1
|
Teran-Wodzinski PC, Yack HJ, Cole KJ, Huang Y, Zhao Y, Davis IS. Intra- and interlimb effects of gait retraining in individuals with knee hyperextension. Clin Biomech (Bristol, Avon) 2024; 120:106357. [PMID: 39366139 DOI: 10.1016/j.clinbiomech.2024.106357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/20/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Gait retraining, which typically focuses on the most severely affected limb or joint, has shown promising results in treating faulty running and walking patterns. The closed-chain nature of gait during the stance phase may influence kinematic changes in the adjacent joints of the trained leg. In addition, the coupled nature of the lower extremity motion of gait suggests that changes in one leg may transfer to the other. This study aimed to assess the intra- and inter-limb transfer of kinematic changes following gait retraining to reduce knee extension in individuals with hyperextension walking patterns. METHODS Seventeen women with knee hyperextension gait patterns participated in six treadmill retraining sessions. All participants received verbal and real-time visual kinematic feedback in the form of knowledge of results. This intervention study took place at the Gait Analysis Laboratory at the University of Iowa. Mean peak sagittal-plane lower extremity joint kinematics during overground walking at pretraining, post-training, and 1- and 8-month follow-ups were calculated for analysis and comparisons. FINDINGS The post-training changes in ankle range of motion returned to baseline values by the 8-month follow-up. There was a significant transfer effect of kinematic changes to the untrained knee following gait retraining. INTERPRETATION Training one knee did not result in long-term compensatory kinematic changes in the other joints. In addition, the improvements in knee extension range of motion were transferred to the untrained knee and retained at the 8-month follow-up. This study supports the use of gait retraining as an effective clinical intervention.
Collapse
Affiliation(s)
- Patricia C Teran-Wodzinski
- Graduate Program in Physical Therapy and Rehabilitation Science, University of Iowa, 1-243 Medical Education Building, Iowa City, IA 52242, USA.
| | - H John Yack
- Graduate Program in Physical Therapy and Rehabilitation Science, University of Iowa, 1-243 Medical Education Building, Iowa City, IA 52242, USA
| | - Kelly J Cole
- Department of Health and Human Physiology, The University of Iowa, N422 FH, Iowa City, IA 52242, USA
| | - Yangxin Huang
- College of Public Health, University of South Florida, 13201 Bruce B. Downs Blvd. MDC 56, Tampa, FL 33612, USA
| | - Yayi Zhao
- College of Public Health, University of South Florida, 13201 Bruce B. Downs Blvd. MDC 56, Tampa, FL 33612, USA
| | - Irene S Davis
- School of Physical Therapy & Rehabilitation Science, Morsani College of Medicine, University of South Florida, 12901 North Bruce B. Downs Blvd., MDC 077, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Debarnot U, Metais A, Legrand M, Blache Y, Saimpont A. Interlimb transfer of sequential motor learning between upper and lower effectors. Gait Posture 2024; 113:412-418. [PMID: 39094235 DOI: 10.1016/j.gaitpost.2024.07.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Interlimb transfer of sequential motor learning (SML) refers to the positive influence of prior experiences in performing the same sequential movements using different effectors. Despite evidence from intermanual SML, and while most daily living activities involve interlimb cooperation and coordination between the four limbs, nothing is known about bilateral SML transfer between the upper and lower limbs. RESEARCH QUESTION We examined the transfer of bilateral SML from the upper to the lower limbs and vice versa. METHODS Twenty-four participants had to learn an initial bilateral SML task using the upper limbs and then performed the same sequence using the lower limbs during a transfer SML task. They performed the reversed situation 1 month apart. The performance was evaluated at the beginning and the end of both initial and transfer SML practice phases. RESULTS Significant and reciprocal transfer gains in performance were observed regardless of the effectors. Greater transfer gains in performance were observed at the beginning of the transfer SML from the lower to the upper limbs (44 %) but these gains vanished after practice with the transfer effectors (5 %). Although smaller gains were initially achieved in the transfer of SML from the upper to the lower limbs (15 %), these gains persisted and remained significant (9 %) after practice with the transfer effectors. SIGNIFICANCE Our results provide evidence of a reciprocal and asymmetrical interlimb transfer of bilateral SML between the upper and lower limbs. These findings could be leveraged as a relevant strategy in the context of sports and functional rehabilitation.
