1
|
Cheng FY, Campbell J, Liu C. Auditory Sensory Gating: Effects of Noise. BIOLOGY 2024; 13:443. [PMID: 38927323 PMCID: PMC11200888 DOI: 10.3390/biology13060443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Cortical auditory evoked potentials (CAEPs) indicate that noise degrades auditory neural encoding, causing decreased peak amplitude and increased peak latency. Different types of noise affect CAEP responses, with greater informational masking causing additional degradation. In noisy conditions, attention can improve target signals' neural encoding, reflected by an increased CAEP amplitude, which may be facilitated through various inhibitory mechanisms at both pre-attentive and attentive levels. While previous research has mainly focused on inhibition effects during attentive auditory processing in noise, the impact of noise on the neural response during the pre-attentive phase remains unclear. Therefore, this preliminary study aimed to assess the auditory gating response, reflective of the sensory inhibitory stage, to repeated vowel pairs presented in background noise. CAEPs were recorded via high-density EEG in fifteen normal-hearing adults in quiet and noise conditions with low and high informational masking. The difference between the average CAEP peak amplitude evoked by each vowel in the pair was compared across conditions. Scalp maps were generated to observe general cortical inhibitory networks in each condition. Significant gating occurred in quiet, while noise conditions resulted in a significantly decreased gating response. The gating function was significantly degraded in noise with less informational masking content, coinciding with a reduced activation of inhibitory gating networks. These findings illustrate the adverse effect of noise on pre-attentive inhibition related to speech perception.
Collapse
Affiliation(s)
| | - Julia Campbell
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX 78712, USA; (F.-Y.C.); (C.L.)
| | | |
Collapse
|
2
|
Morse K, Vander Werff KR. Cortical Auditory Evoked Potential Indices of Impaired Sensory Gating in People With Chronic Tinnitus. Ear Hear 2024; 45:730-741. [PMID: 38273451 DOI: 10.1097/aud.0000000000001463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
OBJECTIVES The primary aim of this study was to evaluate whether there is cortical auditory evoked potential (CAEP) evidence of impaired sensory gating in individuals with tinnitus. On the basis of the proposed mechanism of tinnitus generation, including a thalamocortical inhibitory deficit, it was hypothesized that individuals with tinnitus would lack the normal inhibitory effect on the second CAEP response in a paired-click sensory gating paradigm, resulting in larger sensory gating ratios in individuals with tinnitus relative to age-, sex-, and hearing-matched controls. Further, this study assessed the relative predictive influence of tinnitus presence versus other related individual characteristics (hearing loss, age, noise exposure history, and speech perception in noise) on sensory gating. DESIGN A paired-click CAEP paradigm was used to measure sensory gating outcomes in an independent group's experimental design. Adults who perceived chronic unilateral or bilateral tinnitus were matched with control group counterparts without tinnitus by age, hearing, and sex (n = 18; 10 females, eight males in each group). Amplitude, area, and latency sensory gating ratios were determined for measured P1, N1, and P2 responses evoked by the first and second click in the paradigm and compared between groups by independent t tests. The relative influence of tinnitus (presence/absence), age (in years), noise exposure history (subjective self-report), hearing loss (pure-tone audiometric thresholds), and speech perception in noise (signal to noise ratio-50) on sensory gating was determined based on the proportional reduction in error associated with each variable using multiple regression. RESULTS A significantly larger was identified in the tinnitus group relative to the control group, consistent with the hypothesis of poorer sensory gating and poorer thalamocortical inhibition in individuals with chronic tinnitus. On the basis of the proportional reduction in error, the influence of tinnitus presence better predicted compared with other related individual characteristics (age, noise exposure history, hearing loss, and speech perception in noise). CONCLUSIONS Results consistent with poorer sensory gating, including a larger , were found for the tinnitus group compared with the controls. This finding supported a thalamocortical inhibitory deficit in the tinnitus group and suggests that individuals with tinnitus may have poorer sensory gating. However, the tinnitus group did differ from controls in meaningful ways including having worse pure-tone thresholds in the extended high-frequency region, lower high-frequency distortion product otoacoustic emissions, and poorer speech perception in noise. Although tinnitus best predicted sensory gating outcomes, the specific effects of tinnitus presence versus absence and other individual characteristics on sensory gating cannot be completely separated.
