. [PMID: 23686745 DOI: 10.1002/ana.23933] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/28/2013] [Accepted: 04/26/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate the nature of cognitive impairments and underlying brain mechanisms in older female fragile X premutation carriers with and without fragile X-associated tremor/ataxia syndrome (FXTAS). METHODS Extensive neuropsychological testing and cognitive event-related brain potentials (ERPs; particularly, the auditory P300) were examined in 84 female participants: 33 fragile X premutation carriers with FXTAS (mean age = 62.8 years), 25 premutation carriers without FXTAS (mean age = 55.4 years), and 26 normal healthy controls (mean age = 59.3 years). RESULTS Both premutation groups exhibited executive dysfunction on the Behavioral Dyscontrol Scale, with subtle impairments in inhibition and performance monitoring in female carriers without FXTAS, and more substantial deficits in FXTAS women. However, the female carrier group without FXTAS showed more pronounced deficiencies in working memory. Abnormal ERPs were recorded over the frontal lobes, where FXTAS patients showed both P300 amplitude reduction and latency prolongation, whereas only decreased frontal P300 amplitudes were found in carriers without FXTAS. These frontal P300 measures correlated with executive function and information processing speed. INTERPRETATION The neuropsychological testing and ERP results of the present study provide support for the hypothesis that executive dysfunction is the primary cognitive impairment among older female premutation carriers both with and without FXTAS, although these deficits are relatively mild compared to those in FXTAS males. These findings are consistent with a synergistic effect of the premutation and aging on cognitive impairment among older female fragile X premutation carriers, even in those without FXTAS symptoms.
Collapse
Affiliation(s)
- Jin-Chen Yang
- Center for Mind and Brain, University of California, Davis, Davis, CA; Department of Neurology, University of California, Davis, Sacramento, CA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Grigsby J, Cornish K, Hocking D, Kraan C, Olichney JM, Rivera SM, Schneider A, Sherman S, Wang JY, Yang JC. The cognitive neuropsychological phenotype of carriers of the FMR1 premutation. J Neurodev Disord 2014; 6:28. [PMID: 25136377 PMCID: PMC4135346 DOI: 10.1186/1866-1955-6-28] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/27/2014] [Indexed: 11/10/2022] Open
Abstract
The fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder affecting a subset of carriers of the FMR1 (fragile X mental retardation 1) premutation. Penetrance and expression appear to be significantly higher in males than females. Although the most obvious aspect of the phenotype is the movement disorder that gives FXTAS its name, the disorder is also accompanied by progressive cognitive impairment. In this review, we address the cognitive neuropsychological and neurophysiological phenotype for males and females with FXTAS, and for male and female unaffected carriers. Despite differences in penetrance and expression, the cognitive features of the disorder appear similar for both genders, with impairment of executive functioning, working memory, and information processing the most prominent. Deficits in these functional systems may be largely responsible for impairment on other measures, including tests of general intelligence and declarative learning. FXTAS is to a large extent a white matter disease, and the cognitive phenotypes observed are consistent with what some have described as white matter dementia, in contrast to the impaired cortical functioning more characteristic of Alzheimer's disease and related disorders. Although some degree of impaired executive functioning appears to be ubiquitous among persons with FXTAS, the data suggest that only a subset of unaffected carriers of the premutation - both female and male - demonstrate such deficits, which typically are mild. The best-studied phenotype is that of males with FXTAS. The manifestations of cognitive impairment among asymptomatic male carriers, and among women with and without FXTAS, are less well understood, but have come under increased scrutiny.
Collapse
Affiliation(s)
- Jim Grigsby
- Department of Psychology, University of Colorado Denver, Denver, CO, USA ; Department of Medicine; Division of Health Care Policy and Research, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kim Cornish
- School of Psychology & Psychiatry; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Darren Hocking
- Olga Tennison Autism Research Centre, School of Psychological Science, La Trobe University, Melbourne, Victoria, Australia
| | - Claudine Kraan
- School of Psychology & Psychiatry; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - John M Olichney
- Center for Mind and Brain, University of California, Davis, CA, USA ; Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Susan M Rivera
- Center for Mind and Brain, University of California, Davis, CA, USA ; Department of Psychology, University of California-Davis, Sacramento, CA, USA ; MIND Institute, University of California-Davis Medical Center, Sacramento, CA, USA
| | - Andrea Schneider
- Center for Mind and Brain, University of California, Davis, CA, USA ; MIND Institute, University of California-Davis Medical Center, Sacramento, CA, USA
| | | | - Jun Yi Wang
- Center for Mind and Brain, University of California, Davis, CA, USA ; Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Jin-Chen Yang
- Center for Mind and Brain, University of California, Davis, CA, USA ; Department of Neurology, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
30
|
Lozano R, Summers S, Lozano C, Mu Y, Hessl D, Nguyen D, Tassone F, Hagerman R. Association between macroorchidism and intelligence in FMR1 premutation carriers. Am J Med Genet A 2014; 164A:2206-11. [PMID: 24903624 DOI: 10.1002/ajmg.a.36624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/01/2014] [Indexed: 11/08/2022]