Collapse
Affiliation(s)
- Ursula Debarnot
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France; Institut Universitaire de France.
| | - Angèle Metais
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Marion Legrand
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Yoann Blache
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Arnaud Saimpont
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| |
Collapse
|
3
|
Andrushko JW, Zirk DT, Kurniawan AR, Renshaw DW, Farthing JP. Effects of External Pacing Type on the Cross-Education of Motor Skill. J Mot Behav 2024:1-11. [PMID: 39155837 DOI: 10.1080/00222895.2024.2390032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
Cross-education (CE) is a phenomenon whereby motor training of one limb leads to improved performance in the opposite untrained limb. External pacing of a motor task can enhance CE; however, the influence of different pacing methods is poorly understood. This study explored how motor training with auditory (AP) and visual pacing (VP) impacts CE with a visuomotor force target task. Sixty-one participants performed a unimanual motor task. Participants were randomized into a visual (n = 31) or auditory (n = 30) pacing stimuli condition. The primary outcome was cumulative error scores for each hand, before and after visuomotor training. Pacing type did not yield different magnitudes of CE. However, after adjusting for baseline differences, a significant hand (trained vs. untrained) × practice side (dominant or non-dominant) interaction (p = .013, ηp2 = .106) and a group main effect (p = .036, ηp2 = .165) were observed. Visual pacing resulted in greater improvements in task performance compared to auditory pacing regardless of hand or practice side, while training the dominant limb resulting in a greater interlimb asymmetry regardless of pacing stimulus. These findings have implications for applying pacing strategies during rehabilitation from unilateral injury or neurological impairment.
Collapse
Affiliation(s)
- Justin W Andrushko
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Dakota T Zirk
- Department of Psychology, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada
| | - Aryan R Kurniawan
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | - Doug W Renshaw
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
- Department of Kinesiology and Human Performance, Sul Ross State University, Alpine, Texas, USA
| | | |
Collapse
|
4
|
Weber A, Hartmann U, Werth J, Epro G, Seeley J, Nickel P, Karamanidis K. Enhancement of awareness through feedback does not lead to interlimb transfer of obstacle crossing in virtual reality. J Biomech 2023; 153:111600. [PMID: 37137274 DOI: 10.1016/j.jbiomech.2023.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Locomotor skill transfer is an essential feature of motor adaptation and represents the generalization of learned skills. We previously showed that gait adaptation after crossing virtual obstacles did not transfer to the untrained limb and suggested it may be due to missing feedback of performance. This study investigated whether providing feedback and an explicit goal during training would lead to transfer of adaptive skills to the untrained limb. Thirteen young adults crossed 50 virtual obstacles with one (trained) leg. Subsequently, they performed 50 trials with their other (transfer) leg upon notice about the side change. Visual feedback about crossing performance (toe clearance) was provided using a color scale. In addition, joint angles of the ankle, knee, and hip were calculated for the crossing legs. Toe clearance decreased with repeated obstacle crossing from 7.8 ± 2.7 cm to 4.6 ± 1.7 cm for the trained leg and from 6.8 ± 3.0 cm to 4.4 ± 2.0 cm (p < 0.05) for the transfer leg with similar adaptation rates between limbs. Toe clearance was significantly higher for the first trials of the transfer leg compared to the last trials of the training leg (p < 0.05). Furthermore, statistical parametric mapping revealed similar joint kinematics for trained and transfer legs in the initial training trials but differed in knee and hip joints when comparing the last trials of the trained leg with the first trials of the transfer leg. We concluded that locomotor skills acquired during a virtual obstacle crossing task are limb-specific and that enhanced awareness does not seem to improve interlimb transfer.
Collapse
Affiliation(s)
- A Weber
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom; Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany; Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany.
| | - U Hartmann
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany
| | - J Werth
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - G Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - J Seeley
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - P Nickel
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany
| | - K Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| |
Collapse
|
5
|
Bao S, Lei Y, Keenan KG, Wang J. Generalization of visuomotor adaptation associated with use-dependent learning across different movement workspaces and limb postures. Hum Mov Sci 2022; 86:103017. [DOI: 10.1016/j.humov.2022.103017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/03/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
|
6
|
Kaminski E, Maudrich T, Bassler P, Ordnung M, Villringer A, Ragert P. tDCS over the primary motor cortex contralateral to the trained hand enhances cross-limb transfer in older adults. Front Aging Neurosci 2022; 14:935781. [PMID: 36204550 PMCID: PMC9530461 DOI: 10.3389/fnagi.2022.935781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Transferring a unimanual motor skill to the untrained hand, a phenomenon known as cross-limb transfer, was shown to deteriorate as a function of age. While transcranial direct current stimulation (tDCS) ipsilateral to the trained hand facilitated cross-limb transfer in older adults, little is known about the contribution of the contralateral hemisphere to cross-limb transfer. In the present study, we investigated whether tDCS facilitates cross-limb transfer in older adults when applied over the motor cortex (M1) contralateral to the trained hand. Furthermore, the study aimed at investigating short-term recovery of tDCS-associated cross-limb transfer. In a randomized, double-blinded, sham-controlled setting, 30 older adults (67.0 ± 4.6 years, 15 female) performed a short grooved-pegboard training using their left hand, while anodal (a-tDCS) or sham-tDCS (s-tDCS) was applied over right M1 for 20 min. Left (LHtrained) - and right-hand (RHuntrained) performance was tested before and after training and in three recovery measures 15, 30 and 45 min after training. LHtrained performance improved during both a-tDCS and s-tDCS and improvements persisted during recovery measures for at least 45 min. RHuntrained performance improved only following a-tDCS but not after s-tDCS and outlasted the stimulation period for at least 45 min. Together, these data indicate that tDCS over the M1 contralateral to the trained limb is capable of enhancing cross-limb transfer in older adults, thus showing that cross-limb transfer is mediated not only by increased bi-hemispheric activation.