Collapse
Affiliation(s)
- Kenneth Morse
- Division of Communication Sciences and Disorders, West Virginia University, Morgantown, West Virginia, USA
| | - Kathy R Vander Werff
- Department of Communication Sciences and Disorders, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
3
|
Pesonen H, Strömmer J, Li X, Parkkari J, Tarkka IM, Astikainen P. Magnetoencephalography reveals impaired sensory gating and change detection in older adults in the somatosensory system. Neuropsychologia 2023; 190:108702. [PMID: 37838067 DOI: 10.1016/j.neuropsychologia.2023.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/31/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Brain electrophysiological responses can provide information about age-related decline in sensory-cognitive functions with high temporal accuracy. Studies have revealed impairments in early sensory gating and pre-attentive change detection mechanisms in older adults, but no magnetoencephalographic (MEG) studies have been undertaken into both non-attentive and attentive somatosensory functions and their relationship to ageing. Magnetoencephalography was utilized to record cortical somatosensory brain responses in young (20-28 yrs), middle-aged (46-56 yrs), and older adults (64-78 yrs) under active and passive somatosensory oddball conditions. A repeated standard stimulus was occasionally replaced by a deviant stimulus (p = .1), which was an electrical pulse on a different finger. We examined the amplitudes of M50 and M100 responses reflecting sensory gating, and later components reflecting change detection and attention shifting (M190 and M250 for the passive condition, and M200 and M350 for the active condition, respectively). Spatiotemporal cluster-based permutation tests revealed that older adults had significantly larger M100 component amplitudes than young adults for task-irrelevant stimuli in both passive and active condition. Older adults also showed a reduced M250 component and an altered M350 in response to deviant stimuli. The responses of middle-aged adults did not differ from those of younger adults, but this study should be repeated with a larger sample size. By demonstrating changes in both somatosensory gating and attentional shifting mechanisms, our findings extend previous research on the effects of ageing on pre-attentive and attentive brain functions.
Collapse
Affiliation(s)
- Heidi Pesonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Juho Strömmer
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Xueqiao Li
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Jari Parkkari
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ina M Tarkka
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Piia Astikainen
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Campbell J, Rouse R, Nielsen M, Potter S. Sensory Inhibition and Speech Perception-in-Noise Performance in Children With Normal Hearing. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:382-399. [PMID: 36480698 DOI: 10.1044/2022_jslhr-22-00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
PURPOSE This study investigated whether sensory inhibition in children may be associated with speech perception-in-noise performance. Additionally, gating networks associated with sensory inhibition were identified via standardized low-resolution brain electromagnetic tomography (sLORETA), and the detectability of the cortical auditory evoked potential (CAEP) N1 response was enhanced using a 4- to 30-Hz bandpass filter. METHOD CAEP gating responses, reflective of inhibition, were evoked via click pairs and recorded using high-density electroencephalography in neurotypical 5- to 8-year-olds and 22- to 24-year-olds. Amplitude gating indices were calculated and correlated with speech perception in noise. Gating generators were estimated using sLORETA. A 4- to 30-Hz filter was applied to detect the N1 gating component. RESULTS Preliminary findings indicate children showed reduced gating, but there was a correlational trend between better speech perception and decreased N2 gating. Commensurate with decreased gating, children presented with incomplete compensatory gating networks. The 4- to 30-Hz filter identified the N1 response in a subset of children. CONCLUSIONS There was a tenuous relationship between children's speech perception and sensory inhibition. This may suggest that sensory inhibition is only implicated in atypically poor speech perception. Finally, the 4- to 30-Hz filter settings are critical in N1 detectability. SIGNIFICANCE Gating may help evaluate reduced sensory inhibition in children with clinically poor speech perception using the appropriate methodology. Cortical gating generators in typically developing children are also newly identified.
Collapse
Affiliation(s)
- Julia Campbell
- Central Sensory Processes Laboratory, Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin
| | - Rixon Rouse
- Central Sensory Processes Laboratory, Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin
| | - Mashhood Nielsen
- Central Sensory Processes Laboratory, Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin
| | - Sheri Potter
- Central Sensory Processes Laboratory, Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin
| |
Collapse
|
5
|
Eckert D, Reichert C, Bien CG, Heinze HJ, Knight RT, Deouell LY, Dürschmid S. Distinct interacting cortical networks for stimulus-response and repetition-suppression. Commun Biol 2022; 5:909. [PMID: 36064744 PMCID: PMC9445181 DOI: 10.1038/s42003-022-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Non-invasive studies consider the initial neural stimulus response (SR) and repetition suppression (RS) - the decreased response to repeated sensory stimuli - as engaging the same neurons. That is, RS is a suppression of the SR. We challenge this conjecture using electrocorticographic (ECoG) recordings with high spatial resolution in ten patients listening to task-irrelevant trains of auditory stimuli. SR and RS were indexed by high-frequency activity (HFA) across temporal, parietal, and frontal cortices. HFASR and HFARS were temporally and spatially distinct, with HFARS emerging later than HFASR and showing only a limited spatial intersection with HFASR: most HFASR sites did not demonstrate HFARS, and HFARS was found where no HFASR could be recorded. β activity was enhanced in HFARS compared to HFASR cortical sites. θ activity was enhanced in HFASR compared to HFARS sites. Furthermore, HFASR sites propagated information to HFARS sites via transient θ:β phase-phase coupling. In contrast to predictive coding (PC) accounts our results indicate that HFASR and HFARS are functionally linked but have minimal spatial overlap. HFASR might enable stable and rapid perception of environmental stimuli across extended temporal intervals. In contrast HFARS might support efficient generation of an internal model based on stimulus history.