Abstract
Characteristics of fragile X syndrome include macroorchidism and intellectual disability, which are associated with decreased FMRP levels. FMRP is highly expressed in many tissues, but primarily in the brain and testis. The relationship between these two characteristics has not previously been studied in the premutation or carrier state. To examine this among premutation carriers and a possible association with IQ, we evaluated macroorchidism status among 213 males including 142 premutation carriers and 71 controls. The prevalence of macroorchidism among premutation carriers was 32.4% (46 out of 142), and 5.6% among controls (4 out of 71, P < 0.0001). Among premutation carriers, the age-adjusted odds ratio (OR) of macroorchidism was significantly increased with increasing FMR1 mRNA (OR 1.84, 95% confidence interval [CI] 1.04-3.25; P = 0.035). With respect to the association between macroorchidism and IQ, after adjustment for number of CGG repeats and age, premutation carriers with macroorchidism had lower verbal IQ (104.67 ± 15.86, P = 0.0152) and full scale IQ (102.98 ± 15.78, P = 0.0227) than premutation carriers without macroorchidism (verbal IQ 112.38 ± 14.14, full scale IQ 110.24 ± 14.21). Similar associations were observed for both verbal IQ (P = 0.034) and full scale IQ (P = 0.039) after being adjusted for age and FMR1 mRNA. These preliminary data support a correlation between macroorchidism and lower verbal and full scale IQ in a relevant proportion of premutation carrier males. Whether this is due to higher levels of FMR1 mRNA or to lower FMRP levels it remains to be established.
Collapse
Affiliation(s)
- Reymundo Lozano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Medical Center, Sacramento, California; Departments of Pediatrics, UC Davis Medical Center, Sacramento, California
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Birch RC, Cornish KM, Hocking DR, Trollor JN. Understanding the neuropsychiatric phenotype of fragile X-associated tremor ataxia syndrome: a systematic review. Neuropsychol Rev 2014; 24:491-513. [PMID: 24828430 DOI: 10.1007/s11065-014-9262-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/22/2014] [Indexed: 11/28/2022]
Abstract
Fragile X-associated tremor ataxia syndrome (FXTAS) is a recently identified X-linked neurodegenerative disorder affecting a proportion of premutation carriers of the Fragile X Mental Retardation 1 (FMR1) gene. Previous research suggests that cognitive and psychiatric features of FXTAS may include primary impairments in executive function and increased vulnerability to mood and anxiety disorders. A number of these reports, however, are based on overlapping cohorts or have produced inconsistent findings. A systematic review was therefore conducted to further elucidate the neuropsychiatric features characteristic of FXTAS. Fourteen papers met inclusion criteria for the review and were considered to represent nine independent FXTAS cohorts. Findings from the review suggest that the neuropsychiatric phenotype of FXTAS is characterised primarily by poorer performance on measures of executive function, working memory, information processing speed, and fine motor control when compared to matched comparison groups. Two studies were identified in which psychiatric symptoms in FXTAS were compared with controls, and these yielded mixed results. Overall the results of this review support previous reports that the neuropsychiatric profile of FXTAS is consistent with a dysexecutive fronto-subcortical syndrome. However, additional controlled studies are required to progress our understanding of FXTAS and how the neuropsychiatric profile relates to underlying pathological mechanisms.
Collapse
Affiliation(s)
- R C Birch
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
32
|
Wong LM, Goodrich-Hunsaker NJ, McLennan Y, Tassone F, Zhang M, Rivera SM, Simon TJ. Eye movements reveal impaired inhibitory control in adult male fragile X premutation carriers asymptomatic for FXTAS. Neuropsychology 2014; 28:571-584. [PMID: 24773414 DOI: 10.1037/neu0000066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Fragile X premutation carriers (fXPCs) have an expansion of 55-200 CGG repeats in the FMR1 gene. Male fXPCs are at risk for developing a neurodegenerative motor disorder (FXTAS) often accompanied by inhibitory control impairments, even in fXPCs without motor symptoms. Inhibitory control impairments might precede, and thus indicate elevated risk for motor impairment associated with FXTAS. We tested whether inhibitory impairments are observable in fXPCs by assessing oculomotor performance. METHOD Participants were males aged 18-48 years asymptomatic for FXTAS. FXPCs (n = 21) and healthy age-matched controls (n = 22) performed four oculomotor tasks. In a Fixation task, participants fixated on a central cross and maintained gaze position when a peripheral stimulus appeared. In a Pursuit task, participants maintained gaze on a square moving at constant velocity. In a Prosaccade task, participants fixated on a central cross, then looked at a peripheral stimulus. An Antisaccade task was identical to the Prosaccade task, except participants looked in the direction opposite the stimulus. Inhibitory cost was the difference in saccade latency between the Antisaccade and Prosaccade tasks. RESULTS Relative to controls, fXPCs had longer saccade latency in the Antisaccade task. In fXPCs, inhibitory cost was positively associated with vermis area in lobules VI-VII. CONCLUSION Antisaccades require inhibitory control to inhibit reflexive eye movements. We found that eye movements are sensitive to impaired inhibitory control in fXPCs asymptomatic for FXTAS. Thus, eye movements may be useful in assessing FXTAS risk or disease progression.