Collapse
Affiliation(s)
- Elisabeth Kaminski
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- *Correspondence: Elisabeth Kaminski,
| | - Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Pauline Bassler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Madeleine Ordnung
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Gromeier M, Schack T, Koester D. Effects of Age and Expertise on Mental Representation of the Throwing Movement Among 6- to 16-Year-Olds. Front Psychol 2022; 13:799316. [PMID: 35496147 PMCID: PMC9039452 DOI: 10.3389/fpsyg.2022.799316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this article was to assess the development of mental representation of the overhead throwing movement as a function of age and expertise. The mental representational structure of the overhead throwing movement was measured using the Structural Dimensional Analysis-Motoric (SDA-M) method that reflects the organization of basic action concepts (BACs). BACs are fundamental building blocks of mental representations, which comprise functional, sensory, spatiotemporal, and biomechanical characteristics of a movement (Schack, 2010). In this study, novices and handball athletes (N = 199) each were grouped according to the level of development in motor ontogenesis (in childhood, pubescence, and adolescents). Male and female handball athletes played in the highest leagues of their age groups. As a result, novices of all age groups showed the same unstructured mental representation. Athletes in the earliest age band resemble all novices' groups and showed similar unstructured mental representation, whereas athletes within pubescence and adolescents showed functionally well-structured representations, which were similar to the structure of the reference group (N = 8). These results are consistent with a previous investigation of related quantitative and qualitative performance parameters of the overhead throwing movement (Gromeier et al., 2017). Without an increased training, neither the throwing performance nor the associated mental representation is unlikely to improve further by itself or automatically.
Collapse
Affiliation(s)
- Michael Gromeier
- Neurocognition and Action - Biomechanics Research Group, Bielefeld University, Bielefeld, Germany
| | - Thomas Schack
- Neurocognition and Action - Biomechanics Research Group, Bielefeld University, Bielefeld, Germany.,Center of Excellence "Cognitive Interaction Technology" (CITEC), Bielefeld University, Bielefeld, Germany.,Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University, Bielefeld, Germany
| | - Dirk Koester
- Neurocognition and Action - Biomechanics Research Group, Bielefeld University, Bielefeld, Germany.,Center of Excellence "Cognitive Interaction Technology" (CITEC), Bielefeld University, Bielefeld, Germany.,BSP Business School Berlin, Berlin, Germany
| |
Collapse
|
8
|
Newell KM, Rovegno I. Teaching Children's Motor Skills for Team Games Through Guided Discovery: How Constraints Enhance Learning. Front Psychol 2021; 12:724848. [PMID: 34955954 PMCID: PMC8707507 DOI: 10.3389/fpsyg.2021.724848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
In this paper we examine the role of instructional strategies as constraints within a discovery learning framework for the teaching of open skill team ball games to elementary school-aged children. The cohesive and adaptive integration of constraints (individual, environment, and task) by practitioners of movement and physical activity (instructor, teacher, coach) is proposed as the pathway to exploiting the effectiveness of guided discovery learning. The qualitative analysis of the practical instantiations of this framework by expert teachers is examined with respect to the learning of open skill team invasion games (e.g., basketball, soccer). The primary constraints to action in this learning-teaching developmental framework are coordinated so as to keep the self-organization of skill development (movement pattern and tactics) continually evolving, while preserving the child's motivation and enjoyment for the expanding repertoire and performance capacity of his/her perceptual-motor skills. In this open skill and elementary school age-related context, generality and specificity are both necessary and complementary in the expression of task, skill and practice influences on motor learning and performance.