Collapse
Affiliation(s)
- David Eckert
- Department of Neurology, Otto-von-Guericke University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany
| | - Christian G Bien
- Department. of Epileptology, Krankenhaus Mara, Bielefeld University, Maraweg 21, 33617, Bielefeld, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany
- Forschungscampus STIMULATE, Otto-von-Guericke University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- CBBS - center of behavioral brain sciences, Otto-von-Guericke University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Robert T Knight
- Department of Psychology, University of California Berkeley, 130 Barker Hall, Berkeley, 94720, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, 94720, CA, USA
| | - Leon Y Deouell
- Department of Psychology and Edmond and Lily Safra Center for brain sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefan Dürschmid
- Department of Neurology, Otto-von-Guericke University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany.
| |
Collapse
|
6
|
Jian JR, Lin YY, Connor LT, Cheng CH. Revisiting the relationship between neural correlates of sensory gating and self-reported sensory gating inventory: An MEG investigation. Neurosci Lett 2021; 766:136336. [PMID: 34758341 DOI: 10.1016/j.neulet.2021.136336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Accumulated evidence has revealed that bilateral superior temporal gyrus (STG), inferior frontal gyrus (IFG), and inferior parietal lobule (IPL) are involved in the processes of sensory gating (SG). However, it remains unknown which neural correlate(s) of SG specifically reflect individuals' perceptual experiences, as measured by the Sensory Gating Inventory (SGI). Thus, this study aims to investigate the relationship of SGI with cortical SG-related regions. Furthermore, we examine whether SG hemispheric asymmetry exists, which is still an inconclusive issue. METHODS Twenty-two healthy young adults performed the auditory paired-stimulus paradigm during magnetoencephalographic recordings. SG of M50 and M100 was measured as ratios (S2/S1) and differences (S1-S2). They were also evaluated with SGI, which factored into three categories of Perceptual Modulation, Distractibility, and Over-Inclusion. SG in the STG, IFG, and IPL were compared between left and right hemispheres, and were used to determine the relationship with SGI. RESULTS Only M100 SG differences (S1-S2) of the right IFG were significantly correlated with scores of Perceptual Modulation (partial r = -0.392, p = 0.040) and total SGI scores (partial r = -0.387, p = 0.041). However, we did not find significant lateralization of M50 SG and M100 SG in any studying region. CONCLUSIONS The individual's perceptual experience is specifically related to electrophysiological SG function of the right IFG.
Collapse
Affiliation(s)
- Jun-Rui Jian
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Yen-Yun Lin
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Lisa Tabor Connor
- Washington University School of Medicine, Program in Occupational Therapy & Department of Neurology, St. Louis, MO, USA
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
7
|
Arif Y, Wiesman AI, Christopher-Hayes NJ, Wilson TW. Aberrant inhibitory processing in the somatosensory cortices of cannabis-users. J Psychopharmacol 2021; 35:1356-1364. [PMID: 34694190 PMCID: PMC9659470 DOI: 10.1177/02698811211050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Delta-9 tetrahydrocannabinol (THC) is a major exogenous psychoactive agent, which acts as a partial agonist on cannabinoid (CB1) receptors. THC is known to inhibit presynaptic neurotransmission and has been repeatedly linked to acute decrements in cognitive function across multiple domains. Previous electrophysiological studies of sensory gating have shown specific deficits in inhibitory processing in cannabis-users, but to date these findings have been limited to the auditory cortices, and the degree to which these aberrations extend to other brain regions remains largely unknown. METHODS We used magnetoencephalography (MEG) and a paired-pulse somatosensory stimulation paradigm to probe inhibitory processing in 29 cannabis-users (i.e. at least four times per month) and 41 demographically matched non-user controls. MEG responses to each stimulation were imaged in both the oscillatory and time domain, and voxel time-series data were extracted to quantify the dynamics of sensory gating, oscillatory gamma activity, evoked responses, and spontaneous neural activity. RESULTS We observed robust somatosensory responses following both stimulations, which were used to compute sensory gating ratios. Cannabis-users exhibited significantly impaired gating relative to non-users in somatosensory cortices, as well as decreased spontaneous neural activity. In contrast, oscillatory gamma activity did not appear to be affected by cannabis use. CONCLUSIONS We observed impaired gating of redundant somatosensory information and altered spontaneous activity in the same cortical tissue in cannabis-users compared to non-users. These data suggest that cannabis use is associated with a decline in the brain's ability to properly filter repetitive information and impairments in cortical inhibitory processing.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I. Wiesman
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
8
|
Sun HH, Lin MY, Nouchi R, Wang PN, Cheng CH. Neuromagnetic evidence of abnormal automatic inhibitory function in subjective memory complaint. Eur J Neurosci 2021; 53:3350-3361. [PMID: 33754412 DOI: 10.1111/ejn.15196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Subjective memory complaint (SMC), a self-perceived worsening in memory capacity concurrent with normal performance on standardized cognitive assessments, is considered a risk factor for the development of Alzheimer's disease (AD). Deficient sensory gating (SG), referring to the lack of automatic inhibition of neural responses to the second identical stimulus, has been documented in prodromal and incident AD patients. However, it remains unknown whether the cognitively normal elderly with SMC demonstrate alterations of SG function compared with those without SMC. A total of 19 healthy controls (HC) and 16 SMC subjects were included in the present study. Neural responses to the auditory paired-stimulus paradigm were recorded by the magnetoencephalography and analyzed by the distributed source imaging method of minimum norm estimate. The SG of M50 and M100 components were measured using the amplitude ratio of the second response over the first response at the cortical level. Compared to HC, subjects with SMC showed significantly increased M50 SG ratios in the inferior parietal lobule (IPL). Furthermore, M50 SG ratios in the right IPL yielded an acceptable discriminative ability to distinguish SMC from HC. However, we did not find a significant association between SG ratios and cognitive function requiring inhibitory control either in the HC or SMC group. In conclusion, although SMC subjects have intact cognitive functioning revealed by objective neuropsychological tests, their deficits in automatic inhibitory function could be detected through neurophysiological recordings. Our results suggest that altered brain function occurs in SMC prior to the obvious decline of cognitive performance.