Collapse
Affiliation(s)
- Ling M Wong
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| | | | - Yingratana McLennan
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis Medical Center
| | - Melody Zhang
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis
| | - Susan M Rivera
- Department of Psychology, University of California, Davis
| | - Tony J Simon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| |
Collapse
|
33
|
Besterman AD, Wilke SA, Mulligan TE, Allison SC, Hagerman R, Seritan AL, Bourgeois JA. Towards an Understanding of Neuropsychiatric Manifestations in Fragile X Premutation Carriers. FUTURE NEUROLOGY 2014; 9:227-239. [PMID: 25013385 DOI: 10.2217/fnl.14.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fragile X-associated disorders (FXD) are a group of disorders caused by expansion of non-coding CGG repeat elements in the fragile X (FMR1) gene. One of these disorders, fragile X syndrome (FXS), is the most common heritable cause of intellectual disability, and is caused by large CGG repeat expansions (>200) resulting in silencing of the FMR1 gene. An increasingly recognized number of neuropsychiatric FXD have recently been identified that are caused by 'premutation' range expansions (55-200). These disorders are characterized by a spectrum of neuropsychiatric manifestations ranging from an increased risk of neurodevelopmental, mood and anxiety disorders to neurodegenerative phenotypes such as the fragile X-associated tremor ataxia syndrome (FXTAS). Here, we review advances in the clinical understanding of neuropsychiatric disorders in premutation carriers across the lifespan and offer guidance for the detection of such disorders by practicing psychiatrists and neurologists.
Collapse
Affiliation(s)
- Aaron D Besterman
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Scott A Wilke
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Tua-Elisabeth Mulligan
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Stephen C Allison
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Randi Hagerman
- Department of Pediatrics and MIND Institute, University of California Davis, Sacramento, California 95817 USA
| | - Andreea L Seritan
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis, Sacramento, California 95817 USA
| | - James A Bourgeois
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| |
Collapse
|
34
|
Hippolyte L, Battistella G, Perrin AG, Fornari E, Cornish KM, Beckmann JS, Niederhauser J, Vingerhoets FJG, Draganski B, Maeder P, Jacquemont S. Investigation of memory, executive functions, and anatomic correlates in asymptomatic FMR1 premutation carriers. Neurobiol Aging 2014; 35:1939-46. [PMID: 24612675 DOI: 10.1016/j.neurobiolaging.2014.01.150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/30/2013] [Accepted: 01/30/2014] [Indexed: 01/26/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset movement disorder associated with FMR1 premutation alleles. Asymptomatic premutation (aPM) carriers have preserved cognitive functions, but they present subtle executive deficits. Current efforts are focusing on the identification of specific cognitive markers that can detect aPM carriers at higher risk of developing FXTAS. This study aims at evaluating verbal memory and executive functions as early markers of disease progression while exploring associated brain structure changes using diffusion tensor imaging. We assessed 30 aPM men and 38 intrafamilial controls. The groups perform similarly in the executive domain except for decreased performance in motor planning in aPM carriers. In the memory domain, aPM carriers present a significant decrease in verbal encoding and retrieval. Retrieval is associated with microstructural changes of the white matter (WM) of the left hippocampal fimbria. Encoding is associated with changes in the WM under the right dorsolateral prefrontal cortex, a region implicated in relational memory encoding. These associations were found in the aPM group only and did not show age-related decline. This may be interpreted as a neurodevelopmental effect of the premutation, and longitudinal studies are required to better understand these mechanisms.
Collapse
Affiliation(s)
- Loyse Hippolyte
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Giovanni Battistella
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Aline G Perrin
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Eleonora Fornari
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Centre d'Imagerie Biomédicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Kim M Cornish
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Jacques S Beckmann
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Julien Niederhauser
- Centre d'Imagerie Biomédicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - François J G Vingerhoets
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Bogdan Draganski
- LREN-Departement des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philippe Maeder
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sébastien Jacquemont
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
35
|
Shelton AL, Cornish K, Kraan C, Georgiou-Karistianis N, Metcalfe SA, Bradshaw JL, Hocking DR, Archibald AD, Cohen J, Trollor JN, Fielding J. Exploring inhibitory deficits in female premutation carriers of fragile X syndrome: through eye movements. Brain Cogn 2014; 85:201-8. [PMID: 24424424 DOI: 10.1016/j.bandc.2013.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023]
Abstract
There is evidence which demonstrates that a subset of males with a premutation CGG repeat expansion (between 55 and 200 repeats) of the fragile X mental retardation 1 gene exhibit subtle deficits of executive function that progressively deteriorate with increasing age and CGG repeat length. However, it remains unclear whether similar deficits, which may indicate the onset of more severe degeneration, are evident in female PM-carriers. In the present study we explore whether female PM-carriers exhibit deficits of executive function which parallel those of male PM-carriers. Fourteen female fragile X premutation carriers without fragile X-associated tremor/ataxia syndrome and fourteen age, sex, and IQ matched controls underwent ocular motor and neuropsychological tests of select executive processes, specifically of response inhibition and working memory. Group comparisons revealed poorer inhibitory control for female premutation carriers on ocular motor tasks, in addition to demonstrating some difficulties in behaviour self-regulation, when compared to controls. A negative correlation between CGG repeat length and antisaccade error rates for premutation carriers was also found. Our preliminary findings indicate that impaired inhibitory control may represent a phenotype characteristic which may be a sensitive risk biomarker within this female fragile X premutation population.
