1
|
Webert LK, Schantell M, John JA, Coutant AT, Okelberry HJ, Horne LK, Sandal ME, Mansouri A, Wilson TW. Regular cannabis use modulates gamma activity in brain regions serving motor control. J Psychopharmacol 2024; 38:949-960. [PMID: 39140179 DOI: 10.1177/02698811241268876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
BACKGROUND People who regularly use cannabis exhibit altered brain dynamics during cognitive control tasks, though the impact of regular cannabis use on the neural dynamics serving motor control remains less understood. AIMS We sought to investigate how regular cannabis use modulates the neural dynamics serving motor control. METHODS Thirty-four people who regularly use cannabis (cannabis+) and 33 nonusers (cannabis-) underwent structured interviews about their substance use history and performed the Eriksen flanker task to map the neural dynamics serving motor control during high-density magnetoencephalography (MEG). The resulting neural data were transformed into the time-frequency domain to examine oscillatory activity and were imaged using a beamforming approach. RESULTS MEG sensor-level analyses revealed robust beta (16-24 Hz) and gamma oscillations (66-74 Hz) during motor planning and execution, which were imaged using a beamformer. Both responses peaked in the left primary motor cortex and voxel time series were extracted to evaluate the spontaneous and oscillatory dynamics. Our key findings indicated that the cannabis+ group exhibited weaker spontaneous gamma activity in the left primary motor cortex relative to the cannabis- group, which scaled with cannabis use and behavioral metrics. Interestingly, regular cannabis use was not associated with differences in oscillatory beta and gamma activity, and there were no group differences in spontaneous beta activity. CONCLUSIONS Our findings suggest that regular cannabis use is associated with suppressed spontaneous gamma activity in the left primary motor cortex, which scales with the degree of cannabis use disorder symptomatology and is coupled to behavioral task performance.
Collapse
Affiliation(s)
- Lauren K Webert
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason A John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lucy K Horne
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Megan E Sandal
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Amirsalar Mansouri
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
2
|
Kurz MJ, Taylor BK, Heinrichs-Graham E, Spooner RK, Baker SE, Wilson TW. Motor practice related changes in the sensorimotor cortices of youth with cerebral palsy. Brain Commun 2024; 6:fcae332. [PMID: 39391334 PMCID: PMC11465084 DOI: 10.1093/braincomms/fcae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
The altered sensorimotor cortical dynamics seen in youth with cerebral palsy appear to be tightly coupled with their motor performance errors and uncharacteristic mobility. Very few investigations have used these cortical dynamics as potential biomarkers to predict the extent of the motor performance changes that might be seen after physical therapy or in the design of new therapeutic interventions that target a youth's specific neurophysiological deficits. This cohort investigation was directed at evaluating the practice dependent changes in the sensorimotor cortical oscillations exhibited by youth with cerebral palsy as a step towards addressing this gap. We used magnetoencephalography to image the changes in the cortical oscillations before and after youth with cerebral palsy (N = 25; age = 15.2 ± 4.5 years; Gross Motor Function Classification Score Levels I-III) and neurotypical controls (N = 18; age = 14.6 ± 3.1 years) practiced a knee extension isometric target-matching task. Subsequently, structural equation modelling was used to assess the multivariate relationship between changes in beta (16-22 Hz) and gamma (66-82 Hz) oscillations and the motor performance after practice. The structural equation modelling results suggested youth with cerebral palsy who had a faster reaction time after practice tended to also have a stronger peri-movement beta oscillation in the sensorimotor cortices following practicing. The stronger beta oscillations were inferred to reflect greater certainty in the selected motor plan. The models also indicated that youth with cerebral palsy who overshot the targets less and matched the targets sooner tended to have a stronger execution-related gamma response in the sensorimotor cortices after practice. This stronger gamma response may represent improve activation of the sensorimotor neural generators and/or alterations in the GABAergic interneuron inhibitory-excitatory dynamics. These novel neurophysiological results provide a window on the potential neurological changes governing the practice-related outcomes in the context of the physical therapy.
Collapse
Affiliation(s)
- Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Sarah E Baker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
3
|
Rhodes E, Gaetz W, Marsden J, Hall SD. Post-Movement Beta Synchrony Inhibits Cortical Excitability. Brain Sci 2024; 14:970. [PMID: 39451984 PMCID: PMC11505688 DOI: 10.3390/brainsci14100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates the relationship between movement-related beta synchrony and primary motor cortex (M1) excitability, focusing on the time-dependent inhibition of movement. Voluntary movement induces beta frequency (13-30 Hz) event-related desynchronisation (B-ERD) in M1, followed by post-movement beta rebound (PMBR). Although PMBR is linked to cortical inhibition, its temporal relationship with motor cortical excitability is unclear. This study aims to determine whether PMBR acts as a marker for post-movement inhibition by assessing motor-evoked potentials (MEPs) during distinct phases of the beta synchrony profile. METHODS Twenty-five right-handed participants (mean age: 24 years) were recruited. EMG data were recorded from the first dorsal interosseous muscle, and TMS was applied to the M1 motor hotspot to evoke MEPs. A reaction time task was used to elicit beta oscillations, with TMS delivered at participant-specific time points based on EEG-derived beta power envelopes. MEP amplitudes were compared across four phases: B-ERD, early PMBR, peak PMBR, and late PMBR. RESULTS Our findings demonstrate that MEP amplitude significantly increased during B-ERD compared to rest, indicating heightened cortical excitability. In contrast, MEPs recorded during peak PMBR were significantly reduced, suggesting cortical inhibition. While all three PMBR phases exhibited reduced cortical excitability, a trend toward amplitude-dependent inhibition was observed. CONCLUSIONS This study confirms that PMBR is linked to reduced cortical excitability, validating its role as a marker of motor cortical inhibition. These results enhance the understanding of beta oscillations in motor control and suggest that further research on altered PMBR could be crucial for understanding neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Edward Rhodes
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- UK Dementia Research Institute, Imperial College London, London W1T 7NF, UK
| | - William Gaetz
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Marsden
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- School of Health Professions, University of Plymouth, Plymouth PL6 8BH, UK
| | - Stephen D. Hall
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
| |
Collapse
|
4
|
Zhang L, Bao K, Liao Y. Enhanced Post-Movement Beta Rebound: Unraveling the Impact of Preplanned Sequential Actions. J Mot Behav 2024; 56:727-737. [PMID: 39138969 DOI: 10.1080/00222895.2024.2384886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024]
Abstract
The Post-Movement Beta Rebound (PMBR) is the increase in beta-band power after voluntary movement ends, but its specific role in cognitive processing is unclear. Current theory links PMBR with updates to internal models, mental frameworks that help anticipate and react to sensory feedback. However, research has not explored how reactivating a preexisting action plan, another source for internal model updates, might affect PMBR intensity. To address this gap, we recruited 20 participants (mean age 18.55 ± 0.51; 12 females) for an experiment involving isolated (single-step) or sequential (two-step) motor tasks based on predetermined cues. We compared PMBR after single-step movements with PMBR after the first movement in two-step tasks to assess the influence of a subsequent action on the PMBR power associated with the first action. The results show a significant increase in PMBR magnitude after the first movement in sequential tasks compared to the second action and the isolated movements. Notably, this increase is more pronounced for right-hand movements, suggesting lateralized brain activity in the left hemisphere. These findings indicate that PMBR is influenced not only by external stimuli but also by internal cognitive processes such as working memory. This insight enhances our understanding of PMBR's role in motor control, emphasizing the integration of both external and internal information.
Collapse
Affiliation(s)
- Lingli Zhang
- School of Education, Soochow University, Suzhou, Jiangsu, China
| | - Kaige Bao
- School of Education, Soochow University, Suzhou, Jiangsu, China
| | - Yu Liao
- School of Education, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Castelblanco CA, Springer SD, Schantell M, John JA, Coutant AT, Horne LK, Glesinger R, Eastman JA, Wilson TW. Chronic Cannabis users exhibit altered oscillatory dynamics and functional connectivity serving visuospatial processing. J Psychopharmacol 2024; 38:724-734. [PMID: 39087306 PMCID: PMC11471968 DOI: 10.1177/02698811241265764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
BACKGROUND Cannabis is the most widely used psychoactive drug in the United States. While multiple studies have associated acute cannabis consumption with alterations in cognitive function (e.g., visual and spatial attention), far less is known regarding the effects of chronic consumption on the neural dynamics supporting these cognitive functions. METHODS We used magnetoencephalography (MEG) and an established visuospatial processing task to elicit multi-spectral neuronal responses in 44 regular cannabis users and 53 demographically matched non-user controls. To examine the effects of chronic cannabis use on the oscillatory dynamics underlying visuospatial processing, neural responses were imaged using a time-frequency resolved beamformer and compared across groups. RESULTS Neuronal oscillations serving visuospatial processing were identified in the theta (4-8 Hz), alpha (8-14 Hz), and gamma range (56-76 Hz), and these were imaged and examined for group differences. Our key results indicated that users exhibited weaker theta oscillations in occipital and cerebellar regions and weaker gamma responses in the left temporal cortices compared to non-users. Lastly, alpha oscillations did not differ, but alpha connectivity among higher-order attention areas was weaker in cannabis users relative to non-users and correlated with performance. CONCLUSIONS Overall, these results suggest that chronic cannabis users have alterations in the oscillatory dynamics and neural connectivity serving visuospatial attention. Such alterations were observed across multiple cortical areas critical for higher-order processing and may reflect compensatory activity and/or the initial emergence of aberrant dynamics. Future work is needed to fully understand the implications of altered multispectral oscillations and neural connectivity in cannabis users.
Collapse
Affiliation(s)
- Camilo A. Castelblanco
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Psychology and Brain Sciences, Dartmouth College, Hanover, NH, USA
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Seth D. Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason A. John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T. Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lucy K. Horne
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Ryan Glesinger
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
6
|
Petro NM, Rempe MP, Schantell M, Ku V, Srinivas AN, O’Neill J, Kubat ME, Bares SH, May-Weeks PE, Wilson TW. Spontaneous cortical activity is altered in persons with HIV and related to domain-specific cognitive function. Brain Commun 2024; 6:fcae228. [PMID: 39035415 PMCID: PMC11258575 DOI: 10.1093/braincomms/fcae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Whilst the average lifespan of persons with HIV now approximates that of the general population, these individuals are at a much higher risk of developing cognitive impairment with ∼35-70% experiencing at least subtle cognitive deficits. Previous works suggest that HIV impacts both low-level primary sensory regions and higher-level association cortices. Notably, multiple neuroHIV studies have reported elevated levels of spontaneous cortical activity during the pre-stimulus baseline period of task-based experiments, but only a few have examined such activity during resting-state conditions. In the current study, we examined such spontaneous cortical activity using magnetoencephalography in 79 persons with HIV and 83 demographically matched seronegative controls and related this neural activity to performance on neuropsychological assessments of cognitive function. Consistent with previous works, persons with HIV exhibited stronger spontaneous gamma activity, particularly in inferior parietal, prefrontal and superior temporal cortices. In addition, serostatus moderated the relationship between spontaneous beta activity and attention, motor and processing speed scores, with controls but not persons with HIV showing stronger beta activity with better performance. The current results suggest that HIV predominantly impacts spontaneous activity in association cortices, consistent with alterations in higher-order brain function, and may be attributable to deficient GABAergic signalling, given its known role in the generation of gamma and beta oscillations. Overall, these effects align with previous studies showing aberrant spontaneous activity in persons with HIV and provide a critical new linkage to domain-specific cognitive dysfunction.