Collapse
Affiliation(s)
- Hua-Hsuan Sun
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Bali Psychiatric Center, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Mei-Yin Lin
- Department of Physical Medicine and Rehabilitation, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Smart Aging Research Center (S.A.R.C), Tohoku University, Sendai, Japan
| | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
9
|
Cheng CH, Liu CY, Hsu SC, Tseng YJ. Reduced coupling of somatosensory gating and gamma oscillation in panic disorder. Psychiatry Res Neuroimaging 2021; 307:111227. [PMID: 33248324 DOI: 10.1016/j.pscychresns.2020.111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/31/2020] [Accepted: 10/11/2020] [Indexed: 11/22/2022]
Abstract
Previous studies have reported that patients with panic disorder (PD) exhibited an aberrant level of GABA concentration, an inhibitory neurotransmitter in the human brain. However, it remains substantially unclear whether the inhibitory function regarding the neurophysiological characteristics is altered in this disease. Sensory gating (SG) is considered as an automatic inhibitory function in the sensory cortex. In addition, brain's gamma oscillation within the sensory cortex is another index to reflect inhibitory function. Here we aimed to investigate whether the patients with PD showed altered inhibitory function in the somatosensory system, including the primary (SI) and secondary (SII) somatosensory cortices. A total of 20 healthy controls and 21 patients with PD underwent magnetoencephalographic recordings. Paired-pulse and single-pulse paradigms were used to study SG and gamma oscillations, respectively. There were no significant between-group differences in the SG function in the SI and SII. However, patients with PD demonstrated a reduced gamma power in the SI. Among the healthy individuals, strong associations between SG ratios and gamma frequency values were observed in the SI. However, such a functional relationship disappeared among the patients with PD. We suggested the reduced coupling of SG and gamma oscillation as one of the neural signatures in PD.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), Taiwan
| | - Yi-Jhan Tseng
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| |
Collapse
|
10
|
Effect of Age in Auditory Go/No-Go Tasks: A Magnetoencephalographic Study. Brain Sci 2020; 10:brainsci10100667. [PMID: 32992713 PMCID: PMC7599487 DOI: 10.3390/brainsci10100667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022] Open
Abstract
Response inhibition is frequently examined using visual go/no-go tasks. Recently, the auditory go/no-go paradigm has been also applied to several clinical and aging populations. However, age-related changes in the neural underpinnings of auditory go/no-go tasks are yet to be elucidated. We used magnetoencephalography combined with distributed source imaging methods to examine age-associated changes in neural responses to auditory no-go stimuli. Additionally, we compared the performance of high- and low-performing older adults to explore differences in cortical activation. Behavioral performance in terms of response inhibition was similar in younger and older adult groups. Relative to the younger adults, the older adults exhibited reduced cortical activation in the superior and middle temporal gyrus. However, we did not find any significant differences in cortical activation between the high- and low-performing older adults. Our results therefore support the hypothesis that inhibition is reduced during aging. The variation in cognitive performance among older adults confirms the need for further study on the underlying mechanisms of inhibition.