Collapse
Affiliation(s)
- Annie L Shelton
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Kim Cornish
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Claudine Kraan
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Sylvia A Metcalfe
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3025, Australia
| | - John L Bradshaw
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Darren R Hocking
- Olga Tennison Autism Research Centre, School of Psychological Science, La Trobe University, Bundoora 3086, Australia
| | - Alison D Archibald
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3025, Australia; Victorian Clinical Genetics Services, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Jonathan Cohen
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria 3052, Australia; Centre for Developmental Disability Health Victoria, Monash University, Clayton, Victoria 3800, Australia; Fragile X Alliance Inc., Clinic and Resource Centre, 263 Glen Eira Road, North Caulfield, Victoria 3161, Australia
| | - Julian N Trollor
- Department of Developmental Disability Neuropsychiatry and Centre for Health Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia
| | - Joanne Fielding
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
36
|
Wong LM, Goodrich-Hunsaker NJ, McLennan YA, Tassone F, Rivera SM, Simon TJ. A cross-sectional analysis of orienting of visuospatial attention in child and adult carriers of the fragile X premutation. J Neurodev Disord 2014; 6:45. [PMID: 25937844 PMCID: PMC4416306 DOI: 10.1186/1866-1955-6-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 11/15/2014] [Indexed: 11/13/2022] Open
Abstract
Background Fragile X premutation carriers (fXPCs) have an expansion of 55–200 CGG repeats in the FMR1 gene. Male fXPCs are at risk for developing a neurodegenerative motor disorder (fragile X-associated tremor/ataxia syndrome (FXTAS)) often accompanied by cognitive decline. Several broad domains are implicated as core systems of dysfunction in fXPCs, including perceptual processing of spatial information, orienting of attention to space, and inhibiting attention to irrelevant distractors. We tested whether orienting of spatial attention is impaired in fXPCs. Methods Participants were fXPCs or healthy controls (HCs) asymptomatic for FXTAS. In experiment 1, they were male and female children and adults (aged 7–45 years). They oriented attention in response to volitional (endogenous) and reflexive (exogenous) cues. In experiment 2, the participants were men (aged 18–48 years). They oriented attention in an endogenous cueing task that manipulated the amount of information in the cue. Results In women, fXPCs exhibited slower reaction times than HCs in both the endogenous and exogenous conditions. In men, fXPCs exhibited slower reaction times than HCs in the exogenous condition and in the challenging endogenous cueing task with probabilistic cues. In children, fXPCs did not differ from HCs. Conclusions Because adult fXPCs were slower even when controlling for psychomotor speed, results support the interpretation that a core dysfunction in fXPCs is the allocation of spatial attention, while perceptual processing and attention orienting are intact. These findings indicate the importance of considering age and sex when interpreting and generalizing studies of fXPCs.
Collapse
Affiliation(s)
- Ling M Wong
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; War Related Illness and Injury Study Center, Veterans Affairs Medical Center, Washington, DC 20422 USA
| | | | - Yingratana A McLennan
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA
| | - Flora Tassone
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; Department of Biochemistry and Molecular Medicine, University of California, Davis Medical Center, Sacramento, CA 95817 USA
| | - Susan M Rivera
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; Department of Psychology, University of California, Davis, CA 95616 USA ; Center for Mind and Brain, University of California, Davis, CA 95616 USA
| | - Tony J Simon
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center, Sacramento, CA 95817 USA
| |
Collapse
|
37
|
Kraan CM, Hocking DR, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Fielding J, Trollor J, Bradshaw JL, Cohen J, Cornish KM. Impaired response inhibition is associated with self-reported symptoms of depression, anxiety, and ADHD in female FMR1 premutation carriers. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:41-51. [PMID: 24166828 DOI: 10.1002/ajmg.b.32203] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/27/2013] [Indexed: 12/30/2022]
Abstract
Fragile X Mental Retardation 1 (FMR1) premutation carriers (PM-carriers) have a defective trinucleotide expansion on the FMR1 gene that is associated with continuum of neuropsychological and mental disorders. Currently, little is known about the distinct subcomponents of executive function potentially impaired in female PM-carriers, and there have been no investigations into associations between executive function and incidences of mental disorders. A total of 35 female PM-carriers confirmed by Asuragen triple primed PCR DNA testing and 35 age- and intelligence-matched controls completed tests of executive function (i.e., response inhibition and working memory) and self-reported on social anxiety, depression, and ADHD predominantly inattentive (ADHD-PI) symptoms. Compared to controls, PM-carriers were significantly elevated on self-reported social anxiety and ADHD-PI symptoms. Irrespective of mental symptoms, female PM-carries performed significantly worse than controls on a response inhibition test, and further investigations revealed significant correlations between executive function performance and self-reported symptoms of anxiety, depression and ADHD-PI. Critically, among PM-carriers with good executive function performance, no women exceeded threshold markers for probable caseness of mental disorder. However, rates of probable caseness were elevated in those with average performance (response inhibition: social anxiety: 41.7%; depression: 20%; ADHD: 44.4%; working memory: social anxiety: 27.3%; depression: 9.1%; ADHD: 18.2%) and highly elevated for those with poor executive function performance (response inhibition: social anxiety: 58.3%; depression: 80%; ADHD: 55.6%; working memory: social anxiety: 100%; depression: 50%; ADHD: 83.3%). These data suggest that subtle executive dysfunction may be a useful neuropsychological indicator for a range of mental disorders previously reported in female PM-carriers.