Collapse
Affiliation(s)
- Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Vivian Ku
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Advika N Srinivas
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | - Maureen E Kubat
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | - Sara H Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
7
|
Arif Y, Son JJ, Okelberry HJ, Johnson HJ, Willett MP, Wiesman AI, Wilson TW. Modulation of movement-related oscillatory signatures by cognitive interference in healthy aging. GeroScience 2024; 46:3021-3034. [PMID: 38175521 PMCID: PMC11009213 DOI: 10.1007/s11357-023-01057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Age-related changes in the neurophysiology underlying motor control are well documented, but whether these changes are specific to motor function or more broadly reflect age-related alterations in fronto-parietal circuitry serving attention and other higher-level processes remains unknown. Herein, we collected high-density magnetoencephalography (MEG) in 72 healthy adults (age 28-63 years) as they completed an adapted version of the multi-source interference task that involved two subtypes of cognitive interference (i.e., flanker and Simon) and their integration (i.e., multi-source). All MEG data were examined for age-related changes in neural oscillatory activity using a whole-brain beamforming approach. Our primary findings indicated robust behavioral differences in task performance based on the type of interference, as well as stronger beta oscillations with increasing age in the right dorsolateral prefrontal cortices (flanker and multi-source conditions), left parietal (flanker and Simon), and medial parietal regions (multi-source). Overall, these data indicate that healthy aging is associated with alterations in higher-order association cortices that are critical for attention and motor control in the context of cognitive interference.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA.
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
8
|
Hinton EH, Busboom MT, Embury CM, Spooner RK, Wilson TW, Kurz MJ. Adults with cerebral palsy exhibit uncharacteristic cortical oscillations during an adaptive sensorimotor control task. Sci Rep 2024; 14:10788. [PMID: 38734783 PMCID: PMC11088662 DOI: 10.1038/s41598-024-61375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Prior research has shown that the sensorimotor cortical oscillations are uncharacteristic in persons with cerebral palsy (CP); however, it is unknown if these altered cortical oscillations have an impact on adaptive sensorimotor control. This investigation evaluated the cortical dynamics when the motor action needs to be changed "on-the-fly". Adults with CP and neurotypical controls completed a sensorimotor task that required either proactive or reactive control while undergoing magnetoencephalography (MEG). When compared with the controls, the adults with CP had a weaker beta (18-24 Hz) event-related desynchronization (ERD), post-movement beta rebound (PMBR, 16-20 Hz) and theta (4-6 Hz) event-related synchronization (ERS) in the sensorimotor cortices. In agreement with normative work, the controls exhibited differences in the strength of the sensorimotor gamma (66-84 Hz) ERS during proactive compared to reactive trials, but similar condition-wise changes were not seen in adults with CP. Lastly, the adults with CP who had a stronger theta ERS tended to have better hand dexterity, as indicated by the Box and Blocks Test and Purdue Pegboard Test. These results may suggest that alterations in the theta and gamma cortical oscillations play a role in the altered hand dexterity and uncharacteristic adaptive sensorimotor control noted in adults with CP.
Collapse
Affiliation(s)
- Erica H Hinton
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Morgan T Busboom
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA.
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA.
| |
Collapse
|
9
|
Fang K, Guo X, Tang Y, Wang W, Wang Z, Dai Z. High-Frequency Local Field Potential Oscillations for Pigeons in Effective Turning. Animals (Basel) 2024; 14:509. [PMID: 38338152 PMCID: PMC10854807 DOI: 10.3390/ani14030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Flexible turning behavior endows Homing Pigeons (Columba livia domestica) with high adaptability and intelligence in long-distance flight, foraging, hazard avoidance, and social interactions. The present study recorded the activity pattern of their local field potential (LFP) oscillations and explored the relationship between different bands of oscillations and turning behaviors in the formatio reticularis medialis mesencephali (FRM). The results showed that the C (13-60 Hz) and D (61-130 Hz) bands derived from FRM nuclei oscillated significantly in active turning, while the D and E (131-200 Hz) bands oscillated significantly in passive turning. Additionally, compared with lower-frequency stimulation (40 Hz and 60 Hz), 80 Hz stimulation can effectively activate the turning function of FRM nuclei. Electrical stimulation elicited stronger oscillations of neural activity, which strengthened the pigeons' turning locomotion willingness, showing an enhanced neural activation effect. These findings suggest that different band oscillations play different roles in the turning behavior; in particular, higher-frequency oscillations (D and E bands) enhance the turning behavior. These findings will help us decode the complex relationship between bird brains and behaviors and are expected to facilitate the development of neuromodulation techniques for animal robotics.
Collapse
Affiliation(s)
- Ke Fang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
| | - Xiaofei Guo
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
| | - Yezhong Tang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu 610041, China
| | - Wenbo Wang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
| | - Zhouyi Wang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
| | - Zhendong Dai
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China; (K.F.); (X.G.); (Y.T.); (W.W.)
| |
Collapse
|
10
|
Busboom MT, Hoffman RM, Spooner RK, Taylor BK, Baker SE, Trevarrow MP, Wilson TW, Kurz MJ. Disruption of Sensorimotor Cortical Oscillations by Visual Interference Predicts the Altered Motor Performance of Persons with Cerebral Palsy. Neuroscience 2024; 536:92-103. [PMID: 37996052 PMCID: PMC10843825 DOI: 10.1016/j.neuroscience.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Emerging evidence indicates that aberrations in sensorimotor cortical oscillations likely play a key role in uncharacteristic motor actions seen in cerebral palsy. This interpretation is largely centered on the assumption that the aberrant cortical oscillations primarily reflect the motor aspects, with less consideration of possible higher-order cognitive connections. To directly probe this view, we examined the impact of cognitive interference on the sensorimotor cortical oscillations seen in persons with cerebral palsy using magnetoencephalography. Persons with cerebral palsy (N = 26, 9-47 years old) and controls (N = 46, 11-49 years) underwent magnetoencephalographic imaging while completing an arrow-based version of the Eriksen flanker task. Structural equation modeling was used to evaluate the relationship between the extent of interference generated by the flanker task and the strength of the sensorimotor cortical oscillations and motor performance. Our results indicated that the impact of cognitive interference on beta and gamma oscillations moderated the interference effect on reaction times in persons with cerebral palsy, above and beyond that seen in controls. Overall, these findings suggest that alterations in sensorimotor oscillatory activity in those with cerebral palsy at least partly reflects top-down control influences on the motor system. Thus, suppression of distracting stimuli should be a consideration when evaluating altered motor actions in cerebral palsy.
Collapse
Affiliation(s)
- Morgan T Busboom
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, USA
| | - Sarah E Baker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Michael P Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, USA.
| |
Collapse
|
11
|
Ward TW, Springer SD, Schantell M, John JA, Horne LK, Coutant AT, Okelberry HJ, Willett MP, Johnson HJ, Killanin AD, Heinrichs‐Graham E, Wilson TW. Regular cannabis use alters the neural dynamics serving complex motor control. Hum Brain Mapp 2023; 44:6511-6522. [PMID: 37955378 PMCID: PMC10681654 DOI: 10.1002/hbm.26527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2023] [Accepted: 10/08/2023] [Indexed: 11/14/2023] Open
Abstract
Cannabis is the most widely used recreational drug in the United States and regular use has been linked to deficits in attention and memory. However, the effects of regular use on motor control are less understood, with some studies showing deficits and others indicating normal performance. Eighteen users and 23 nonusers performed a motor sequencing task during high-density magnetoencephalography (MEG). The MEG data was transformed into the time-frequency domain and beta responses (16-24 Hz) during motor planning and execution phases were imaged separately using a beamformer approach. Whole-brain maps were examined for group (cannabis user/nonuser) and time window (planning/execution) effects. As expected, there were no group differences in task performance (e.g., reaction time, accuracy, etc.). Regular cannabis users exhibited stronger beta oscillations in the contralateral primary motor cortex compared to nonusers during the execution phase of the motor sequences, but not during the motor planning phase. Similar group-by-time window interactions were observed in the left superior parietal, right inferior frontal cortices, right posterior insular cortex, and the bilateral motor cortex. We observed differences in the neural dynamics serving motor control in regular cannabis users compared to nonusers, suggesting regular users may employ compensatory processing in both primary motor and higher-order motor cortices to maintain adequate task performance. Future studies will need to examine more complex motor control tasks to ascertain whether this putative compensatory activity eventually becomes exhausted and behavioral differences emerge.
Collapse
Affiliation(s)
- Thomas W. Ward
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Mikki Schantell
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lucy K. Horne
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Anna T. Coutant
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hallie J. Johnson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Elizabeth Heinrichs‐Graham
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
12
|
Picci G, Ott LR, Penhale SH, Taylor BK, Johnson HJ, Willett MP, Okelberry HJ, Wang Y, Calhoun VD, Stephen JM, Wilson TW. Developmental changes in endogenous testosterone have sexually-dimorphic effects on spontaneous cortical dynamics. Hum Brain Mapp 2023; 44:6043-6054. [PMID: 37811842 PMCID: PMC10619376 DOI: 10.1002/hbm.26496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/18/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The transition from childhood to adolescence is associated with an influx of sex hormones, which not only facilitates physical and behavioral changes, but also dramatic changes in neural circuitry. While previous work has shown that pubertal hormones modulate structural and functional brain development, few of these studies have focused on the impact that such hormones have on spontaneous cortical activity, and whether these effects are modulated by sex during this critical developmental window. Herein, we examined the effect of endogenous testosterone on spontaneous cortical activity in 71 typically-developing youth (ages 10-17 years; 32 male). Participants completed a resting-state magnetoencephalographic (MEG) recording, structural MRI, and provided a saliva sample for hormone analysis. MEG data were source-reconstructed and the power within five canonical frequency bands (delta, theta, alpha, beta, and gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially specific effects of testosterone and sex by testosterone interactions, while covarying out age. We found robust sex differences in the modulatory effects of testosterone on spontaneous delta, beta, and gamma activity. These interactions were largely confined to frontal cortices and exhibited a stark switch in the directionality of the correlation from the low (delta) to high frequencies (beta/gamma). For example, in the delta band, greater testosterone related to lower relative power in prefrontal cortices in boys, while the reverse pattern was found for girls. These data suggest testosterone levels are uniquely related to the development of spontaneous cortical dynamics during adolescence, and such levels are associated with different developmental patterns in males and females within regions implicated in executive functioning.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Lauren R. Ott
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Samantha H. Penhale
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Yu‐Ping Wang
- Department of Biomedical EngineeringTulane UniversityNew OrleansLouisianaUSA
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of TechnologyEmory UniversityAtlantaGeorgiaUSA
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
13
|
Meehan CE, Schantell M, Springer SD, Wiesman AI, Wolfson SL, O'Neill J, Murman DL, Bares SH, May PE, Johnson CM, Wilson TW. Movement-related beta and gamma oscillations indicate parallels and disparities between Alzheimer's disease and HIV-associated neurocognitive disorder. Neurobiol Dis 2023; 186:106283. [PMID: 37683957 PMCID: PMC10545947 DOI: 10.1016/j.nbd.2023.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
People with HIV (PWH) often develop HIV-related neurological impairments known as HIV-associated neurocognitive disorder (HAND), but cognitive dysfunction in older PWH may also be due to age-related disorders such as Alzheimer's disease (AD). Discerning these two conditions is challenging since the specific neural characteristics are not well understood and limited studies have probed HAND and AD spectrum (ADS) directly. We examined the neural dynamics underlying motor processing during cognitive interference using magnetoencephalography (MEG) in 22 biomarker-confirmed patients on the ADS, 22 older participants diagnosed with HAND, and 30 healthy aging controls. MEG data were transformed into the time-frequency domain to examine movement-related oscillatory activity and the impact of cognitive interference on distinct stages of motor programming. Both cognitively impaired groups (ADS/HAND) performed significantly worse on the task (e.g., less accurate and slower reaction time) and exhibited reductions in frontal and cerebellar beta and parietal gamma activity relative to controls. Disease-specific aberrations were also detected such that those with HAND exhibited weaker gamma interference effects than those on the ADS in frontoparietal and motor areas. Additionally, temporally distinct beta interference effects were identified, with ADS participants exhibiting stronger beta interference activity in the temporal cortex during motor planning, along with weaker beta interference oscillations dispersed across frontoparietal and cerebellar cortices during movement execution relative to those with HAND. These results indicate both overlapping and distinct neurophysiological aberrations in those with ADS disorders or HAND in key motor and top-down cognitive processing regions during cognitive interference and provide new evidence for distinct neuropathology.