Collapse
|
11
|
Spooner RK, Wiesman AI, O'Neill J, Schantell MD, Fox HS, Swindells S, Wilson TW. Prefrontal gating of sensory input differentiates cognitively impaired and unimpaired aging adults with HIV. Brain Commun 2020; 2:fcaa080. [PMID: 32954330 PMCID: PMC7472908 DOI: 10.1093/braincomms/fcaa080] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/20/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Despite effective therapies that have extended the life expectancy of persons living with HIV, 35-70% of these adults still develop some form of cognitive impairment, and with a growing population of aging adults with HIV, the prevalence of these cognitive deficits is likely to increase. The mechanisms underlying these HIV-associated neurocognitive disorders remain poorly understood but are often accelerated by the aging process and accompanied by disturbances in sensory processing, which may contribute to the observed cognitive decline. The goal of the current study was to identify the impact of aging on HIV-related alterations in inhibitory processing and determine whether such alterations are related to cognitive impairment in neuroHIV. We used magnetoencephalographic imaging, advanced time series analysis methods, and a paired-pulse stimulation paradigm to interrogate inhibitory processing in 87 HIV-infected aging adults and 92 demographically matched uninfected controls (22-72 years old). Whole-brain maps linking age and neural indices were computed for each group and compared via Fisher's Z transformations. Peak voxel time-series data were also extracted from the resulting images to quantify the dynamics of spontaneous neural activity preceding stimulation onset in each group. Whole-brain analyses using the somatosensory gating index, a metric of inhibitory processing and age distinguished impaired adults with HIV from unimpaired HIV-infected adults and controls. Briefly, younger cognitively impaired adults with HIV strongly utilized the prefrontal cortices to gate somatosensory input, and the role of this region in gating was uniquely and significantly modulated by aging only in impaired adults with HIV. Spontaneous neural activity preceding stimulus onset was also significantly elevated in the prefrontal cortices of those with HIV-associated neurocognitive disorder, and this elevation was significantly related to the CD4 nadir across both HIV-infected groups. This is the first study to examine the impact of aging on inhibitory processing in HIV-infected adults with and without cognitive impairment. Our findings suggest that young adults with HIV-associated neurocognitive disorder utilize the prefrontal cortices to gate (i.e. suppress) redundant somatosensory input, and that this capacity uniquely diminishes with advancing age in impaired adults with HIV.
Collapse
Affiliation(s)
- Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, UNMC, Omaha, NE, USA.,Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, UNMC, Omaha, NE, USA.,Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Mikki D Schantell
- Center for Magnetoencephalography, UNMC, Omaha, NE, USA.,Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, UNMC, Omaha, NE, USA.,Cognitive Neuroscience of Development & Aging (CoNDA) Center, UNMC, Omaha, NE, USA
| |
Collapse
|
12
|
Spooner RK, Eastman JA, Wiesman AI, Wilson TW. Methodological considerations for a better somatosensory gating paradigm: The impact of the inter-stimulus interval. Neuroimage 2020; 220:117048. [PMID: 32544524 PMCID: PMC7593607 DOI: 10.1016/j.neuroimage.2020.117048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Sensory gating (SG) is a neurophysiological phenomenon whereby the response to the second stimulus in a repetitive pair is attenuated. This filtering of irrelevant or redundant information is thought to preserve neural resources for more behaviorally-relevant stimuli and thereby reflect the functional inhibition of sensory input. Developing a SG paradigm in which optimal suppression of sensory input is achieved requires investigators to consider numerous parameters such as stimulus intensity, time between stimulus pairs, and the inter-stimulus interval (ISI) within each pair. While these factors have been well defined for the interrogation of auditory gating, the precise parameters for eliciting optimal gating in the somatosensory domain are far less understood. To address this, we investigated the impact of varying the ISI within each identical pair of stimuli on gating using magnetoencephalography (MEG). Specifically, 25 healthy young adults underwent paired-pulse electrical stimulation of the median nerve with increasing ISIs between 100 and 1000 ms (in 100 ms increments). Importantly, for correspondence with previous studies of somatosensory gating, both time-domain and oscillatory neural responses to somatosensory stimulation were evaluated. Our results indicated that gating of somatosensory input was optimal (i.e., best suppression) for trials with an ISI of 200-220 ms, as evidenced by the smallest gating ratios and through statistical modeling estimations of optimal suppression. Importantly, this was true irrespective of whether oscillatory or evoked neural activity was used to calculate SG. Interestingly, oscillatory metrics of gating calculated using peak gamma (30-75 Hz) power and frequency revealed more robust gating (i.e., smaller ratios) than those calculated using time-domain neural responses, suggesting that high frequency oscillations may provide a more sensitive measure of SG. These findings have important implications for the development of optimal protocols and analysis pipelines to interrogate SG and inhibitory processing with a higher degree of sensitivity and accuracy.
Collapse
Affiliation(s)
- Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jacob A Eastman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Campbell J, Nielsen M, LaBrec A, Bean C. Sensory Inhibition Is Related to Variable Speech Perception in Noise in Adults With Normal Hearing. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:1595-1607. [PMID: 32402215 DOI: 10.1044/2020_jslhr-19-00261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose Speech perception in noise (SPiN) varies widely in individuals with normal hearing, which may be attributed to factors that are not reflected in the audiogram, such as inhibition. However, inhibition is involved at both sensory and cognitive stages of auditory perception, and while inhibition at the cognitive level has been shown to be a significant factor in SPiN processes, it is unknown whether sensory inhibition may also contribute to SPiN variability. Therefore, the goal of this study was to evaluate sensory inhibition in adults with normal hearing and mild SPiN impairment. Method Cortical auditory evoked potentials (CAEPs) were recorded in 49 adults via high-density electroencephalography using an auditory gating paradigm. Participants were categorized according to a median signal-to-noise ratio (SNR) loss of 1.5 dB: typical SNR loss ≤ 1.5 dB (n = 32), mild SNR loss > 1.5 dB (n = 17). CAEP gating responses were compared and correlated with SNR loss and extended high-frequency thresholds. Current density reconstructions were performed to qualitatively observe underlying cortical inhibitory networks in each group. Results In comparison to adults with typical SPiN ability, adults with mild SPiN impairment showed an absence of the gating response. A CAEP gating component (P2) reflected decreased sensory inhibition and correlated with increased SNR loss. Extended high-frequency thresholds were also found to correlate with SNR loss, but not gating function. An atypical cortical inhibitory network was observed in the mild SNR loss group, with reduced frontal and absent prefrontal activation. Conclusion Sensory inhibition appears to be atypical and related to SPiN deficits in adults with mild impairment. In addition, cortical inhibitory networks appear to be incomplete, with a possible compensatory parietal network. Further research is needed to delineate between types or levels of central inhibitory mechanisms and their contribution to SPiN processes.