Collapse
Affiliation(s)
- Claudine M Kraan
- Faculty of Medicine, Nursing, and Health Sciences, School of Psychology & Psychiatry, Monash University, Clayton, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hagerman R, Hagerman P. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol 2013; 12:786-98. [PMID: 23867198 DOI: 10.1016/s1474-4422(13)70125-x] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fragile X syndrome, the most common heritable form of cognitive impairment, is caused by epigenetic silencing of the fragile X (FMR1) gene owing to large expansions (>200 repeats) of a non-coding CGG-repeat element. Smaller, so-called premutation expansions (55-200 repeats) can cause a family of neurodevelopmental phenotypes (attention deficit hyperactivity disorder, autism spectrum disorder, seizure disorder) and neurodegenerative (fragile X-associated tremor/ataxia syndrome [FXTAS]) phenotypes through an entirely distinct molecular mechanism involving increased FMR1 mRNA production and toxicity. Results of basic cellular, animal, and human studies have helped to elucidate the underlying RNA toxicity mechanism, while clinical research is providing a more nuanced picture of the range of clinical manifestations. Advances of knowledge on both mechanistic and clinical fronts are driving new approaches to targeted treatment, but two important necessities are emerging: to define the extent to which the mechanisms contributing to FXTAS also contribute to other neurodegenerative and medical disorders, and to redefine FXTAS in view of its differing presentations and associated features.
Collapse
Affiliation(s)
- Randi Hagerman
- Department of Pediatrics and the MIND Institute, University of California, Davis, School of Medicine, Davis, CA, USA
| | | |
Collapse
|
39
|
Berry-Kravis E, Hessl D, Abbeduto L, Reiss AL, Beckel-Mitchener A, Urv TK. Outcome measures for clinical trials in fragile X syndrome. J Dev Behav Pediatr 2013; 34:508-22. [PMID: 24042082 PMCID: PMC3784007 DOI: 10.1097/dbp.0b013e31829d1f20] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Progress in basic neuroscience has led to identification of molecular targets for treatment in fragile X syndrome (FXS) and other neurodevelopmental disorders; however, there is a gap in translation to targeted therapies in humans. One major obstacle to the demonstration of efficacy in human trials has been the lack of generally accepted endpoints to assess improvement in function in individuals with FXS. To address this problem, the National Institutes of Health convened a meeting of leading scientists and clinicians with the goal of identifying and standardizing outcome measures for use as potential endpoints in clinical trials in FXS. METHODS Participants in the meeting included FXS experts, experts in the design and implementation of clinical trials and measure development, and representatives from advocacy groups, industry, and federal agencies. RESULTS The group generated recommendations for optimal outcome measures in cognitive, behavioral, and biomarker/medical domains, including additional testing and validation of existing measures and development of new measures in areas of need. Although no one endpoint or set of endpoints could be identified that met all criteria as an optimal measure, recommendations are presented in this report. CONCLUSION The report is expected to guide the selection of measures in clinical trials and lead to the use of a more consistent battery of measures across trials. Furthermore, this will help to direct research toward gaps in the development of validated FXS-specific outcome measures and to assist with interpretation of clinical trial data by creating templates for measurement of treatment efficacy.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences and Biochemistry Rush University Medical Center, Chicago, IL
| | - David Hessl
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA
- MIND Institute, University of California, Davis Medical Center, Sacramento, CA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA
- MIND Institute, University of California, Davis Medical Center, Sacramento, CA
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research and Departments of Psychiatry and Behavioral Sciences, Radiology and Pediatrics Stanford University School of Medicine, Stanford, CA
| | | | - Tiina K. Urv
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
40
|
Cook D, Nuro E, Murai KK. Increasing our understanding of human cognition through the study of Fragile X Syndrome. Dev Neurobiol 2013; 74:147-77. [PMID: 23723176 PMCID: PMC4216185 DOI: 10.1002/dneu.22096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
41
|
Cognitive-motor interference during postural control indicates at-risk cerebellar profiles in females with the FMR1 premutation. Behav Brain Res 2013; 253:329-36. [PMID: 23896050 DOI: 10.1016/j.bbr.2013.07.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 11/22/2022]
Abstract
Recent investigations report a higher risk of motor symptoms in females with the FMR1 premutation (PM-carriers) than has hitherto been appreciated. Here we examined basic sensorimotor and postural control under different sensory and attentional dual-task demands. Physiological performance and postural sway measures from the Physiological Profile Assessment (Lord et al., 2003 [39]) were conducted in 28 female PM-carriers (mean age: 41.32±8.03) and 31 female controls with normal FMR1 alleles (mean age: 41.61±8.3). Multiple regression analyses were conducted to examine the moderating role of CGG-repeat length on the relation between age and postural sway under dual-task interference. In female PM-carriers, our results showed significantly poorer proprioceptive awareness, slower reaction time, and greater postural displacement when performing a concurrent verbal fluency task. Significantly, these findings showed age- and genetically-modulated changes in dual-task postural displacement in the medio-lateral direction in female PM-carriers. These findings highlight the sensitivity of postural control paradigms in identifying early cerebellar postural changes that may act as surrogate markers of future decline in female PM-carriers.