Collapse
Affiliation(s)
- Chloe E Meehan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Memory Disorders & Behavioral Neurology Program, UNMC, Omaha, NE, USA
| | - Sara H Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
14
|
Killanin AD, Taylor BK, Embury CM, Picci G, Wang YP, Calhoun VD, Stephen JM, Heinrichs-Graham E, Wilson TW. Testosterone levels mediate the dynamics of motor oscillatory coding and behavior in developing youth. Dev Cogn Neurosci 2023; 61:101257. [PMID: 37236034 PMCID: PMC10232658 DOI: 10.1016/j.dcn.2023.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Recent investigations have studied the development of motor-related oscillatory responses to delineate maturational changes from childhood to young adulthood. While these studies included youth during the pubertal transition period, none have probed the impact of testosterone levels on motor cortical dynamics and performance. We collected salivary testosterone samples and recorded magnetoencephalography during a complex motor sequencing task in 58 youth aged 9-15 years old. The relationships between testosterone, age, task behavior, and beta (15-23 Hz) oscillatory dynamics were examined using multiple mediation modeling. We found that testosterone mediated the effect of age on movement-related beta activity. We also found that the effect of age on movement duration was mediated by testosterone and reaction time. Interestingly, the relationships between testosterone and motor performance were not mediated by beta activity in the left primary motor cortex, which may indicate the importance of higher-order motor regions. Overall, our results suggest that testosterone has unique associations with neural and behavioral indices of complex motor performance, beyond those already characterized in the literature. These findings are the first to link developmental changes in testosterone levels to maturation of beta oscillatory dynamics serving complex motor planning and execution, and specific measures of motor performance.
Collapse
Affiliation(s)
- Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | | | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
15
|
Spooner RK, Wilson TW. Spectral specificity of gamma-frequency transcranial alternating current stimulation over motor cortex during sequential movements. Cereb Cortex 2023; 33:5347-5360. [PMID: 36368895 PMCID: PMC10152093 DOI: 10.1093/cercor/bhac423] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Motor control requires the coordination of spatiotemporally precise neural oscillations in the beta and gamma range within the primary motor cortex (M1). Recent studies have shown that motor performance can be differentially modulated based on the spectral target of noninvasive transcranial alternating current stimulation (tACS), with gamma-frequency tACS improving motor performance. However, the spectral specificity for eliciting such improvements remains unknown. Herein, we derived the peak movement-related gamma frequency in 25 healthy adults using magnetoencephalography and a motor control paradigm. These individualized peak gamma frequencies were then used for personalized sessions of tACS. All participants completed 4 sessions of high-definition (HD)-tACS (sham, low-, peak-, and high-gamma frequency) over M1 for 20 min during the performance of sequential movements of varying complexity (e.g. tapping adjacent fingers or nonadjacent fingers). Our primary findings demonstrated that individualized tACS dosing over M1 leads to enhanced motor performance/learning (i.e. greatest reduction in time to complete motor sequences) compared to nonspecific gamma-tACS in humans, which suggests that personalized neuromodulation may be advantageous to optimize behavioral outcomes.
Collapse
Affiliation(s)
- Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, University of Nebraska Medical Center (UMNC), Omaha, NE, United States
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, University of Nebraska Medical Center (UMNC), Omaha, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
16
|
Walshe EA, Roberts TPL, Ward McIntosh C, Winston FK, Romer D, Gaetz W. An event-based magnetoencephalography study of simulated driving: Establishing a novel paradigm to probe the dynamic interplay of executive and motor function. Hum Brain Mapp 2023; 44:2109-2121. [PMID: 36617993 PMCID: PMC9980886 DOI: 10.1002/hbm.26197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
Magnetoencephalography (MEG) is particularly well-suited to the study of human motor cortex oscillatory rhythms and motor control. However, the motor tasks studied to date are largely overly simplistic. This study describes a new approach: a novel event-based simulated drive made operational via MEG compatible driving simulator hardware, paired with differential beamformer methods to characterize the neural correlates of realistic, complex motor activity. We scanned 23 healthy individuals aged 16-23 years (mean age = 19.5, SD = 2.5; 18 males and 5 females, all right-handed) who completed a custom-built repeated trials driving scenario. MEG data were recorded with a 275-channel CTF, and a volumetric magnetic resonance imaging scan was used for MEG source localization. To validate this paradigm, we hypothesized that pedal-use would elicit expected modulation of primary motor responses beta-event-related desynchronization (B-ERD) and movement-related gamma synchrony (MRGS). To confirm the added utility of this paradigm, we hypothesized that the driving task could also probe frontal cognitive control responses (specifically, frontal midline theta [FMT]). Three of 23 participants were removed due to excess head motion (>1.5 cm/trial), confirming feasibility. Nonparametric group analysis revealed significant regions of pedal-use related B-ERD activity (at left precentral foot area, as well as bilateral superior parietal lobe: p < .01 corrected), MRGS (at medial precentral gyrus: p < .01 corrected), and FMT band activity sustained around planned braking (at bilateral superior frontal gyrus: p < .01 corrected). This paradigm overcomes the limits of previous efforts by allowing for characterization of the neural correlates of realistic, complex motor activity in terms of brain regions, frequency bands and their dynamic temporal interplay.
Collapse
Affiliation(s)
- Elizabeth A. Walshe
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Timothy P. L. Roberts
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Lurie Family Foundations' MEG Imaging Center, Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Chelsea Ward McIntosh
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Flaura K. Winston
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA,Department of PediatricsPerelamn School of Medicine, University of PennysylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dan Romer
- Annenberg Public Policy CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - William Gaetz
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Lurie Family Foundations' MEG Imaging Center, Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
17
|
Trevarrow MP, Munoz MJ, Rivera YM, Arora R, Drane QH, Rosenow JM, Sani SB, Pal GD, Verhagen Metman L, Goelz LC, Corcos DM, David FJ. The Effects of Subthalamic Nucleus Deep Brain Stimulation and Retention Delay on Memory-Guided Reaching Performance in People with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:917-935. [PMID: 37522216 PMCID: PMC10578280 DOI: 10.3233/jpd-225041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) improves intensive aspects of movement (velocity) in people with Parkinson's disease (PD) but impairs the more cognitively demanding coordinative aspects of movement (error). We extended these findings by evaluating STN-DBS induced changes in intensive and coordinative aspects of movement during a memory-guided reaching task with varying retention delays. OBJECTIVE We evaluated the effect of STN-DBS on motor control during a memory-guided reaching task with short and long retention delays in participants with PD and compared performance to healthy controls (HC). METHODS Eleven participants with PD completed the motor section of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) and performed a memory-guided reaching task under four different STN-DBS conditions (DBS-OFF, DBS-RIGHT, DBS-LEFT, and DBS-BOTH) and two retention delays (0.5 s and 5 s). An additional 13 HC completed the memory-guided reaching task. RESULTS Unilateral and bilateral STN-DBS improved the MDS-UPDRS III scores. In the memory-guided reaching task, both unilateral and bilateral STN-DBS increased the intensive aspects of movement (amplitude and velocity) in the direction toward HC but impaired coordinative aspects of movement (error) away from the HC. Furthermore, movement time was decreased but reaction time was unaffected by STN-DBS. Shorter retention delays increased amplitude and velocity, decreased movement times, and decreased error, but increased reaction times in the participants with PD. There were no interactions between STN-DBS condition and retention delay. CONCLUSION STN-DBS may affect cognitive-motor functioning by altering activity throughout cortico-basal ganglia networks and the oscillatory activity subserving them.
Collapse
Affiliation(s)
- Michael P. Trevarrow
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Rishabh Arora
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Gian D. Pal
- Department of Neurology, Division of Movement Disorders, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Leonard Verhagen Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lisa C. Goelz
- Department of Kinesiology and Nutrition, UIC College of Applied Health Sciences, Chicago, IL, USA
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Fung MH, Heinrichs-Graham E, Taylor BK, Frenzel MR, Eastman JA, Wang YP, Calhoun VD, Stephen JM, Wilson TW. The development of sensorimotor cortical oscillations is mediated by pubertal testosterone. Neuroimage 2022; 264:119745. [PMID: 36368502 DOI: 10.1016/j.neuroimage.2022.119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Puberty is a period of substantial hormonal fluctuations, and pubertal hormones can modulate structural and functional changes in the developing brain. Many previous studies have characterized the neural oscillatory responses serving movement, which include a beta event-related desynchronization (ERD) preceding movement onset, gamma and theta responses coinciding with movement execution, and a post-movement beta-rebound (PMBR) response following movement offset. While a few studies have investigated the developmental trajectories of these neural oscillations serving motor control, the impact of pubertal hormone levels on the maturation of these dynamics has not yet been examined. Since the timing and tempo of puberty varies greatly between individuals, pubertal hormones may uniquely impact the maturation of motor cortical oscillations distinct from other developmental metrics, such as age. In the current study we quantified these oscillations using magnetoencephalography (MEG) and utilized chronological age and measures of endogenous testosterone as indices of development during the transition from childhood to adolescence in 69 youths. Mediation analyses revealed complex maturation patterns for the beta ERD, in which testosterone predicted both spontaneous baseline and ERD power through direct and indirect effects. Age, but not pubertal hormones, predicted motor-related theta, and no relationships between oscillatory responses and developmental metrics were found for gamma or PMBR responses. These findings provide novel insight into how pubertal hormones affect motor-related oscillations, and highlight the continued development of motor cortical dynamics throughout the pubertal period.