Collapse
Affiliation(s)
- Karl M. Newell
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Inez Rovegno
- College of Education, University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
9
|
Weber A, Friemert D, Hartmann U, Epro G, Seeley J, Werth J, Nickel P, Karamanidis K. Obstacle avoidance training in virtual environments leads to limb-specific locomotor adaptations but not to interlimb transfer in healthy young adults. J Biomech 2021; 120:110357. [PMID: 33725521 DOI: 10.1016/j.jbiomech.2021.110357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023]
Abstract
Obstacle avoidance is one of the skills required in coping with challenging situations encountered during walking. This study examined adaptation in gait stability and its interlimb transfer in a virtual obstacle avoidance task. Twelve young adults walked on a treadmill while wearing a virtual reality headset with their body state represented in the virtual environment. At random times, but always at foot touchdown, 50 virtual obstacles of constant size appeared 0.8 m in front of the participant requiring a step over with the right leg. Early, mid and late adaptation phases were investigated by pooling data from trials 1-3, 24-26 and 48-50. One left-leg obstacle appearing after 50 right-leg trials was used to investigate interlimb transfer. Toe clearance and the anteroposterior margin of stability (MoS) at foot touchdown were calculated for the stepping leg. Toe clearance decreased over repeated practice between early and late phases from 0.13 ± 0.05 m to 0.09 ± 0.04 m (mean ± SD, p < 0.05). MoS increased from 0.05 ± 0.02 m to 0.08 ± 0.02 m (p < 0.05) between early and late phases, with no significant differences between mid and late phases. No differences were found in toe clearance and MoS between the practiced right leg for early phase and the single trial of the left leg. Obstacle avoidance during walking in a virtual environment stimulated adaptive gait improvements that were related in a nonlinear manner to practice dose, though such gait adaptations seemed to be limited in their transferability between limbs.
Collapse
Affiliation(s)
- A Weber
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom; Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany; Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany.
| | - D Friemert
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany
| | - U Hartmann
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany
| | - G Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - J Seeley
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - J Werth
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - P Nickel
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany
| | - K Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| |
Collapse
|
10
|
Yadav G, Mutha PK. Symmetric interlimb transfer of newly acquired skilled movements. J Neurophysiol 2020; 124:1364-1376. [PMID: 32902352 DOI: 10.1152/jn.00777.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we aimed to examine features of interlimb generalization or "transfer" of newly acquired motor skills, with a broader goal of better understanding the mechanisms mediating skill learning. Right-handed participants (n = 36) learned a motor task that required them to make very rapid but accurate reaches to one of eight randomly presented targets, thus bettering the typical speed-accuracy tradeoff. Subjects were divided into an "RL" group that first trained with the right arm and was then tested on the left and an "LR" group that trained with the left arm and was subsequently tested on the right. We found significant interlimb transfer in both groups. Remarkably, we also observed that participants learned faster with their left arm compared with the right. We hypothesized that this could be due to a previously suggested left arm/right hemisphere advantage for movements under variable task conditions. To corroborate this, we recruited two additional groups of participants (n = 22) that practiced the same task under a single target condition. This removal of task level variability eliminated learning rate differences between the arms, yet interlimb transfer remained robust and symmetric, as in the first experiment. Additionally, the strategy used to reduce errors during learning, albeit heterogeneous across subjects particularly in our second experiment, was adopted by the untrained arm. These findings may be best explained as the outcome of the operation of cognitive strategies during the early stages of motor skill learning.NEW & NOTEWORTHY How newly acquired motor skills generalize across effectors is not well understood. Here, we show that newly learned skilled actions transfer symmetrically across the arms and that task-level variability influences learning rate but not transfer magnitude or direction. Interestingly, strategies developed during learning with one arm transfer to the untrained arm. This likely reflects the outcome of learning driven by cognitive mechanisms during the initial stages of motor skill acquisition.
Collapse
Affiliation(s)
- Goldy Yadav
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Pratik K Mutha
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India.,Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| |
Collapse
|
11
|
Asymmetric interlateral transfer of motor learning in unipedal dynamic balance. Exp Brain Res 2020; 238:2745-2751. [PMID: 32979050 DOI: 10.1007/s00221-020-05930-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/18/2020] [Indexed: 01/11/2023]
Abstract
Interlateral transfer of learning between the legs in body balance training is a topic of theoretical and practical interest, but it has been left untouched in previous research. In this investigation, we aimed to evaluate the magnitude and asymmetry of interlateral transfer of balance stability following the practice of a challenging task of unipedal support on an unstable base. Thirty participants (18-30 years old) were assigned to two groups practicing either with the right or the left leg. Training consisted of a single practice session of unipedal balance on a platform free to sway in the anteroposterior direction. Balance time (off ground) of either leg in 10-s trials was compared across pre-test, post-test, and 7-day retention. Post-test indicated that both groups had similar performance gains with the trained leg, and equivalent transfer to the transfer leg. Analysis of retention indicated further balance improvement with both transfer legs, while practice with the right leg led to the superior transfer to the untrained leg as compared to the opposite transfer direction. These results suggest that persistent transfer of learning effects for unipedal dynamic balance is bilateral but more prominent in the right-to-left direction.