Collapse
|
42
|
Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 2013; 126:1-19. [PMID: 23793382 DOI: 10.1007/s00401-013-1138-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/30/2013] [Indexed: 12/17/2022]
Abstract
Since its discovery in 2001, our understanding of fragile X-associated tremor/ataxia syndrome (FXTAS) has undergone a remarkable transformation. Initially characterized rather narrowly as an adult-onset movement disorder, the definition of FXTAS is broadening; moreover, the disorder is now recognized as only one facet of a much broader clinical pleiotropy among children and adults who carry premutation alleles of the FMR1 gene. Furthermore, the intranuclear inclusions of FXTAS, once thought to be a CNS-specific marker of the disorder, are now known to be widely distributed in multiple non-CNS tissues; this observation fundamentally changes our concept of the disease, and may provide the basis for understanding the diverse medical problems associated with the premutation. Recent work on the pathogenic mechanisms underlying FXTAS indicates that the origins of the late-onset neurodegenerative disorder actually lie in early development, raising the likelihood that all forms of clinical involvement among premutation carriers have a common underlying mechanistic basis. There has also been great progress in our understanding of the triggering event(s) in FXTAS pathogenesis, which is now thought to involve sequestration of one or more nuclear proteins involved with microRNA biogenesis. Moreover, there is mounting evidence that mitochondrial dysregulation contributes to the decreased cell function and loss of viability, evident in mice even during the neonatal period. Taken together, these recent findings offer hope for early interventions for FXTAS, well before the onset of overt disease, and for the treatment of other forms of clinical involvement among premutation carriers.
Collapse
|
43
|
Neurobehavioural evidence for the involvement of the FMR1 gene in female carriers of fragile X syndrome. Neurosci Biobehav Rev 2013; 37:522-47. [DOI: 10.1016/j.neubiorev.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 12/11/2012] [Accepted: 01/06/2013] [Indexed: 12/19/2022]
|
44
|
Abstract
Premutation carriers of the fragile X mental retardation gene (especially men) older than 50 may develop a neurodegenerative disease, the fragile X-associated tremor/ataxia syndrome (FXTAS). Carriers may present with varied cognitive impairments. Attention, working memory, declarative and procedural learning, information processing speed, and recall are among the cognitive domains affected. Executive dysfunction is a prominent deficit, which has been demonstrated mostly in men with FXTAS. In more advanced stages of FXTAS, both men and women may develop a mixed cortical-subcortical dementia, manifested by psychomotor slowing and deficits in attention, retrieval, recall, visuospatial skills, occasional apraxia, as well as overt personality changes. Studies have shown dementia rates as high as 37-42% in older men with FXTAS, although more research is needed to understand the prevalence and risk factors of dementia in women with FXTAS. Neuropsychiatric symptoms are common and reflect the dysfunction of underlying frontal-subcortical neural circuits, along with components of the cerebellar cognitive affective syndrome. These include labile or depressed mood, anxiety, disinhibition, impulsivity, and (rarely) psychotic symptoms. In this paper we review the information available to date regarding the prevalence and clinical picture of FXTAS dementia. Differential diagnosis may be difficult, given overlapping motor and non-motor signs with several other neurodegenerative diseases. Anecdotal response to cholinesterase inhibitors and memantine has been reported, while symptomatic treatments can address the neuropsychiatric manifestations of FXTAS dementia.