Collapse
Affiliation(s)
- Madison H Fung
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Mind Research Network, Albuquerque, NM, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
19
|
Rempe MP, Lew BJ, Embury CM, Christopher-Hayes NJ, Schantell M, Wilson TW. Spontaneous sensorimotor beta power and cortical thickness uniquely predict motor function in healthy aging. Neuroimage 2022; 263:119651. [PMID: 36206940 PMCID: PMC10071137 DOI: 10.1016/j.neuroimage.2022.119651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spontaneous beta activity in the primary motor cortices has been shown to increase in amplitude with advancing age, and that such increases are tightly coupled to stronger motor-related beta oscillations during movement planning. However, the relationship between these age-related changes in spontaneous beta in the motor cortices, local cortical thickness, and overall motor function remains unclear. METHODS We collected resting-state magnetoencephalography (MEG), high-resolution structural MRI, and motor function scores using a neuropsychological battery from 126 healthy adults (56 female; age range = 22-72 years). MEG data were source-imaged and a whole-brain vertex-wise regression model was used to assess age-related differences in spontaneous beta power across the cortex. Cortical thickness was computed from the structural MRI data and local beta power and cortical thickness values were extracted from the sensorimotor cortices. To determine the unique contribution of age, spontaneous beta power, and cortical thickness to the prediction of motor function, a hierarchical regression approach was used. RESULTS There was an increase in spontaneous beta power with age across the cortex, with the strongest increase being centered on the sensorimotor cortices. Sensorimotor cortical thickness was not related to spontaneous beta power, above and beyond age. Interestingly, both cortical thickness and spontaneous beta power in sensorimotor regions each uniquely contributed to the prediction of motor function when controlling for age. DISCUSSION This multimodal study showed that cortical thickness and spontaneous beta activity in the sensorimotor cortices have dissociable contributions to motor function across the adult lifespan. These findings highlight the complexity of interactions between structure and function and the importance of understanding these interactions in order to advance our understanding of healthy aging and disease.
Collapse
Affiliation(s)
- Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychology, University of Nebraska - Omaha (UNO), Omaha, NE, USA
| | - Nicholas J Christopher-Hayes
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Mind and Brain, University of California - Davis, Davis, CA, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
20
|
Spooner RK, Wilson TW. Cortical theta-gamma coupling governs the adaptive control of motor commands. Brain Commun 2022; 4:fcac249. [PMID: 36337344 PMCID: PMC9631971 DOI: 10.1093/braincomms/fcac249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/22/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Motor control requires the adaptive updating of internal models to successfully target desired outcomes. This adaptive control can be proactive, such that imminent actions and corresponding sensorimotor programmes are anticipated prior to movement, or reactive, such that online error correction is necessary to adjust to sudden changes. While substantial evidence implicates a distributed cortical network serving adaptive control when behavioural changes are required (e.g. response inhibition), the neural dynamics serving such control when the target motor commands are to remain intact are poorly understood. To address this, we developed a novel proactive-reactive cued finger tapping paradigm that was performed during magnetoencephalography by 25 healthy adults. Importantly, to ensure condition-wise differences in adaptive cueing were not attributable to changes in movement kinematics, motor selection and planning processes were held constant despite changes in task demands. All data were imaged in the time-frequency domain using a beamformer to evaluate the effect of proactive and reactive cues on movement-related oscillations and subsequent performance. Our results indicated spectrally specific increases in low (i.e. theta) and high (i.e. gamma) frequency oscillations during motor execution as a function of adaptive cueing. Additionally, we observed robust cross-frequency coupling of theta and gamma oscillatory power in the contralateral motor cortex and further, the strength of this theta-gamma coupling during motor execution was differentially predictive of behavioural improvements and decrements during reactive and proactive trials, respectively. These data indicate that functional oscillatory coupling may govern the adaptive control of movement in the healthy brain and importantly, may serve as effective proxies for characterizing declines in motor function in clinical populations in the future.
Collapse
Affiliation(s)
- Rachel K Spooner
- Correspondence to: Rachel K. Spooner Institute of Clinical Neuroscience and Medical Psychology Heinrich-Heine University Düsseldorf, Moorenstraße 5 40225 Düsseldorf, Germany E-mails: ;
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA,Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
21
|
Penhale SH, Picci G, Ott LR, Taylor BK, Frenzel MR, Eastman JA, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Impacts of adrenarcheal DHEA levels on spontaneous cortical activity during development. Dev Cogn Neurosci 2022; 57:101153. [PMID: 36174268 PMCID: PMC9519481 DOI: 10.1016/j.dcn.2022.101153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) production is closely associated with the first pubertal hormonal event, adrenarche. Few studies have documented the relationships between DHEA and functional brain development, with even fewer examining the associations between DHEA and spontaneous cortical activity during the resting-state. Thus, whether DHEA levels are associated with the known developmental shifts in the brain's idling cortical rhythms remains poorly understood. Herein, we examined spontaneous cortical activity in 71 typically-developing youth (9-16 years; 32 male) using magnetoencephalography (MEG). MEG data were source imaged and the power within five canonical frequency bands (delta, theta, alpha, beta, gamma) was computed to identify spatially- and spectrally-specific effects of salivary DHEA and DHEA-by-sex interactions using vertex-wise ANCOVAs. Our results indicated robust increases in power with increasing DHEA within parieto-occipital cortices in all frequency bands except alpha, which decreased with increasing DHEA. In the delta band, DHEA and sex interacted within frontal and temporal cortices such that with increasing DHEA, males exhibited increasing power while females showed decreasing power. These data suggest that spontaneous cortical activity changes with endogenous DHEA levels during the transition from childhood to adolescence, particularly in sensory and attentional processing regions. Sexually-divergent trajectories were only observed in later-developing frontal cortical areas.
Collapse
Affiliation(s)
- Samantha H Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
22
|
Spooner RK, Madhavan D, Aizenberg MR, Wilson TW. Retrospective comparison of motor and somatosensory MEG mapping-Considerations for better clinical applications. Neuroimage Clin 2022; 35:103045. [PMID: 35597033 PMCID: PMC9123261 DOI: 10.1016/j.nicl.2022.103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
MEG is a clinically validated tool for presurgical functional mapping. The success rate for MEG somatosensory and motor mapping is not fully known. Comprehensive mapping protocols increase the accuracy of sensorimotor mapping. Major sources of mapping failures include low SNR, magnetic artifacts, and motion. Recommendations for improving mapping success rates in the future are discussed.
While magnetoencephalography (MEG) has proven to be a valuable and reliable tool for presurgical functional mapping of eloquent cortices for at least two decades, widespread use of this technique by clinicians has remained elusive. This modest application may be attributable, at least in part, to misunderstandings regarding the success rate of such mapping procedures, as well as the primary sources contributing to mapping failures. To address this, we conducted a retrospective comparison of sensorimotor functional mapping success rates in 141 patients with epilepsy and 75 tumor patients from the Center for MEG in Omaha, NE. Neurosurgical candidates either completed motor mapping (i.e., finger tapping paradigm), somatosensory mapping (i.e., peripheral stimulation paradigm), or both motor and somatosensory protocols during MEG. All MEG data underwent subsequent time-domain averaging and source localization of left and right primary motor (M1) and somatosensory (S1) cortices was conducted using a single equivalent dipole model. Successful mapping was determined based on dipole goodness of fit metrics ∼ 95%, as well as an accurate and conceivable spatial correspondence to precentral and postcentral gyri for M1 and S1, respectively. Our results suggest that mapping M1 in epilepsy and tumor patients was on average 94.5% successful, when patients only completed motor mapping protocols. In contrast, mapping S1 was successful 45–100% of the time in these patient groups when they only completed somatosensory mapping paradigms. Importantly, Z-tests for independent proportions revealed that the percentage of successful S1 mappings significantly increased to ∼ 94% in epilepsy patients who completed both motor/somatosensory mapping protocols during MEG. Together, these data suggest that ordering more comprehensive mapping procedures (e.g., both motor and somatosensory protocols for a collective sensorimotor network) may substantially increase the accuracy of presurgical functional mapping by providing more extensive data from which to base interpretations. Moreover, clinicians and magnetoencephalographers should be considerate of the major contributors to mapping failures (i.e., low SNR, excessive motion and magnetic artifacts) in order to further increase the percentage of cases achieving successful mapping of eloquent cortices.
Collapse
Affiliation(s)
- Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Düsseldorf, Germany.
| | - Deepak Madhavan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
23
|
Heinrichs-Graham E, Wiesman AI, Embury CM, Schantell M, Joe TR, Eastman JA, Wilson TW. Differential impact of movement on the alpha and gamma dynamics serving visual processing. J Neurophysiol 2022; 127:928-937. [PMID: 35264002 PMCID: PMC8977134 DOI: 10.1152/jn.00380.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
Abstract
Visual processing is widely understood to be served by a decrease in alpha activity in occipital cortices, largely concurrent with an increase in gamma activity. Although the characteristics of these oscillations are well documented in response to a range of complex visual stimuli, little is known about how these dynamics are impacted by concurrent motor responses, which is problematic as many common visual tasks involve such responses. Thus, in the current study, we used magnetoencephalography (MEG) and modified a well-established visual paradigm to explore the impact of motor responses on visual oscillatory activity. Thirty-four healthy adults viewed a moving gabor (grating) stimulus that was known to elicit robust alpha and gamma oscillations in occipital cortices. Frequency and power characteristics were assessed statistically for differences as a function of movement condition. Our results indicated that occipital alpha significantly increased in power during movement relative to no movement trials. No differences in peak frequency or power were found for gamma responses between the two movement conditions. These results provide valuable evidence of visuomotor integration and underscore the importance of careful task design and interpretation, especially in the context of complex visual processing, and suggest that even basic motor responses alter occipital visual oscillations in healthy adults.NEW & NOTEWORTHY Processing of visual stimuli is served by occipital alpha and gamma activity. Many studies have investigated the impact of visual stimuli on motor cortical responses, but few studies have systematically investigated the impact of motor responses on visual oscillations. We found that when participants are asked to move in response to a visual stimulus, occipital alpha power was modulated whereas gamma responses were unaffected. This suggests that these responses have dissociable roles in visuomotor integration.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, Creighton University, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alex I Wiesman
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- Department of Psychology, University of Nebraska at Omaha, Nebraska
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy R Joe
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Psychology, University of Nebraska at Omaha, Nebraska
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, Creighton University, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
24
|
Ma SY, KWAN KM. Size Anomaly and Alteration of GABAergic Enzymes Expressions in Cerebellum of a Valproic acid Mouse Model of Autism. Behav Brain Res 2022; 428:113896. [DOI: 10.1016/j.bbr.2022.113896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
|
25
|
Val66et Polymorphism Is Associated with Altered Motor-Related Oscillatory Activity in Youth with Cerebral Palsy. Brain Sci 2022; 12:brainsci12040435. [PMID: 35447966 PMCID: PMC9027490 DOI: 10.3390/brainsci12040435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a critical role in the capacity for neuroplastic change. A single nucleotide polymorphism of the BDNF gene is well known to alter the activity-dependent release of the protein and may impact the capacity for neuroplastic change. Numerous studies have shown altered sensorimotor beta event-related desynchronization (ERD) responses in youth with cerebral palsy (CP), which is thought to be directly related to motor planning. The objective of the current investigation was to use magnetoencephalography (MEG) to evaluate whether the BDNF genotype affects the strength of the sensorimotor beta ERD seen in youth with CP while youth with CP performed a leg isometric target matching task. In addition, we collected saliva samples and used polymerase chain reaction (PCR) amplification to determine the status of the amino acid fragment containing codon 66 of the BDNF gene. Our genotyping results identified that 25% of the youth with CP had a Val66Met or Met66Met polymorphism at codon 66 of the BDNF gene. Furthermore, we identified that the beta ERD was stronger in youth with CP who had the Val66Met or Met66Met polymorphism in comparison to those without the polymorphism (p = 0.042). Overall, these novel findings suggest that a polymorphism at the BDNF gene may alter sensorimotor cortical oscillations in youth with CP.