Collapse
|
12
|
Modroño C, Socas R, Hernández-Martín E, Plata-Bello J, Marcano F, Pérez-González JM, González-Mora JL. Neurofunctional correlates of eye to hand motor transfer. Hum Brain Mapp 2020; 41:2656-2668. [PMID: 32166833 PMCID: PMC7294058 DOI: 10.1002/hbm.24969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/09/2022] Open
Abstract
This work investigates the transfer of motor learning from the eye to the hand and its neural correlates by using functional magnetic resonance imaging (fMRI) and a sensorimotor task consisting of the continuous tracking of a virtual target. In pretraining evaluation, all the participants (experimental and control group) performed the tracking task inside an MRI scanner using their right hand and a joystick. After which, the experimental group practiced an eye-controlled version of the task for 5 days using an eye tracking system outside the MRI environment. Post-training evaluation was done 1 week after the first scanning session, where all the participants were scanned again while repeating the manual pretraining task. Behavioral results show that the training in the eye-controlled task produced a better performance not only in the eye-controlled modality (motor learning) but also in the hand-controlled modality (motor transfer). Neural results indicate that eye to hand motor transfer is supported by the motor cortex, the basal ganglia and the cerebellum, which is consistent with previous research focused on other effectors. These results may be of interest in neurorehabilitation to activate the motor systems and help in the recovery of motor functions in stroke or movement disorder patients.
Collapse
Affiliation(s)
- Cristián Modroño
- Departamento de Ciencias Médicas Básicas (Unidad Departamental de Fisiología), Facultad de Ciencias de La Salud, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna (S/C de Tenerife), Spain.,Instituto Universitario de Neurociencia, San Cristóbal de La Laguna (S/C de Tenerife), Spain
| | - Rosario Socas
- Servicio de Rehabilitación, Hospital Universitario de Canarias, San Cristóbal de La Laguna (S/C de Tenerife), Spain
| | - Estefanía Hernández-Martín
- Departamento de Ciencias Médicas Básicas (Unidad Departamental de Fisiología), Facultad de Ciencias de La Salud, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna (S/C de Tenerife), Spain.,Instituto Universitario de Neurociencia, San Cristóbal de La Laguna (S/C de Tenerife), Spain
| | - Julio Plata-Bello
- Departamento de Ciencias Médicas Básicas (Unidad Departamental de Fisiología), Facultad de Ciencias de La Salud, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna (S/C de Tenerife), Spain.,Servicio de Neurocirugía, Hospital Universitario de Canarias, San Cristóbal de La Laguna (S/C de Tenerife), Spain.,Instituto Universitario de Neurociencia, San Cristóbal de La Laguna (S/C de Tenerife), Spain
| | - Francisco Marcano
- Departamento de Ciencias Médicas Básicas (Unidad Departamental de Fisiología), Facultad de Ciencias de La Salud, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna (S/C de Tenerife), Spain.,Instituto Universitario de Neurociencia, San Cristóbal de La Laguna (S/C de Tenerife), Spain
| | | | - José L González-Mora
- Departamento de Ciencias Médicas Básicas (Unidad Departamental de Fisiología), Facultad de Ciencias de La Salud, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna (S/C de Tenerife), Spain.,Instituto Universitario de Neurociencia, San Cristóbal de La Laguna (S/C de Tenerife), Spain
| |
Collapse
|
13
|
Krishnan C. Learning and interlimb transfer of new gait patterns are facilitated by distributed practice across days. Gait Posture 2019; 70:84-89. [PMID: 30831544 PMCID: PMC6474794 DOI: 10.1016/j.gaitpost.2019.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous studies have shown that the extent to which learning with one limb transfers to the opposite, untrained limb (i.e., interlimb transfer) is proportional to the amount of prior learning (or skill acquisition) that has occurred in the training limb. Thus, it is likely that distributed practice-a training strategy that is known to facilitate learning-will result in greater interlimb transfer than massed practice. RESEARCH QUESTION To evaluate the effects of massed and distributed practice on acquisition and interlimb transfer of leg motor skills during walking. METHODS Forty-five subjects learned a new gait pattern that required greater hip and knee flexion during the swing phase of gait. The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. Subjects in the massed practice group (n = 20) learned the task on a single day, whereas subjects in the distributed practice group (n = 25) learned the task that was spaced over two consecutive days (training phase). Following completion of training, subjects in both groups practiced the task with their untrained, opposite leg to evaluate interlimb transfer (transfer phase). RESULTS Results indicated that the amount of skill acquisition (i.e., reductions in tracking error) on the training leg was significantly higher (P < 0.05) in the distributed practice group when compared with the massed practice group. Similarly, the amount of interlimb transfer was also significantly higher (P < 0.05) in the distributed practice group both at the beginning and end of the transfer phase. SIGNIFICANCE The findings indicate that acquisition and interlimb transfer of leg motor skills are significantly greater when the task was learned using distributed practice, which may have implications for gait rehabilitation in individuals with unilateral deficits, such as stroke.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA,Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA,Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA,School of Kinesiology, University of Michigan, Ann Arbor, MI, USA,Address for Correspondence: Chandramouli Krishnan, PT, PhD, Director, Neuromuscular & Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Suite 3013), Ann Arbor, MI – 48108, Phone: (319) 321-0117, Fax: (734-615-1770),
| |
Collapse
|
14
|