Collapse
Affiliation(s)
- Andreea Seritan
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, California
| | - Jennifer Cogswell
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California
| | - Jim Grigsby
- Departments of Psychology and Medicine, University of Colorado Denver, Denver, Colorado
| |
Collapse
|
45
|
Xq27 FRAXA locus is a strong candidate for dyslexia: evidence from a genome-wide scan in French families. Behav Genet 2013; 43:132-40. [PMID: 23307483 DOI: 10.1007/s10519-012-9575-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/08/2012] [Indexed: 12/11/2022]
Abstract
Dyslexia is a frequent neurodevelopmental learning disorder. To date, nine susceptibility loci have been identified, one of them being DYX9, located in Xq27. We performed the first French SNP linkage study followed by candidate gene investigation in dyslexia by studying 12 multiplex families (58 subjects) with at least two children affected, according to categorical restrictive criteria for phenotype definition. Significant results emerged on Xq27.3 within DYX9. The maximum multipoint LOD score reached 3,884 between rs12558359 and rs454992. Within this region, seven candidate genes were investigated for mutations in exonic sequences (CXORF1, CXORF51, SLITRK2, FMR1, FMR2, ASFMR1, FMR1NB), all having a role during brain development. We further looked for 5'UTR trinucleotide repeats in FMR1 and FMR2 genes. No mutation or polymorphism co-segregating with dyslexia was found. This finding in French families with Dyslexia showed significant linkage on Xq27.3 enclosing FRAXA, and consequently confirmed the DYX9 region as a robust susceptibility locus. We reduced the previously described interval from 6.8 (DXS1227-DXS8091) to 4 Mb also disclosing a higher LOD score.
Collapse
|
46
|
Battistella G, Niederhauser J, Fornari E, Hippolyte L, Gronchi Perrin A, Lesca G, Forzano F, Hagmann P, Vingerhoets FJG, Draganski B, Maeder P, Jacquemont S. Brain structure in asymptomatic FMR1 premutation carriers at risk for fragile X-associated tremor/ataxia syndrome. Neurobiol Aging 2013; 34:1700-7. [PMID: 23298734 DOI: 10.1016/j.neurobiolaging.2012.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/03/2012] [Indexed: 01/20/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset movement disorder affecting FMR1 premutation carriers, is associated with cerebral and cerebellar lesions. The aim of this study was to test whether computational anatomy can detect similar patterns in asymptomatic FMR1 premutation carriers (mean age 46.7 years) with qualitatively normal -appearing grey and white matter on brain MRI. We used a multimodal imaging protocol to characterize brain anatomy by automated assessment of gray matter volume and white matter properties. Structural changes in the hippocampus and in the cerebellar motor network with decreased gray matter volume in lobule VI and white matter alterations of the corresponding afferent projections through the middle cerebellar peduncles are demonstrated. Diffuse subcortical white matter changes in both hemispheres, without corresponding gray matter alterations, are only identified through age × group interactions. We interpret the hippocampal fimbria and cerebellar changes as early alterations with a possible neurodevelopmental origin. In contrast, progression of the diffuse cerebral hemispheric white matter changes suggests a neurodegenerative process, leading to late-onset lesions, which may mark the imminent onset of FXTAS.
Collapse
Affiliation(s)
- Giovanni Battistella
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Young adult male carriers of the fragile X premutation exhibit genetically modulated impairments in visuospatial tasks controlled for psychomotor speed. J Neurodev Disord 2012; 4:26. [PMID: 23148490 PMCID: PMC3506571 DOI: 10.1186/1866-1955-4-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/25/2012] [Indexed: 02/04/2023] Open
Abstract
Background A previous study reported enhanced psychomotor speed, and subtle but significant cognitive impairments, modulated by age and by mutations in the fragile X mental retardation 1 (FMR1) gene in adult female fragile X premutation carriers (fXPCs). Because male carriers, unlike females, do not have a second, unaffected FMR1 allele, male fXPCs should exhibit similar, if not worse, impairments. Understanding male fXPCs is of particular significance because of their increased risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS). Methods Male fXPCs (n = 18) and healthy control (HC) adults (n = 26) aged less than 45 years performed two psychomotor speed tasks (manual and oral) and two visuospatial tasks (magnitude comparison and enumeration). In the magnitude comparison task, participants were asked to compare and judge which of two bars was larger. In the enumeration task, participants were shown between one and eight green bars in the center of the screen, and asked to state the total number displayed. Enumeration typically proceeds in one of two modes: subitizing, a fast and accurate process that works only with a small set of items, and counting, which requires accurate serial-object detection and individuation during visual search. We examined the associations between the performance on all tasks and the age, full-scale intelligent quotient, and CGG repeat length of participants. Results We found that in the magnitude comparison and enumeration tasks, male fXPCs exhibited slower reaction times relative to HCs, even after controlling for simple reaction time. Conclusions Our results indicate that male fXPCs as a group show impairments (slower reaction times) in numerical visuospatial tasks, which are consistent with previous findings. This adds to a growing body of literature characterizing the phenotype in fXPCs who are asymptomatic for FXTAS. Future longitudinal studies are needed to determine how these impairments relate to risk of developing FXTAS.