Collapse
|
26
|
Trevarrow MP, Reelfs A, Baker SE, Hoffman RM, Wilson TW, Kurz MJ. Spinal cord microstructural changes are connected with the aberrant sensorimotor cortical oscillatory activity in adults with cerebral palsy. Sci Rep 2022; 12:4807. [PMID: 35314729 PMCID: PMC8938462 DOI: 10.1038/s41598-022-08741-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
Previous animal models have illustrated that reduced cortical activity in the developing brain has cascading activity-dependent effects on the microstructural organization of the spinal cord. A limited number of studies have attempted to translate these findings to humans with cerebral palsy (CP). Essentially, the aberrations in sensorimotor cortical activity in those with CP could have an adverse effect on the spinal cord microstructure. To investigate this knowledge gap, we utilized magnetoencephalographic (MEG) brain imaging to quantify motor-related oscillatory activity in fourteen adults with CP and sixteen neurotypical (NT) controls. A subset of these participants also underwent cervical-thoracic spinal cord MRI. Our results showed that the strength of the peri-movement beta desynchronization and the post-movement beta rebound were each weaker in the adults with CP relative to the controls, and these weakened responses were associated with poorer task performance. Additionally, our results showed that the strength of the peri-movement beta response was associated with the total cross-sectional area of the spinal cord and the white matter cross-sectional area. Altogether these results suggest that the altered sensorimotor cortical activity seen in CP may result in activity-dependent plastic changes within the spinal cord microstructure, which could ultimately contribute to the sensorimotor deficits seen in this population.
Collapse
Affiliation(s)
- Michael P Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Anna Reelfs
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Sarah E Baker
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA.
| |
Collapse
|
27
|
Ulloa JL. The Control of Movements via Motor Gamma Oscillations. Front Hum Neurosci 2022; 15:787157. [PMID: 35111006 PMCID: PMC8802912 DOI: 10.3389/fnhum.2021.787157] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
The ability to perform movements is vital for our daily life. Our actions are embedded in a complex environment where we need to deal efficiently in the face of unforeseen events. Neural oscillations play an important role in basic sensorimotor processes related to the execution and preparation of movements. In this review, I will describe the state of the art regarding the role of motor gamma oscillations in the control of movements. Experimental evidence from electrophysiological studies has shown that motor gamma oscillations accomplish a range of functions in motor control beyond merely signaling the execution of movements. However, these additional aspects associated with motor gamma oscillation remain to be fully clarified. Future work on different spatial, temporal and spectral scales is required to further understand the implications of gamma oscillations in motor control.
Collapse
Affiliation(s)
- José Luis Ulloa
- Programa de Investigación Asociativa (PIA) en Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas (CICC), Facultad de Psicología, Universidad de Talca, Talca, Chile
| |
Collapse
|
28
|
Westner BU, Dalal SS, Gramfort A, Litvak V, Mosher JC, Oostenveld R, Schoffelen JM. A unified view on beamformers for M/EEG source reconstruction. Neuroimage 2021; 246:118789. [PMID: 34890794 DOI: 10.1016/j.neuroimage.2021.118789] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Beamforming is a popular method for functional source reconstruction using magnetoencephalography (MEG) and electroencephalography (EEG) data. Beamformers, which were first proposed for MEG more than two decades ago, have since been applied in hundreds of studies, demonstrating that they are a versatile and robust tool for neuroscience. However, certain characteristics of beamformers remain somewhat elusive and there currently does not exist a unified documentation of the mathematical underpinnings and computational subtleties of beamformers as implemented in the most widely used academic open source software packages for MEG analysis (Brainstorm, FieldTrip, MNE, and SPM). Here, we provide such documentation that aims at providing the mathematical background of beamforming and unifying the terminology. Beamformer implementations are compared across toolboxes and pitfalls of beamforming analyses are discussed. Specifically, we provide details on handling rank deficient covariance matrices, prewhitening, the rank reduction of forward fields, and on the combination of heterogeneous sensor types, such as magnetometers and gradiometers. The overall aim of this paper is to contribute to contemporary efforts towards higher levels of computational transparency in functional neuroimaging.
Collapse
Affiliation(s)
- Britta U Westner
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Sarang S Dalal
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - John C Mosher
- Texas Institute for Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center at Houston, TX USA
| | - Robert Oostenveld
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| | - Jan-Mathijs Schoffelen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
29
|
GABAergic Modulation in Movement Related Oscillatory Activity: A Review of the Effect Pharmacologically and with Aging. Tremor Other Hyperkinet Mov (N Y) 2021; 11:48. [PMID: 34824891 PMCID: PMC8588888 DOI: 10.5334/tohm.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a ubiquitous inhibitory neurotransmitter critical to the control of movement both cortically and subcortically. Modulation of GABA can alter the characteristic rest as well as movement-related oscillatory activity in the alpha (8-12 Hz), beta (13-30 Hz, and gamma (60-90 Hz) frequencies, but the specific mechanisms by which GABAergic modulation can modify these well-described changes remains unclear. Through pharmacologic GABAergic modulation and evaluation across the age spectrum, the contributions of GABA to these characteristic oscillatory activities are beginning to be understood. Here, we review how baseline GABA signaling plays a key role in motor networks and in cortical oscillations detected by scalp electroencephalography and magnetoencephalography. We also discuss the data showing specific alterations to baseline movement related oscillatory changes from pharmacologic intervention on GABAergic tone as well as with healthy aging. These data provide greater insight into the physiology of movement and may help improve future development of novel therapeutics for patients who suffer from movement disorders.
Collapse
|
30
|
Neural oscillatory activity serving sensorimotor control is predicted by superoxide-sensitive mitochondrial redox environments. Proc Natl Acad Sci U S A 2021; 118:2104569118. [PMID: 34686594 PMCID: PMC8639326 DOI: 10.1073/pnas.2104569118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial integrity and associated redox profiles have long been revered as key contributors to a host of age- and disease-related pathologies, which eventually lead to neuronal and behavioral dysfunction in the sensorimotor and other systems. However, the precise role of the mitochondrial redox environment in human sensorimotor brain systems and motor behavior remains poorly understood. Herein, we provide evidence for a strong predictive capacity of superoxide and its scavenger, superoxide dismutase, on the neural oscillatory dynamics serving motor planning and execution above and beyond the effects of mitochondrial respiratory capacities alone. Importantly, these data provide insight regarding the impact of the redox environment on the population-level neural oscillations that serve motor function in healthy humans. Motor control requires a coordinated ensemble of spatiotemporally precise neural oscillations across a distributed motor network, particularly in the beta range (15 to 30 Hz) to successfully plan and execute volitional actions. While substantial evidence implicates beta activity as critical to motor control, the molecular processes supporting these microcircuits and their inherent oscillatory dynamics remain poorly understood. Among these processes are mitochondrial integrity and the associated redox environments, although their direct impact on human neurophysiological function is unknown. Herein, 40 healthy adults completed a motor sequence paradigm during magnetoencephalography (MEG). MEG data were imaged in the time–frequency domain using a beamformer to evaluate beta oscillatory profiles during distinct phases of motor control (i.e., planning and execution) and subsequent behavior. To comprehensively quantify features of the mitochondrial redox environment, we used state-of-the-art systems biology approaches including Seahorse Analyzer to assess mitochondrial respiration and electron paramagnetic resonance spectroscopy to measure superoxide levels in whole blood as well as antioxidant activity assays. Using structural equation modeling, we tested the relationship between mitochondrial function and sensorimotor brain-behavior dynamics through alterations in the redox environment (e.g., generation of superoxide and alteration in antioxidant defenses). Our results indicated that superoxide-sensitive but not hydrogen peroxide–sensitive features of the redox environment had direct and mediating effects on the bioenergetic–neural pathways serving motor performance in healthy adults. Importantly, our results suggest that alterations in the redox environment may directly impact behavior above and beyond mitochondrial respiratory capacities alone and further may be effective targets for age- and disease-related declines in cognitive–motor function.
Collapse
|
31
|
Power L, Bardouille T. Age-related trends in the cortical sources of transient beta bursts during a sensorimotor task and rest. Neuroimage 2021; 245:118670. [PMID: 34687863 DOI: 10.1016/j.neuroimage.2021.118670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022] Open
Abstract
Interpreting neurophysiology recordings as a series of transient bursts with varying temporal and spectral characteristics provides meaningful insight into mechanisms underlying neural networks. Previous research has revealed age-related changes in the time-frequency dynamics of sensorimotor beta bursts, but to date, there has been little focus on the spatial localization of these beta bursts or how the localization patterns change with normal healthy ageing. The objective of the current study is to implement existing source localization algorithms for use in the detection of the cortical sources of transient beta bursts, and to uncover age-related trends in the resulting source localization patterns. Two well-established source localization algorithms (minimum-norm estimation and beamformer) were applied to localize beta bursts detected over the sensorimotor cortices in a cohort of 561 healthy participants between the ages of 18 and 88 (CamCAN open access dataset). Age-related trends were then investigated by applying regression analysis between participant age and average source power within several cortical regions of interest. This analysis revealed that beta bursts localized primarily to the sensorimotor cortex ipsilateral to the side of the sensor used for their detection. Region of interest analysis revealed that there were age-related changes in the beta burst localization pattern, with most substantial changes evidenced in frontal brain regions. In addition, regression analysis revealed a tendency of age-related trends to peak around 60 years of age suggesting that 60 is a potential critical age in this population. These results show for the first time that source localization techniques can be implemented for the identification of the sources of transient beta bursts. The exploration of these sources provides us with insight into the anatomical generators of transient beta activity and how they change across the lifespan.
Collapse
Affiliation(s)
- Lindsey Power
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Timothy Bardouille
- Department of Physics and Atmospheric Science, Dalhousie University, Sir James Dunn Building, Room 229, 6310 Coburg Road, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
32
|
Spooner RK, Arif Y, Taylor BK, Wilson TW. Movement-Related Gamma Synchrony Differentially Predicts Behavior in the Presence of Visual Interference Across the Lifespan. Cereb Cortex 2021; 31:5056-5066. [PMID: 34115110 PMCID: PMC8491684 DOI: 10.1093/cercor/bhab141] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
The ability to allocate neural resources to task-relevant stimuli, while inhibiting distracting information in the surrounding environment (i.e., selective attention) is critical for high-level cognitive function, and declines in this ability have been linked to functional deficits in later life. Studies of age-related declines in selective attention have focused on frontal circuitry, with almost no work evaluating the contribution of motor cortical dynamics to successful task performance. Herein, we examined 69 healthy adults (23-72 years old) who completed a flanker task during magnetoencephalography (MEG). MEG data were imaged in the time-frequency domain using a beamformer to evaluate the contribution of motor cortical dynamics to age-related increases in behavioral interference effects. Our results showed that gamma oscillations in the contralateral motor cortex (M1) were a robust predictor of reaction time, regardless of interference level. Additionally, we observed condition-wise differences in gamma-by-age interactions, such that in younger adults, increases in M1 gamma power were predictive of faster reaction times during incongruent trials, while older adults did not receive this same behavioral benefit. Importantly, these data indicate that M1 gamma oscillations are differentially predictive of behavior in the presence, but not absence of visual interference, resulting in exhausted compensatory strategies with age.