Collapse
Affiliation(s)
- Julia Campbell
- Department of Communication Sciences and Disorders, Central Sensory Processes Laboratory, The University of Texas at Austin
| | - Mashhood Nielsen
- Department of Communication Sciences and Disorders, Central Sensory Processes Laboratory, The University of Texas at Austin
| | - Alison LaBrec
- Department of Communication Sciences and Disorders, Central Sensory Processes Laboratory, The University of Texas at Austin
| | - Connor Bean
- Department of Communication Sciences and Disorders, Central Sensory Processes Laboratory, The University of Texas at Austin
| |
Collapse
|
14
|
Jafari Z, Kolb BE, Mohajerani MH. Prepulse inhibition of the acoustic startle reflex and P50 gating in aging and alzheimer's disease. Ageing Res Rev 2020; 59:101028. [PMID: 32092463 DOI: 10.1016/j.arr.2020.101028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Inhibition plays a crucial role in many functional domains, such as cognition, emotion, and actions. Studies on cognitive aging demonstrate changes in inhibitory mechanisms are age- and pathology-related. Prepulse inhibition (PPI) is the suppression of an acoustic startle reflex (ASR) to an intense stimulus when a weak prepulse stimulus precedes the startle stimulus. A reduction of PPI is thought to reflect dysfunction of sensorimotor gating which normally suppresses excessive behavioral responses to disruptive stimuli. Both human and rodent studies show age-dependent alterations of PPI of the ASR that are further compromised in Alzheimer's disease (AD). The auditory P50 gating, an index of repetition suppression, also is characterized as a putative electrophysiological biomarker of prodromal AD. This review provides the latest evidence of age- and AD-associated impairment of sensorimotor gating based upon both human and rodent studies, as well as the AD-related disruption of P50 gating in humans. It begins with a concise review of neural networks underlying PPI regulation. Then, evidence of age- and AD-related dysfunction of both PPI and P50 gating is discussed. The attentional/ emotional aspects of sensorimotor gating and the neurotransmitter mechanisms underpinning PPI and P50 gating are also reviewed. The review ends with conclusions and research directions.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada; Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada.
| |
Collapse
|
15
|
Abstract
BACKGROUND Sensory gating is a measure used to evaluate inhibitory deficits underlying neurological disorders. However, the effects of hearing loss (HL), thought to decrease inhibition, remain unknown on gating function. PURPOSE The goal of this study was to investigate gating performance in HL. RESEARCH DESIGN This was a prospective, cross-sectional study with independent group comparison and correlational design. STUDY SAMPLE Eleven adults (mean age/standard deviation = 47.546 ± 7.967 years) with normal hearing (NH) and 11 adults (mean age/standard deviation = 56.273 ± 13.871 years) with mild-moderate high-frequency HL. DATA COLLECTION AND ANALYSIS Cortical auditory evoked potentials (CAEPs) were recorded in response to tonal pairs via high-density electroencephalography. The CAEP response to the second tone in the pair (S2) was compared with the response to the first tone in the pair (S1) within groups. Amplitude gating indices were compared between groups and correlated with auditory behavioral measures. Current density reconstructions were performed to estimate cortical gating generators. RESULTS Amplitude gating indices were decreased and correlated with elevated auditory thresholds. Gating generators in temporal, frontal, and prefrontal regions were localized in the NH group, while HL gating was localized in mainly temporal and parietal areas. CONCLUSIONS Reduced inhibition may be associated with compensatory cortical gating networks in HL and should be considered when utilizing gating in clinical populations.