Zhang JH, Chan ZYS, Au IPH, An WW, Shull PB, Cheung RTH. Transfer Learning Effects of Biofeedback Running Retraining in Untrained Conditions. Med Sci Sports Exerc 2019; 51:1904-1908. [PMID: 30973479 DOI: 10.1249/mss.0000000000002007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Running gait retraining via peak tibial shock biofeedback has been previously shown to reduce impact loading and mitigate running-related symptoms. In previous research, peak tibial shock is typically measured and trained for one limb at a single constant training speed during all training sessions. The goal of this study was to determine how runners transfer learning in the trained limb to the untrained limb at different unconstrained speeds. METHODS Thirteen runners (3 females, age = 41.1 ± 6.9 yr, running experience = 6.8 ± 4.4 yr, weekly running distance = 30.7 ± 22.2 km) underwent running gait biofeedback retraining via continuous tibial acceleration measured at the right distal tibia. Before and after the training, participants were asked to run at their self-selected constrained training speeds (2.8 ± 0.2 m·s) and at 110% and 90% of the training speed. Pretraining and posttraining peak tibial shock values for each limb were compared. RESULTS Participants reduced peak tibial shock in the trained limb by 35% to 37% (P < 0.05, Cohen's d = 0.78-0.85), and in the untrained limb by 20% to 23% (P < 0.05, Cohen's d = 0.51-0.71) across the three testing speeds. The reduction was not significantly different between the trained and untrained limbs (P = 0.31-0.79, Cohen's d = 0.18-0.45). Similarly, there was no difference in peak tibial shock reduction among the three running speeds (P = 0.48-0.61, Cohen's d = 0.06-0.45). CONCLUSION Participants demonstrated transfer learning effects evidenced by concomitant reduced peak tibial shock in the untrained limb, and the learning effects were retrained when running at a 10% variance of the training speed.
Collapse
Affiliation(s)
- Janet Hanwen Zhang
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, HONG KONG SAR
| | - Zoe Yau-Shan Chan
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, HONG KONG SAR
| | - Ivan Pui-Hung Au
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, HONG KONG SAR
| | - Winko Wenkang An
- Department of Biomedical Engineering, Boston University, Boston, MA
| | - Peter Bradley Shull
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, CHINA
| | - Roy Tsz-Hei Cheung
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, HONG KONG SAR
| |
Collapse
|
15
|
Krishnan C, Ranganathan R, Tetarbe M. Interlimb transfer of motor skill learning during walking: No evidence for asymmetric transfer. Gait Posture 2017; 56:24-30. [PMID: 28482202 PMCID: PMC5499689 DOI: 10.1016/j.gaitpost.2017.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 02/02/2023]
Abstract
Several studies have shown that learning a motor skill in one limb can transfer to the opposite limb-a phenomenon called as interlimb transfer. The transfer of motor skills between limbs, however, has shown to be asymmetric, where one side benefits to a greater extent than the other. While this phenomenon has been well-documented in the upper-extremity, evidence for interlimb transfer in the lower-extremity is limited and mixed. This study investigated the extent of interlimb transfer during walking, and tested whether this transfer was asymmetric using a foot trajectory-tracking paradigm that has been specifically used for gait rehabilitation. The paradigm involved learning a new gait pattern which required greater hip and knee flexion during the swing phase of the gait while walking on a treadmill. Twenty young adults were randomized into two equal groups, where one group (right-to-left: RL) practiced the task initially with the dominant right leg and the other group (left-to-right: LR) practiced the task initially with their non-dominant left leg. After training, both groups practiced the task with their opposite leg to test the transfer effects. The changes in tracking error on each leg were computed to quantify learning and transfer effects. The results indicated that practice with one leg improved the motor performance of the other leg; however, the amount of transfer was similar across groups, indicating that there was no asymmetry in transfer. This finding is contradictory to most upper-extremity studies (where asymmetric transfer has been reported) and points out that both differences in neural processes and types of tasks may mediate interlimb transfer.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rajiv Ranganathan
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Manik Tetarbe
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Angulo-Barroso RM, Peciña S, Lin X, Li M, Sturza J, Shao J, Lozoff B. Implicit learning and emotional responses in nine-month-old infants. Cogn Emot 2016; 31:1031-1040. [PMID: 27145099 DOI: 10.1080/02699931.2016.1179624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To study the interplay between motor learning and emotional responses of young infants, we developed a contingent learning paradigm that included two related, difficult, operant tasks. We also coded facial expression to characterise emotional response to learning. In a sample of nine-month-old healthy Chinese infants, 44.7% achieved learning threshold during this challenging arm-conditioning test. Some evidence of learning was observed at the beginning of the second task. The lowest period of negative emotions coincided with the period of maximum movement responses after the initiation of the second task, and movement responses negatively correlated with the frequency of negative emotions. Positive emotions, while generally low throughout the task, increased during peak performance especially for learners. Peak frequency of movement responses was positively correlated with the frequency of positive emotions. Despite the weak evidence of learning this difficult task, our results from the learners would suggest that increasing positive emotions, and perhaps down-regulating negative emotional responses, may be important for improving performance and learning a complex operant task in infancy. Further studies are necessary to determine the role of emotions in learning difficult tasks in infancy.