Collapse
Affiliation(s)
- Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
33
|
Spooner RK, Wiesman AI, Wilson TW. Peripheral Somatosensory Entrainment Modulates the Cross-Frequency Coupling of Movement-Related Theta-Gamma Oscillations. Brain Connect 2021; 12:524-537. [PMID: 34269624 PMCID: PMC9419931 DOI: 10.1089/brain.2021.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Motor control requires a reciprocal volley between somatosensory and motor systems, with somatosensory feedback being essential for the online updating of motor commands to achieve behavioral outcomes. However, this dynamic interplay among sensorimotor brain systems serving motor control remains poorly understood. Methods: To address this, we designed a novel somatosensory entrainment-movement task, which 25 adults completed during magnetoencephalography (MEG). Specifically, participants completed a quasi-paced finger-tapping paradigm while subthreshold electrical stimulation was applied to the right median nerve at a sensorimotor-relevant frequency (15 Hz) and during a second condition where no electrical stimulation was applied. The MEG data were transformed into the time-frequency domain and imaged by using a beamformer to evaluate the effect of somatosensory feedback (i.e., entrainment) on movement-related oscillations and motor performance at the single trial level. Results: Our results indicated spectrally specific reductions in movement-related oscillatory power (i.e., theta, gamma) during 15 Hz stimulation in the contralateral motor cortex during motor execution. In addition, we observed robust cross-frequency coupling within the motor cortex and further, stronger theta-gamma coupling was predictive of faster reaction times, irrespective of condition (i.e., stim vs. no stim). Finally, in the presence of electrical stimulation, cross-frequency coupling of movement-related oscillations was reduced, and the stronger the entrained neuronal populations (i.e., increased oscillatory power) were before movement onset, the weaker the inherent theta-gamma coupling became in the motor cortex. Discussion: This novel exogenous manipulation paradigm provides key insights on how the somatosensory system modulates the motor cortical oscillations required for volitional movement in the normative sensorimotor system.
Collapse
Affiliation(s)
- Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Alex I Wiesman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
34
|
Beck MM, Spedden ME, Dietz MJ, Karabanov AN, Christensen MS, Lundbye-Jensen J. Cortical signatures of precision grip force control in children, adolescents, and adults. eLife 2021; 10:61018. [PMID: 34121656 PMCID: PMC8216716 DOI: 10.7554/elife.61018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Human dexterous motor control improves from childhood to adulthood, but little is known about the changes in cortico-cortical communication that support such ontogenetic refinement of motor skills. To investigate age-related differences in connectivity between cortical regions involved in dexterous control, we analyzed electroencephalographic data from 88 individuals (range 8-30 years) performing a visually guided precision grip task using dynamic causal modelling and parametric empirical Bayes. Our results demonstrate that bidirectional coupling in a canonical 'grasping network' is associated with precision grip performance across age groups. We further demonstrate greater backward coupling from higher-order to lower-order sensorimotor regions from late adolescence in addition to differential associations between connectivity strength in a premotor-prefrontal network and motor performance for different age groups. We interpret these findings as reflecting greater use of top-down and executive control processes with development. These results expand our understanding of the cortical mechanisms that support dexterous abilities through development.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Jensen Dietz
- Center of Functionally Integrative Neuroscience, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anke Ninija Karabanov
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark.,Danish Research Centre for Magnetic Resonance (DRCMR), Hvidovre Hospital, Hvidovre, Denmark
| | | | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Fung MH, Taylor BK, Lew BJ, Frenzel MR, Eastman JA, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Sexually dimorphic development in the cortical oscillatory dynamics serving early visual processing. Dev Cogn Neurosci 2021; 50:100968. [PMID: 34102602 PMCID: PMC8187257 DOI: 10.1016/j.dcn.2021.100968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
Visual processing dynamics continue to develop throughout childhood and adolescence. Visual alpha response power differed between males and females. Sex and age interacted to modulate visual gamma responses. Peak frequency predicted response power above and beyond the effects of age and sex.
Successful interaction with one’s visual environment is paramount to developing and performing many basic and complex mental functions. Although major aspects of visual development are completed at an early age, other structural and functional components of visual processing appear to be dynamically changing across a much more protracted period extending into late childhood and adolescence. However, the underlying neurophysiological changes and cortical oscillatory dynamics that support maturation of the visual system during this developmental period remain poorly understood. The present study utilized magnetoencephalography (MEG) to investigate maturational changes in the neural dynamics serving basic visual processing during childhood and adolescence (ages 9–15, n = 69). Our key results included robust sex differences in alpha oscillatory activity within the left posterior parietal cortex, and sex-by-age interactions in gamma activity in the right lingual gyrus and superior parietal lobule. Hierarchical regression revealed that the peak frequency of both the alpha and gamma responses predicted response power in parietal regions above and beyond the noted effects of age and sex. These findings affirm the view that neural oscillations supporting visual processing develop over a much more protracted period, and illustrate that these maturational trajectories are influenced by numerous elements, including age, sex, and individual variation.
Collapse
Affiliation(s)
- Madison H Fung
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University], Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.
| |
Collapse
|
36
|
Taylor BK, Eastman JA, Frenzel MR, Embury CM, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Neural oscillations underlying selective attention follow sexually divergent developmental trajectories during adolescence. Dev Cogn Neurosci 2021; 49:100961. [PMID: 33984667 PMCID: PMC8131898 DOI: 10.1016/j.dcn.2021.100961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
A cohort of 9- to 16-year-olds completed a classic flanker task during MEG. There were developmentally-sensitive interference effects in key attention regions. Youth showed sexually-divergent patterns of age-related interference activity. Maturational differences among males supported improved task behavior.
Selective attention processes are critical to everyday functioning and are known to develop through at least young adulthood. Although numerous investigations have studied the maturation of attention systems in the brain, these studies have largely focused on the spatial configuration of these systems; there is a paucity of research on the neural oscillatory dynamics serving selective attention, particularly among youth. Herein, we examined the developmental trajectory of neural oscillatory activity serving selective attention in 53 typically developing youth age 9-to-16 years-old. Participants completed the classic arrow-based flanker task during magnetoencephalography, and the resulting data were imaged in the time-frequency domain. Flanker interference significantly modulated theta and alpha/beta oscillations within prefrontal, mid-cingulate, cuneus, and occipital regions. Interference-related neural activity also increased with age in the temporoparietal junction and the rostral anterior cingulate. Sex-specific effects indicated that females had greater theta interference activity in the anterior insula, whereas males showed differential effects in theta and alpha/beta oscillations across frontoparietal regions. Finally, males showed age-related changes in alpha/beta interference in the cuneus and middle frontal gyrus, which predicted improved behavioral performance. Taken together, these data suggest sexually-divergent developmental trajectories underlying selective attention in youth.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Mind Research Network, Albuquerque, NM, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| |
Collapse
|
37
|
Midfrontal theta as moderator between beta oscillations and precision control. Neuroimage 2021; 235:118022. [PMID: 33836271 DOI: 10.1016/j.neuroimage.2021.118022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Control of movements using visual information is crucial for many daily activities, and such visuomotor control has been revealed to be supported by alpha and beta cortical oscillations. However, it has been remained to be unclear how midfrontal theta and occipital gamma oscillations, which are associated with high-level cognitive functions, would be involved in this process to facilitate performance. Here we addressed this fundamental open question in healthy young adults by measuring high-density cortical activity during a precision force-matching task. We manipulated the amount of error by changing visual feedback gain (low, medium, and high visual gains) and analyzed event-related spectral perturbations. Increasing the visual feedback gain resulted in a decrease in force error and variability. There was an increase in theta synchronization in the midfrontal area and also in beta desynchronization in the sensorimotor and posterior parietal areas with higher visual feedback gains. Gamma de/synchronization was not evident during the task. In addition, we found a moderation effect of midfrontal theta on the positive relationship between the beta oscillations and force error. Subsequent simple slope analysis indicated that the effect of beta oscillations on force error was weaker when midfrontal theta was high. Our findings suggest that the midfrontal area signals the increased need of cognitive control to refine behavior by modulating the visuomotor processing at theta frequencies.
Collapse
|
38
|
Golosheykin SA, Blagoveschenskiy ED, Agranovich OE, Nazarova MA, Nikulin VV, Moiseenko OE, Chan RW, Shestakova AN. Feasibility and Challenges of Performing Magnetoencephalography Experiments in Children With Arthrogryposis Multiplex Congenita. Front Pediatr 2021; 9:626734. [PMID: 34671580 PMCID: PMC8521161 DOI: 10.3389/fped.2021.626734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/31/2021] [Indexed: 12/02/2022] Open
Abstract
Arthrogryposis multiplex congenita (AMC) has recently drawn substantial attention from researchers and clinicians. New effective surgical and physiotherapeutic methods have been developed to improve the quality of life of patients with AMC. While it is clear that all these interventions should strongly rely on the plastic reorganization of the central nervous system, almost no studies have investigated this topic. The present study demonstrates the feasibility of using magnetoencephalography (MEG) to investigate brain activity in young AMC patients. We also outlined the general challenges and limitations of electrophysiological investigations on patients with arthrogryposis. We conducted MEG recordings using a 306-channel Elekta Neuromag VectorView system during a cued motor task performance in four patients with arthrogryposis, five normally developed children, and five control adults. Following the voice command of the experimenter, each subject was asked to bring their hand toward their mouth to imitate the self-feeding process. Two patients had latissimus dorsi transferred to the biceps brachii position, one patient had a pectoralis major transferred to the biceps brachii position, and one patient had no elbow flexion restoration surgery before the MEG investigation. Three patients who had undergone autotransplantation prior to the MEG investigation demonstrated activation in the sensorimotor area contralateral to the elbow flexion movement similar to the healthy controls. One patient who was recorded before the surgery demonstrated subjectively weak distributed bilateral activation during both left and right elbow flexion. Visual inspection of MEG data suggested that neural activity associated with motor performance was less pronounced and more widely distributed across the cortical areas of patients than of healthy control subjects. In general, our results could serve as a proof of principle in terms of the application of MEG in studies on cortical activity in patients with AMC. Reported trends might be consistent with the idea that prolonged motor deficits are associated with more difficult neuronal recruitment and the spatial heterogeneity of neuronal sources, most likely reflecting compensatory neuronal mechanisms. On the practical side, MEG could be a valuable technique for investigating the neurodynamics of patients with AMC as a function of postoperative abilitation.
Collapse
Affiliation(s)
- Semyon A Golosheykin
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| | - Evgueni D Blagoveschenskiy
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia.,G.I. Turner Scientific Research Institute for Children's Orthopaedics, Ministry of Health of Russia, Saint Petersburg, Russia
| | - Olga E Agranovich
- G.I. Turner Scientific Research Institute for Children's Orthopaedics, Ministry of Health of Russia, Saint Petersburg, Russia
| | - Maria A Nazarova
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia.,Federal State Budgetary Institution ≪Federal Center of Brain Research and Neurotechnologies≫ of the Federal Medical Biological Agency, Moscow, Russia
| | - Vadim V Nikulin
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Olesya E Moiseenko
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| | - Russell W Chan
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia.,Department of Cognitive Psychology and Ergonomics, University of Twente, Enschede, Netherlands
| | - Anna N Shestakova
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
39
|
Säisänen L, Könönen M, Niskanen E, Lakka T, Lintu N, Vanninen R, Julkunen P, Määttä S. Primary hand motor representation areas in healthy children, preadolescents, adolescents, and adults. Neuroimage 2020; 228:117702. [PMID: 33385558 DOI: 10.1016/j.neuroimage.2020.117702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 01/28/2023] Open
Abstract
The development of the organization of the motor representation areas in children and adolescents is not well-known. This cross-sectional study aimed to provide an understanding for the development of the functional motor areas of the upper extremity muscles by studying healthy right-handed children (6-9 years, n = 10), preadolescents (10-12 years, n = 13), adolescents (15-17 years, n = 12), and adults (22-34 years, n = 12). The optimal representation site and resting motor threshold (rMT) for the abductor pollicis brevis (APB) were assessed in both hemispheres using navigated transcranial magnetic stimulation (nTMS). Motor mapping was performed at 110% of the rMT while recording the EMG of six upper limb muscles in the hand and forearm. The association between the motor map and manual dexterity (box and block test, BBT) was examined. The mapping was well-tolerated and feasible in all but the youngest participant whose rMT exceeded the maximum stimulator output. The centers-of-gravity (CoG) for individual muscles were scattered to the greatest extent in the group of preadolescents and centered and became more focused with age. In preadolescents, the CoGs in the left hemisphere were located more laterally, and they shifted medially with age. The proportion of hand compared to arm representation increased with age (p = 0.001); in the right hemisphere, this was associated with greater fine motor ability. Similarly, there was less overlap between hand and forearm muscles representations in children compared to adults (p<0.001). There was a posterior-anterior shift in the APB hotspot coordinate with age, and the APB coordinate in the left hemisphere exhibited a lateral to medial shift with age from adolescence to adulthood (p = 0.006). Our results contribute to the elucidation of the developmental course in the organization of the motor cortex and its associations with fine motor skills. It was shown that nTMS motor mapping in relaxed muscles is feasible in developmental studies in children older than seven years of age.