Collapse
Affiliation(s)
- Julia Campbell
- Department of Communication Sciences and Disorders, University of Texas at Austin, Austin, Texas.,Central Sensory Processes Laboratory, University of Texas at Austin, Austin, Texas
| | - Mashhood Nielsen
- Department of Communication Sciences and Disorders, University of Texas at Austin, Austin, Texas.,Central Sensory Processes Laboratory, University of Texas at Austin, Austin, Texas
| | - Connor Bean
- Department of Communication Sciences and Disorders, University of Texas at Austin, Austin, Texas.,Central Sensory Processes Laboratory, University of Texas at Austin, Austin, Texas
| | - Alison LaBrec
- Department of Communication Sciences and Disorders, University of Texas at Austin, Austin, Texas.,Central Sensory Processes Laboratory, University of Texas at Austin, Austin, Texas
| |
Collapse
|
16
|
Spooner RK, Wiesman AI, Proskovec AL, Heinrichs-Graham E, Wilson TW. Rhythmic Spontaneous Activity Mediates the Age-Related Decline in Somatosensory Function. Cereb Cortex 2020; 29:680-688. [PMID: 29342238 DOI: 10.1093/cercor/bhx349] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Indexed: 01/26/2023] Open
Abstract
Sensory gating is a neurophysiological process whereby the response to a second stimulus in a pair of identical stimuli is attenuated, and it is thought to reflect the capacity of the CNS to preserve neural resources for behaviorally relevant stimuli. Such gating is observed across multiple sensory modalities and is modulated by age, but the mechanisms involved are not understood. In this study, we examined somatosensory gating in 68 healthy adults using magnetoencephalography (MEG) and advanced oscillatory and time-domain analysis methods. MEG data underwent source reconstruction and peak voxel time series data were extracted to evaluate the dynamics of somatosensory gating, and the impact of spontaneous neural activity immediately preceding the stimulation. We found that gating declined with increasing age and that older adults had significantly reduced gating relative to younger adults, suggesting impaired local inhibitory function. Most importantly, older adults had significantly elevated spontaneous activity preceding the stimulation, and this effect fully mediated the impact of aging on sensory gating. In conclusion, gating in the somatosensory system declines with advancing age and this effect is directly tied to increased spontaneous neural activity in the primary somatosensory cortices, which is likely secondary to age-related declines in local GABA inhibitory function.
Collapse
Affiliation(s)
- Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Amy L Proskovec
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Department of Psychology, University of Nebraska - Omaha, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| |
Collapse
|
17
|
Cheng CH, Hsiao FJ, Hsieh YW, Wang PN. Dysfunction of Inferior Parietal Lobule During Sensory Gating in Patients With Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2020; 12:39. [PMID: 32158387 PMCID: PMC7052059 DOI: 10.3389/fnagi.2020.00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Patients with amnestic mild cognitive impairment (aMCI) demonstrate significant cognitive deficits, especially in the memory aspect. The memory deficiency might be attributed to the difficulties in the inhibitory function to suppress redundant stimuli. Sensory gating (SG) refers to the attenuation of neural responses to the second identical stimulus in a paired-click paradigm, in which auditory stimuli are delivered in pairs with inter-stimulus intervals (ISI) of 500 ms and inter-pair intervals of 6-8 s. It is considered as an electrophysiological signal to reflect the brain's automatic response to gate out repetitive sensory inputs. However, there has been no study systematically investigating SG function in aMCI patients. Thus, the present study used magnetoencephalography (MEG) to record neuromagnetic responses to a paired-click paradigm in 23 healthy controls (HC) and 26 aMCI patients. The Stimulus 2/Stimulus 1 (S2/S1) amplitude ratio was used to represent the SG function. Compared to HC, aMCI patients showed M50 SG deficits in the left inferior frontal gyrus (IFG) and right inferior parietal lobule (IPL). M100 SG defects were also observed in the right IPL. Based on the ROIs showing significant between-group SG differences, we found that a more deficient M50 SG function in the right IPL was associated with poorer performance in the immediate recall of Logic Memory (LM), Chinese Version Verbal Learning Test (CVVLT) and Digit Span Backward (DSB) Test. Furthermore, the M50 SG ratios of the right IPL together with the neuropsychological performance of LM and CVVLT demonstrated very good accuracy in the discrimination of aMCI from HC. In conclusion, compared to HC, aMCI patients showed a significant SG deficit in the right IPL, which was correlated with the auditory short-term memory function. We suggest the combination of SG in the right IPL, LM and CVVLT to be sensitive indicators to differentiate aMCI patients from HC.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Fu-Jung Hsiao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Wei Hsieh
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pei-Ning Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Wiesman AI, Wilson TW. Attention modulates the gating of primary somatosensory oscillations. Neuroimage 2020; 211:116610. [PMID: 32044438 DOI: 10.1016/j.neuroimage.2020.116610] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Sensory gating (SG) is a well-studied phenomenon in which neural responses are reduced to identical stimuli presented in succession, and is thought to represent the functional inhibition of primary sensory information that is redundant in nature. SG is traditionally considered pre-attentive, but little is known about the effects of attentional state on this process. In this study, we investigate the impact of directed attention on somatosensory SG using magnetoencephalography. Healthy young adults (n = 26) performed a novel somato-visual paired-pulse oddball paradigm, in which attention was directed towards or away from paired-pulse stimulation of the left median nerve. We observed a robust evoked (i.e., phase-locked) somatosensory response in the time domain, and three stereotyped oscillatory responses in the time-frequency domain including an early theta response (4-8 Hz), and later alpha (8-14 Hz) and beta (20-26 Hz) responses across attentional states. The amplitudes of the evoked response and the theta and beta oscillations were gated for the second stimulus, however, only the gating of the oscillatory responses was altered by attention. Specifically, directing attention to the somatosensory domain enhanced SG of the early theta response, while reducing SG of the later alpha and beta responses. Further, prefrontal alpha-band coherence with the primary somatosensory cortex was greater when attention was directed towards the somatosensory domain, supporting a frontal modulatory effect on the alpha response in primary somatosensory regions. These findings highlight the dynamic effects of attentional modulation on somatosensory processing, and the importance of considering attentional state in studies of SG.