Collapse
Affiliation(s)
- Rosa M Angulo-Barroso
- a Department of Kinesiology , California State University-Northridge , Northridge , CA , USA.,b Center for Human Growth and Development , University of Michigan , Ann Arbor , MI , USA
| | - Susana Peciña
- c Department of Behavioral Science , University of Michigan , Dearborn , MI , USA
| | - Xu Lin
- d Children's Hospital Zhejiang University School of Medicine , Hangzhou , People's Republic of China
| | - Mingyan Li
- d Children's Hospital Zhejiang University School of Medicine , Hangzhou , People's Republic of China
| | - Julia Sturza
- b Center for Human Growth and Development , University of Michigan , Ann Arbor , MI , USA
| | - Jie Shao
- d Children's Hospital Zhejiang University School of Medicine , Hangzhou , People's Republic of China
| | - Betsy Lozoff
- b Center for Human Growth and Development , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
17
|
Focke A, Spancken S, Stockinger C, Thürer B, Stein T. Bilateral practice improves dominant leg performance in long jump. Eur J Sport Sci 2016; 16:787-93. [PMID: 26864045 DOI: 10.1080/17461391.2016.1141996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Benefits of bilateral practice both for the non-dominant and for the dominant body side have been shown in several studies. Thereby, most of the studies included movement tasks of the upper extremity or investigated sports games in which the ability of acting bilaterally is an essential basis for success and, thus, a bilateral practice is reasonable anyway. Individual unilaterally performed sports including movement tasks of the lower extremity are rarely investigated. Therefore, the aim of our study was to test if contralateral transfer due to bilateral practice can be found in an unilaterally performed sport including the lower extremity. We trained and tested 61 adolescent athletes in long jump to compare the jumping performance of the dominant leg after a 12-week practice period between two groups: a bilateral practice group that practiced specific long jump exercises with both the dominant and non-dominant leg and an unilateral practice group that practiced specific long jump exercises only with the dominant leg. Results showed a superior effect of bilateral practice compared to unilateral practice regarding the jumping performance of the dominant leg. The performance increase at post-test and retention-test for the dominant limb was significantly higher for the bilateral practice group (pre-to-post: 5.2%, pre-to-retention: 7.4%) compared to the unilateral practice group (pre-to-post: 3.4%, pre-to-retention: 4.5%). Thus, bilateral practice should be established in the early practice programmes of track and field athletes to improve the performance of the dominant take-off leg.
Collapse
Affiliation(s)
- Anne Focke
- a BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Sina Spancken
- a BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Christian Stockinger
- a BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Benjamin Thürer
- a BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Thorsten Stein
- a BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology , Karlsruhe , Germany
| |
Collapse
|
18
|
Dickins DSE, Sale MV, Kamke MR. Intermanual transfer and bilateral cortical plasticity is maintained in older adults after skilled motor training with simple and complex tasks. Front Aging Neurosci 2015; 7:73. [PMID: 25999856 PMCID: PMC4423452 DOI: 10.3389/fnagi.2015.00073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/23/2015] [Indexed: 12/20/2022] Open
Abstract
Intermanual transfer refers to the phenomenon whereby unilateral motor training induces performance gains in both the trained limb and in the opposite, untrained limb. Evidence indicates that intermanual transfer is attenuated in older adults following training on a simple ballistic movement task, but not after training on a complex task. This study investigated whether differences in plasticity in bilateral motor cortices underlie these differential intermanual transfer effects in older adults. Twenty young (<35 years-old) and older adults (>65 years) trained on a simple (repeated ballistic thumb abduction) and complex (sequential finger-thumb opposition) task in separate sessions. Behavioral performance was used to quantify intermanual transfer between the dominant (trained) and non-dominant (untrained) hands. The amplitude of motor-evoked potentials induced by single pulse transcranial magnetic stimulation was used to investigate excitability changes in bilateral motor cortices. Contrary to predictions, both age groups exhibited performance improvements in both hands after unilateral skilled motor training with simple and complex tasks. These performance gains were accompanied by bilateral increases in cortical excitability in both groups for the simple but not the complex task. The findings suggest that advancing age does not necessarily influence the capacity for intermanual transfer after training with the dominant hand.