Collapse
Affiliation(s)
- Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo Lakka
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland; Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Niina Lintu
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| |
Collapse
|
40
|
Hsieh YW, Lee MT, Lin YH, Chuang LL, Chen CC, Cheng CH. Motor Cortical Activity during Observing a Video of Real Hand Movements versus Computer Graphic Hand Movements: An MEG Study. Brain Sci 2020; 11:E6. [PMID: 33374670 PMCID: PMC7822490 DOI: 10.3390/brainsci11010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Both action observation (AO) and virtual reality (VR) provide visual stimuli to trigger brain activations during the observation of actions. However, the mechanism of observing video movements performed by a person's real hand versus that performed by a computer graphic hand remains uncertain. We aimed to investigate the differences in observing the video of real versus computer graphic hand movements on primary motor cortex (M1) activation by magnetoencephalography. Twenty healthy adults completed 3 experimental conditions: the resting state, the video of real hand movements (VRH), and the video of computer graphic hand movements (CGH) conditions with the intermittent electrical stimuli simultaneously applied to the median nerve by an electrical stimulator. The beta oscillatory activity (~20 Hz) in the M1 was collected, lower values indicating greater activations. To compare the beta oscillatory activities among the 3 conditions, the Friedman test with Bonferroni correction (p-value < 0.017 indicating statistical significance) were used. The beta oscillatory activities of the VRH and CGH conditions were significantly lower than that of the resting state condition. No significant difference in the beta oscillatory activity was found between the VRH and CGH conditions. Observing hand movements in a video performed by a real hand and those by a computer graphic hand evoked comparable M1 activations in healthy adults. This study provides some neuroimaging support for the use of AO and VR in rehabilitation, but no differential activations were found.
Collapse
Affiliation(s)
- Yu-Wei Hsieh
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (L.-L.C.); (C.-C.C.)
| | - Meng-Ta Lee
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Yu-Hsuan Lin
- Department of Physical Medicine and Rehabilitation, Cathay General Hospital, Taipei 10630, Taiwan;
| | - Li-Ling Chuang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (L.-L.C.); (C.-C.C.)
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Chi Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (L.-L.C.); (C.-C.C.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| |
Collapse
|
41
|
Kurz MJ, Bergwell H, Spooner R, Baker S, Heinrichs-Graham E, Wilson TW. Motor beta cortical oscillations are related with the gait kinematics of youth with cerebral palsy. Ann Clin Transl Neurol 2020; 7:2421-2432. [PMID: 33174692 PMCID: PMC7732255 DOI: 10.1002/acn3.51246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE It is widely believed that the perinatal brain injuries seen in youth with cerebral palsy (CP) impact neuronal processing of sensory information and the production of leg motor actions during gait. However, very limited efforts have been made to evaluate the connection between neural activity within sensorimotor networks and the altered spatiotemportal gait biomechanics seen in youth with CP. The objective of this investigation was to use magnetoencephalographic (MEG) brain imaging and biomechanical analysis to probe this connection. METHODS We examined the cortical beta oscillations serving motor control of the legs in a cohort of youth with CP (N = 20; Age = 15.5 ± 3 years; GMFCS levels I-III) and healthy controls (N = 15; Age = 14.1 ± 3 years) using MEG brain imaging and a goal-directed isometric knee target-matching task. Outside the scanner, a digital mat was used to quantify the spatiotemporal gait biomechanics. RESULTS Our MEG imaging results revealed that the participants with CP exhibited stronger sensorimotor beta oscillations during the motor planning and execution stages compared to the controls. Interestingly, we also found that those with the strongest sensorimotor beta oscillations during motor execution also tended to walk slower and have a reduced cadence. INTERPRETATION These results fuel the impression that the beta sensorimotor cortical oscillations that underlie leg musculature control may play a central role in the altered mobility seen in youth with CP.
Collapse
Affiliation(s)
- Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Hannah Bergwell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Rachel Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Sarah Baker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| |
Collapse
|
42
|
Wiesman AI, Christopher-Hayes NJ, Eastman JA, Heinrichs-Graham E, Wilson TW. Response certainty during bimanual movements reduces gamma oscillations in primary motor cortex. Neuroimage 2020; 224:117448. [PMID: 33059048 PMCID: PMC7994913 DOI: 10.1016/j.neuroimage.2020.117448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 11/15/2022] Open
Abstract
Even when movement outputs are identical, the neural responses supporting them might differ substantially in order to adapt to changing environmental contexts. Despite the essential nature of this adaptive capacity of the human motor system, little is known regarding the effects of contextual response (un)certainty on the neural dynamics known to serve motor processing. In this study, we use a novel bimanual motor task and neuroimaging with magnetoencephalography (MEG) to examine the effects of contextual response certainty on the dynamic neural responses that are important for proper movement. Significant neural responses were identified in the time-frequency domain at the sensor-level and imaged to the cortex using a spectrally resolved beamformer. Combined frequentist and Bayesian statistical testing between neural motor responses under certain and uncertain conditions indicated evidence for no conditional effect on the peri-movement beta desynchronization (18 - 28 Hz; -100 to 300 ms). In contrast, the movement-related gamma synchronization (MRGS; 66 - 86 Hz; -50 to 150 ms) exhibited a robust effect of motor certainty, such that increased contextual response certainty reduced the amplitude of this response. Interestingly, the peak frequency of the MRGS was unaffected by response certainty. These findings both advance our understanding of the neural processes required to adapt our movements under altered environmental contexts, and support the growing conceptualization of the MRGS as being reflective of ongoing higher cognitive processes during movement execution.
Collapse
Affiliation(s)
- Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, 988422 Nebraska Medical Center, Omaha, NE 68198-8422, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA.
| | - Nicholas J Christopher-Hayes
- Department of Neurological Sciences, University of Nebraska Medical Center, 988422 Nebraska Medical Center, Omaha, NE 68198-8422, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| | - Jacob A Eastman
- Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center, 988422 Nebraska Medical Center, Omaha, NE 68198-8422, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, 988422 Nebraska Medical Center, Omaha, NE 68198-8422, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| |
Collapse
|
43
|
Brady B, Power L, Bardouille T. Age-related trends in neuromagnetic transient beta burst characteristics during a sensorimotor task and rest in the Cam-CAN open-access dataset. Neuroimage 2020; 222:117245. [PMID: 32818620 DOI: 10.1016/j.neuroimage.2020.117245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022] Open
Abstract
Non-invasive neurophysiological recordings, such as those measured by magnetoencelography (MEG), provide insight into the behaviour of neural networks and how these networks change with factors such as task performance, disease state, and age. Recently, there has been a trend in describing neurophysiological recordings as a series of transient bursts of neural activity rather than averaged sustained oscillations as burst characteristics may be more directly correlated with the neurological generators of brain activity. In this work, we investigate how beta burst characteristics change with age in a large open access dataset. The objectives are (1) to detect and characterize transient beta bursts over the ipsilateral and contralateral primary sensorimotor cortices during a unilateral motor task performance and during wakeful resting, and (2) to identify age-related changes in beta burst characteristics, in the context of earlier reports of age-related changes in beta suppression and the post-movement beta rebound. MEG data, acquired at the Cambridge Centre for Ageing and Neuroscience, of roughly 600 participants with a nearly uniform distribution of ages between 18 and 88 years old was used for analysis. We found that burst rate is the predominant factor related to age-related changes in the amplitude of the induced beta rhythm responses associated with a button press task. Furthermore, we present a cross-validation of burst parameters detected at the sensor- (peak sensor and sensor ROI) and source-level (beamformer spatial filter). This work is as an important step in characterizing transient bursts in neuromagnetic signals in the temporal domain, towards a better understanding of the healthy aging human brain.
Collapse
Affiliation(s)
- Brendan Brady
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lindsey Power
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Timothy Bardouille
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
44
|
Tatti E, Ricci S, Nelson AB, Mathew D, Chen H, Quartarone A, Cirelli C, Tononi G, Ghilardi MF. Prior Practice Affects Movement-Related Beta Modulation and Quiet Wake Restores It to Baseline. Front Syst Neurosci 2020; 14:61. [PMID: 33013332 PMCID: PMC7462015 DOI: 10.3389/fnsys.2020.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022] Open
Abstract
Beta oscillations (13.5−25 Hz) over the sensorimotor areas are characterized by a power decrease during movement execution (event-related desynchronization, ERD) and a sharp rebound after the movement end (event-related synchronization, ERS). In previous studies, we demonstrated that movement-related beta modulation depth (peak ERS-ERD) during reaching increases within 1-h practice. This increase may represent plasticity processes within the sensorimotor network. If so, beta modulation during a reaching test should be affected by previous learning activity that engages the sensorimotor system but not by learning involving other systems. We thus recorded high-density EEG activity in a group of healthy subjects performing three 45-min blocks of motor adaptation task to a visually rotated display (ROT) and in another performing three blocks of visual sequence-learning (VSEQ). Each block of either ROT or VSEQ was followed by a simple reaching test (mov) without rotation. We found that beta modulation depth increased with practice across mov tests. However, such an increase was greater in the group performing ROT over both the left and frontal areas previously involved in ROT. Importantly, beta modulation values returned to baseline values after a 90-min of either nap or quiet wake. These results show that previous practice leaves a trace in movement-related beta modulation and therefore such increases are cumulative. Furthermore, as sleep is not necessary to bring beta modulation values to baseline, they could reflect local increases of neuronal activity and decrease of energy and supplies.