Collapse
|
48
|
Wang JY, Hessl D, Iwahashi C, Cheung K, Schneider A, Hagerman RJ, Hagerman PJ, Rivera SM. Influence of the fragile X mental retardation (FMR1) gene on the brain and working memory in men with normal FMR1 alleles. Neuroimage 2012; 65:288-98. [PMID: 23063447 DOI: 10.1016/j.neuroimage.2012.09.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 09/06/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022] Open
Abstract
The fragile X mental retardation 1 (FMR1) gene plays an important role in the development and maintenance of neuronal circuits that are essential for cognitive functioning. We explored the functional linkage(s) among lymphocytic FMR1 gene expression, brain structure, and working memory in healthy adult males. We acquired T1-weighted and diffusion tensor imaging from 37 males (18-80 years, mean ± SD= 40.7 ± 17.3 years) with normal FMR1 alleles and performed genetic and working memory assessments. Brain measurements were obtained from fiber tracts important for working memory (i.e. the arcuate fasciculus, anterior cingulum bundle, inferior longitudinal fasciculus, and the genu and anterior body of the corpus callosum), individual voxels, and whole brain. Both FMR1 mRNA and protein (FMRP) levels exhibited significant associations with brain measurements, with FMRP correlating positively with gray matter volume and white matter structural organization, and FMR1 mRNA negatively with white matter structural organization. The correlation was widespread, impacting rostral white matter and 2 working-memory fiber tracts for FMRP, and all cerebral white matter areas except the fornix and cerebellar peduncles and all 4 fiber tracts for FMR1 mRNA. In addition, the levels of FMR1 mRNA as well as the fiber tracts demonstrated a significant correlation with working memory performance. While FMR1 mRNA exhibited a negative correlation with working memory, fiber tract structural organization showed a positive correlation. These findings suggest that the FMR1 gene is a genetic factor common for both working memory and brain structure, and has implications for our understanding of the transmission of intelligence and brain structure.
Collapse
Affiliation(s)
- Jun Yi Wang
- Center for Mind and Brain, University of California-Davis, Davis, CA 95618, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Losh M, Klusek J, Martin GE, Sideris J, Parlier M, Piven J. Defining genetically meaningful language and personality traits in relatives of individuals with fragile X syndrome and relatives of individuals with autism. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:660-8. [PMID: 22693142 PMCID: PMC3740587 DOI: 10.1002/ajmg.b.32070] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 05/02/2012] [Indexed: 12/17/2022]
Abstract
Substantial phenotypic overlap exists between fragile X syndrome (FXS) and autism, suggesting that FMR1 (the gene causing FXS) poses a significant risk for autism. Cross-population comparisons of FXS and autism therefore offer a potentially valuable method for refining the range of phenotypes associated with variation in FMR1. This study adopted a broader phenotype approach, focusing on parents who are at increased genetic liability for autism or FXS. Women who were carriers of FMR1 in its premutation state were compared with mothers of individuals with autism, and controls in an attempt to determine whether subtle features of the broad autism phenotype may express at elevated rates among FMR1 premutation carriers. The principal personality and language features comprising the broad autism phenotype (i.e., rigid and aloof personality, and particular patterns of pragmatic language use) were assessed among 49 premutation carriers who were mothers of individuals with FXS, 89 mothers of individuals with autism, and 23 mothers of typically developing individuals. Relative to controls, the autism and premutation parent groups showed elevated rates of certain personality and language characteristics of the broad autism phenotype. Findings suggest partially overlapping personality and language profiles among autism and premutation parent groups, with rigid personality style and patterns of pragmatic language use emerging as features most clearly shared between groups. These results provide further evidence for the overlap of autism and FXS, and may implicate FMR1 in some of the subtle features comprising the broad autism phenotype.
Collapse
Affiliation(s)
- Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.
| | - Jessica Klusek
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill,Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill
| | - Gary E. Martin
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill,Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill
| | - John Sideris
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill
| | - Morgan Parlier
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill
| |
Collapse
|
50
|
Hallahan BP, Daly EM, Simmons A, Moore CJ, Murphy KC, Murphy DDG. Fragile X syndrome: a pilot proton magnetic resonance spectroscopy study in premutation carriers. J Neurodev Disord 2012; 4:23. [PMID: 22958351 PMCID: PMC3443443 DOI: 10.1186/1866-1955-4-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/13/2012] [Indexed: 11/10/2022] Open
Abstract
Purpose There is increasing evidence that neurodevelopmental differences in people with Fragile X syndrome (FraX) may be explained by differences in glutamatergic metabolism. Premutation carriers of FraX were originally considered to be unaffected although several recent reports demonstrate neuroanatomical, cognitive, and emotional differences from controls. However there are few studies on brain metabolism in premutation carriers of FraX. Methods We used proton magnetic resonance spectroscopy to compare neuronal integrity of a number of brain metabolites including N-Acetyl Aspartate, Creatine + Phosphocreatinine, Choline, myoInositol, and Glutamate containing substances (Glx) in 17 male premutation carriers of FraX and 16 male healthy control individuals. Results There was no significant between-group difference in the concentration of any measured brain metabolites. However there was a differential increase in N-acetyl aspartate with aging in premutation FraX individuals compared to controls. Conclusions This is the first 1 H-MRS study to examine premutation FraX individuals. Although we demonstrated no difference in the concentration of any of the metabolites examined between the groups, this may be due to the large age ranges included in the two samples. The differential increase in NAA levels with aging may reflect an abnormal synaptic pruning process.
Collapse
Affiliation(s)
- Brian P Hallahan
- Department of Psychiatry, National University of Ireland Galway, Galway, Ireland.
| | | | | | | | | | | |
Collapse
|