Collapse
Affiliation(s)
- Daina S E Dickins
- Queensland Brain Institute, The University of Queensland, St Lucia QLD, Australia
| | - Martin V Sale
- Queensland Brain Institute, The University of Queensland, St Lucia QLD, Australia
| | - Marc R Kamke
- Queensland Brain Institute, The University of Queensland, St Lucia QLD, Australia
| |
Collapse
|
19
|
Kwon YH, Kwon JW, Park JW. Changes in brain activation patterns according to cross-training effect in serial reaction time task: An functional MRI study. Neural Regen Res 2013; 8:639-46. [PMID: 25206709 PMCID: PMC4145986 DOI: 10.3969/j.issn.1673-5374.2013.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/16/2013] [Indexed: 12/03/2022] Open
Abstract
Cross-training is a phenomenon related to motor learning, where motor performance of the untrained limb shows improvement in strength and skill execution following unilateral training of the homologous contralateral limb. We used functional MRI to investigate whether motor performance of the untrained limb could be improved using a serial reaction time task according to motor sequential learning of the trained limb, and whether these skill acquisitions led to changes in brain activation patterns. We recruited 20 right-handed healthy subjects, who were randomly allocated into training and control groups. The training group was trained in performance of a serial reaction time task using their non-dominant left hand, 40 minutes per day, for 10 days, over a period of 2 weeks. The control group did not receive training. Measurements of response time and percentile of response accuracy were performed twice during pre- and post-training, while brain functional MRI was scanned during performance of the serial reaction time task using the untrained right hand. In the training group, prominent changes in response time and percentile of response accuracy were observed in both the untrained right hand and the trained left hand between pre- and post-training. The control group showed no significant changes in the untrained hand between pre- and post-training. In the training group, the activated volume of the cortical areas related to motor function (i.e., primary motor cortex, premotor area, posterior parietal cortex) showed a gradual decrease, and enhanced cerebellar activation of the vermis and the newly activated ipsilateral dentate nucleus were observed during performance of the serial reaction time task using the untrained right hand, accompanied by the cross-motor learning effect. However, no significant changes were observed in the control group. Our findings indicate that motor skills learned over the 2-week training using the trained limb were transferred to the opposite homologous limb, and motor skill acquisition of the untrained limb led to changes in brain activation patterns in the cerebral cortex and cerebellum.
Collapse
Affiliation(s)
- Yong Hyun Kwon
- Department of Physical Therapy, Yeungnam College of Science & Technology, Daegu, Damgu 705-703, Republic of Korea
| | - Jung Won Kwon
- Department of Physical Therapy, Yeungnam College of Science & Technology, Daegu, Damgu 705-703, Republic of Korea
| | - Ji Won Park
- Department of Physical Therapy, College of Health Science, Catholic University of Daegu, Gyeongsan-si, Kyeongbuk 712-702, Republic of Korea
| |
Collapse
|
20
|
Schaefer SY, Lang CE. Using dual tasks to test immediate transfer of training between naturalistic movements: a proof-of-principle study. J Mot Behav 2012; 44:313-27. [PMID: 22934682 DOI: 10.1080/00222895.2012.708367] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e., more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The authors' purpose was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions.
Collapse
Affiliation(s)
- Sydney Y Schaefer
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | |
Collapse
|
21
|
Houldin A, Chua R, Carpenter MG, Lam T. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking. J Neurophysiol 2012; 108:943-52. [PMID: 22592310 DOI: 10.1152/jn.00670.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several studies have demonstrated that motor adaptations to a novel task environment can be transferred between limbs. Such interlimb transfer of motor commands is consistent with the notion of centrally driven strategies that can be generalized across different frames of reference. So far, studies of interlimb transfer of locomotor adaptations have yielded disparate results. Here we sought to determine whether locomotor adaptations in one (trained) leg show transfer to the other (test) leg during a unipedal walking task. We hypothesized that adaptation in the test leg to a velocity-dependent force field previously experienced by the trained leg will be faster, as revealed by faster recovery of kinematic errors and earlier onset of aftereffects. Twenty able-bodied adults walked unipedally in the Lokomat robotic gait orthosis, which applied velocity-dependent resistance to the legs. The amount of resistance was scaled to 10% of each individual's maximum voluntary contraction of the hip flexors. Electromyography and kinematics of the lower limb were recorded. All subjects were right-leg dominant and were tested for transfer of motor adaptations from the right leg to the left leg. Catch trials, consisting of unexpected removal of resistance, were presented after the first step with resistance and after a period of adaptation to test for aftereffects. We found no significant differences in the sizes of the aftereffects between the two legs, except for peak hip flexion during swing, or in the rate at which peak hip flexion adapted during steps against resistance between the two legs. Our results indicate that interlimb transfer of these types of locomotor adaptation is not a robust phenomenon. These findings add to our current understanding of motor adaptations and provide further evidence that generalization of adaptations may be dependent on the movement task.
Collapse
Affiliation(s)
- Adina Houldin
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|