Collapse
Affiliation(s)
- Elisa Tatti
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Serena Ricci
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Aaron B Nelson
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Dave Mathew
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Henry Chen
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Angelo Quartarone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Maria Felice Ghilardi
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| |
Collapse
|
45
|
Heinrichs-Graham E, Taylor BK, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Parietal Oscillatory Dynamics Mediate Developmental Improvement in Motor Performance. Cereb Cortex 2020; 30:6405-6414. [PMID: 32705142 DOI: 10.1093/cercor/bhaa199] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
Numerous recent studies have sought to determine the developmental trajectories of motor-related oscillatory responses from youth to adulthood. However, most of this work has relied on simple movements, and rarely have these studies linked developmental neural changes with maturational improvements in motor performance. In this study, we recorded magnetoencephalography during a complex finger-tapping task in a large sample of 107 healthy youth aged 9-15 years old. The relationships between region-specific neural activity, age, and performance metrics were examined using structural equation modeling. We found strong developmental effects on behavior and beta oscillatory activity during movement planning, as well as associations between planning-related beta activity and activity within the same region during the movement execution period. However, when all factors were tested, we found that only right parietal cortex beta dynamics mediated the relationship between age and performance on the task. These data suggest that strong, sustained beta activity within the right parietal cortex enhances motor performance, and that these sustained oscillations develop through childhood into early adolescence. In sum, these are the first data to link developmental trajectories in beta oscillatory dynamics with distinct motor performance metrics and implicate the right parietal cortex as a crucial hub in movement execution.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, UNMC, Omaha, NE, USA.,Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Brittany K Taylor
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, UNMC, Omaha, NE, USA.,Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Julia M Stephen
- The Mind Research Network, Albuquerque, New Mexico, USA.,Department of Neurosciences, University of New Mexico (UNM), Albuquerque, New Mexico, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico, USA.,Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, UNMC, Omaha, NE, USA.,Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| |
Collapse
|
46
|
Andersen LM, Jerbi K, Dalal SS. Can EEG and MEG detect signals from the human cerebellum? Neuroimage 2020; 215:116817. [PMID: 32278092 PMCID: PMC7306153 DOI: 10.1016/j.neuroimage.2020.116817] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023] Open
Abstract
The cerebellum plays a key role in the regulation of motor learning, coordination and timing, and has been implicated in sensory and cognitive processes as well. However, our current knowledge of its electrophysiological mechanisms comes primarily from direct recordings in animals, as investigations into cerebellar function in humans have instead predominantly relied on lesion, haemodynamic and metabolic imaging studies. While the latter provide fundamental insights into the contribution of the cerebellum to various cerebellar-cortical pathways mediating behaviour, they remain limited in terms of temporal and spectral resolution. In principle, this shortcoming could be overcome by monitoring the cerebellum's electrophysiological signals. Non-invasive assessment of cerebellar electrophysiology in humans, however, is hampered by the limited spatial resolution of electroencephalography (EEG) and magnetoencephalography (MEG) in subcortical structures, i.e., deep sources. Furthermore, it has been argued that the anatomical configuration of the cerebellum leads to signal cancellation in MEG and EEG. Yet, claims that MEG and EEG are unable to detect cerebellar activity have been challenged by an increasing number of studies over the last decade. Here we address this controversy and survey reports in which electrophysiological signals were successfully recorded from the human cerebellum. We argue that the detection of cerebellum activity non-invasively with MEG and EEG is indeed possible and can be enhanced with appropriate methods, in particular using connectivity analysis in source space. We provide illustrative examples of cerebellar activity detected with MEG and EEG. Furthermore, we propose practical guidelines to optimize the detection of cerebellar activity with MEG and EEG. Finally, we discuss MEG and EEG signal contamination that may lead to localizing spurious sources in the cerebellum and suggest ways of handling such artefacts. This review is to be read as a perspective review that highlights that it is indeed possible to measure cerebellum with MEG and EEG and encourages MEG and EEG researchers to do so. Its added value beyond highlighting and encouraging is that it offers useful advice for researchers aspiring to investigate the cerebellum with MEG and EEG.
Collapse
Affiliation(s)
- Lau M Andersen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; NatMEG, Karolinska Institutet, Stockholm, Sweden.
| | - Karim Jerbi
- Computational and Cognitive Neuroscience Lab (CoCo Lab), Psychology Department, University of Montreal, Montreal, QC, Canada; MEG Unit, University of Montreal, Montreal, QC, Canada
| | - Sarang S Dalal
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| |
Collapse
|
47
|
Grønbæk J, Molinari E, Avula S, Wibroe M, Oettingen G, Juhler M. The supplementary motor area syndrome and the cerebellar mutism syndrome: a pathoanatomical relationship? Childs Nerv Syst 2020; 36:1197-1204. [PMID: 31127340 DOI: 10.1007/s00381-019-04202-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 01/25/2023]
Abstract
PURPOSE The supplementary motor area (SMA) syndrome affects adults after tumour resection in SMA neighbouring motor cortex. Cerebellar mutism syndrome (CMS) affects children after tumour resection in the posterior fossa. Both syndromes include disturbances in speech and motor function. The causes of the syndromes are unknown; however, surgical damage to the dentato-thalamo-cortical pathway (DTCP) has been associated with CMS. Thus, an anatomical link between the areas associated with the syndromes is possible. We discuss the syndromes and their possible relationship through the DTCP. METHODS We identified 61 articles (cohort studies, case reports and reviews) in MEDLINE and Embase searching for CMS, SMA syndrome or DTCP or synonyms and reviewed for evidence linking CMS and SMA. RESULTS We found that SMA syndrome and CMS are similar regarding (1) surgical causation; (2) symptoms including speech impairment, disturbance in motor function and facial dysfunction; (3) delayed onset; (4) the courses of the syndromes are transient; and (5) long-term sequelae are seen in both. Relevant differences include age predominance of adults in SMA syndrome versus children in CMS. CONCLUSIONS The similarities of the two syndromes could be traced back to their mutual connection through the DTCP and their membership to a cerebro-cerebellar circuit. The connectivity network could explain the emotional changes and speech reduction in CMS. The difference in time of post-surgical onset may be related to the anatomical distance between the surgical damage to the cerebellum and the SMA, respectively, and the effector neural loop underpinning symptoms.
Collapse
Affiliation(s)
- Jonathan Grønbæk
- Department of Neurosurgery, The University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Paediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Emanuela Molinari
- Department of Neurology, The Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Morten Wibroe
- Department of Neurosurgery, The University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Paediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gorm Oettingen
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, The University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Proskovec AL, Spooner RK, Wiesman AI, Wilson TW. Local cortical thickness predicts somatosensory gamma oscillations and sensory gating: A multimodal approach. Neuroimage 2020; 214:116749. [PMID: 32199953 DOI: 10.1016/j.neuroimage.2020.116749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 12/24/2022] Open
Abstract
Two largely distinct bodies of research have demonstrated age-related alterations and disease-specific aberrations in both local gamma oscillations and patterns of cortical thickness. However, seldom has the relationship between gamma activity and cortical thickness been investigated. Herein, we combine the spatiotemporal precision of magnetoencephalography (MEG) with high-resolution magnetic resonance imaging and surface-based morphometry to characterize the relationships between somatosensory gamma oscillations and the thickness of the cortical tissue generating the oscillations in 94 healthy adults (age range: 22-72). Specifically, a series of regressions were computed to assess the relationships between thickness of the primary somatosensory cortex (S1), S1 gamma response power, peak gamma frequency, and somatosensory gating of identical stimuli. Our results indicated that increased S1 thickness significantly predicted greater S1 gamma response power, reduced peak gamma frequency, and improved somatosensory gating. Furthermore, peak gamma frequency significantly and partially mediated the relationship between S1 thickness and the magnitude of the S1 gamma response. Finally, advancing age significantly predicted reduced S1 thickness and decreased gating of redundant somatosensory stimuli. Notably, this is the first study to directly link somatosensory gamma oscillations to local cortical thickness. Our results demonstrate a multi-faceted relationship between structure and function, and have important implications for understanding age- and disease-related deficits in basic sensory processing and higher-order inhibitory function.
Collapse
Affiliation(s)
- Amy L Proskovec
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA; Department of Psychology, University of Nebraska - Omaha, Omaha, NE, 68182, USA; Magnetoencephalography Center of Excellence, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rachel K Spooner
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA
| | - Alex I Wiesman
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA; Department of Psychology, University of Nebraska - Omaha, Omaha, NE, 68182, USA
| |
Collapse
|
49
|
Wiesman AI, Koshy SM, Heinrichs-Graham E, Wilson TW. Beta and gamma oscillations index cognitive interference effects across a distributed motor network. Neuroimage 2020; 213:116747. [PMID: 32179103 DOI: 10.1016/j.neuroimage.2020.116747] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022] Open
Abstract
The planning and execution of an efficient motor plan is essential to everyday cognitive function, and relies on oscillatory neural responses in both the beta (14-30 Hz) and gamma (>30 Hz) bands. Such motor control requires not only the integration of salient information from the environment, but also the inhibition of irrelevant or distracting inputs that often manifest as forms of cognitive interference. While the effects of cognitive interference on motor neural dynamics has been an area of increasing interest recently, it remains unclear whether different subtypes of interference differentially impact these dynamics. We address this issue using magnetoencephalography and a novel adaptation of the Multi-Source Interference Task, wherein two common subtypes of cognitive interference are each presented in isolation, as well as simultaneously. We find evidence for the subtype-invariant indexing of cognitive interference across a widely distributed set of motor regions oscillating in the beta range, including the bilateral primary motor and posterior parietal cortices. Further, we find that superadditive effects of cognitive interference subtypes on behavior are paralleled by gamma oscillations in the contralateral premotor cortex, and determine that these gamma oscillations also predict the superadditive effects on behavior.
Collapse
Affiliation(s)
- Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Sam M Koshy
- Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Department of Biology, Creighton University, Omaha, NE, USA
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA.
| |
Collapse
|
50
|
Taylor BK, Embury CM, Heinrichs-Graham E, Frenzel MR, Eastman JA, Wiesman AI, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Neural oscillatory dynamics serving abstract reasoning reveal robust sex differences in typically-developing children and adolescents. Dev Cogn Neurosci 2020; 42:100770. [PMID: 32452465 PMCID: PMC7052076 DOI: 10.1016/j.dcn.2020.100770] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/17/2019] [Accepted: 02/07/2020] [Indexed: 12/03/2022] Open
Abstract
A cohort of 10–16 year-olds completed an abstract reasoning task during MEG. Performance on the abstract reasoning task correlated with fluid intelligence. The task was associated with increased cortical dynamics in frontoparietal areas. Youth showed sexually divergent patterns of distributed cortical activity with age. Specific frontoparietal activity differentially predicted aspects of task behavior.
Fluid intelligence, the ability to problem-solve in novel situations, is linked to higher-order cognitive abilities, and to academic achievement in youth. Previous research has demonstrated that fluid intelligence and the underlying neural circuitry continues to develop throughout adolescence. Neuroimaging studies have predominantly focused on identifying the spatial distribution of brain regions associated with fluid intelligence, with only a few studies examining the temporally-sensitive cortical oscillatory dynamics underlying reasoning abilities. The present study collected magnetoencephalography (MEG) during an abstract reasoning task to examine these spatiotemporal dynamics in a sample of 10-to-16 year-old youth. We found increased cortical activity across a distributed frontoparietal network. Specifically, our key results showed: (1) age was associated with increased theta activity in occipital and cerebellar regions, (2) robust sex differences were distributed across frontoparietal regions, and (3) that specific frontoparietal regions differentially predicted abstract reasoning performance among males versus females despite similar mean performance. Among males, increased theta activity mediated the relationship between age and faster reaction times; conversely, among females, decreased theta mediated the relationship between age and improved accuracy. These findings may suggest that males and females engage in distinct neurocognitive strategies across development to achieve similar behavioral outcomes during fluid reasoning tasks.
Collapse
Affiliation(s)
- Brittany K Taylor
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christine M Embury
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michaela R Frenzel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jacob A Eastman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Mind Research Network, Albuquerque, NM, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|