Collapse
Affiliation(s)
- Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA.
| |
Collapse
|
19
|
Yang SH, Wang PN, Cheng CH. Altered auditory repetition suppression and MMNm in relation to cognitive tests in older adults. Biol Psychol 2019; 146:107725. [DOI: 10.1016/j.biopsycho.2019.107725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 06/06/2019] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
|
20
|
Cheng CH, Chan PYS, Hsu SC, Liu CY. Abnormal frontal generator during auditory sensory gating in panic disorder: An MEG study. Psychiatry Res Neuroimaging 2019; 288:60-66. [PMID: 31014913 DOI: 10.1016/j.pscychresns.2019.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023]
Abstract
Patients with panic disorder (PD) exhibit abnormalities in early-stage information processing, even for the nonthreatening stimuli. A previous event-related potential study reported that PD patients show a deficit in sensory gating (SG), a protective mechanism of the brain to filter out irrelevant sensory inputs. However, there is no clear understanding about the neural correlates of SG deficits in PD. Moreover, whether SG deficits, if any, are associated with clinical manifestations remain unknown. In this study, 18 patients with PD and 20 age- and gender-matched healthy controls were recruited to perform auditory paired-stimulus paradigm using magnetoencephalographic (MEG) recordings. Results showed that PD patients demonstrated significantly higher M50 SG ratios in the right inferior frontal gyrus (RIFG) and higher M100 SG ratios in both RIFG and right superior temporal gyrus (RSTG) than those of the control group. It was important to note that in the RIFG, the M50 SG ratios correlated significantly with the scores of Body Sensation Questionnaire (BSQ) and Distractibility scale of Sensory Gating Inventory among patients with PD. In conclusion, this study suggests that PD patients exhibited a deficient ability to filter out irrelevant information, and such a defect might lead to cognitive misinterpretation of somatic sensations and distractibility.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.
| | - Pei-Ying S Chan
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
21
|
Lin MY, Tseng YJ, Cheng CH. Age Effects on Spatiotemporal Dynamics of Response Inhibition: An MEG Study. Front Aging Neurosci 2018; 10:386. [PMID: 30515093 PMCID: PMC6255792 DOI: 10.3389/fnagi.2018.00386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
Inhibition, the ability to suppress irrelevant information, thoughts or movements, is crucial for humans to perform context-appropriate behaviors. It was suggested that declined cognitive performance in older adults might be attributed to inhibitory deficiencies. Although previous studies have shown an age-associated reduction in inhibitory ability, the understanding regarding its cortical spatiotemporal maps remained limited. Thus, we used a whole-head magnetoencephalography (MEG) to elucidate the age effects on response inhibition, and to explore the brain activation differences in high- and low-performing seniors. We recruited 22 younger and 22 older adults to participate in the visual Go/No-go task. Both behavioral performance and neuromagnetic responses to No-go stimuli were analyzed. The behavioral results showed that the older adults made more false alarm (FA) errors than the younger adults did. The MEG results showed that the seniors exhibited declined cortical activities in middle temporal gyrus (MTG) and delayed activation in MTG, prefrontal cortex (PFC) and pre-supplementary motor area (pre-SMA). Furthermore, among the older adults, more recruitment of the left PFC was found in the high-performers than in the lower-performers. In conclusion, age-related deficiencies in response inhibition were observed in both behavioral performance and neurophysiological measurement. Our results also suggested that frontal recruitment plays a compensatory role in successful inhibition.
Collapse
Affiliation(s)
- Mei-Yin Lin
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Yi-Jhan Tseng
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
22
|
Terrasa JL, Montoya P, González-Roldán AM, Sitges C. Inhibitory Control Impairment on Somatosensory Gating Due to Aging: An Event-Related Potential Study. Front Hum Neurosci 2018; 12:280. [PMID: 30050421 PMCID: PMC6052091 DOI: 10.3389/fnhum.2018.00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 01/19/2023] Open
Abstract
The capacity to suppress irrelevant incoming input, termed sensory gating, is one of the most investigated inhibitory processes associated with cognitive impairments due to aging. The aim of this study was to examine the influence of aging on sensory gating by using somatosensory event-related potentials (ERPs) elicited by repetitive non-painful tactile stimulation (paired-pulsed task). Somatosensory ERPs were recorded in 20 healthy young adults and 20 healthy older adults while they received two identical pneumatic stimuli (S1 and S2) of 100 ms duration with an inter-stimulus interval of 550 ± 50 ms on both forefingers. The difference between the somatosensory ERPs amplitude elicited by S1 and S2 was computed as a sensory gating measure. The amplitude and the latency of P50, N100 and late positive complex (LPC) were analyzed as well as the source generators of the gating effect. Reduced sensory gating was found in older individuals for N100 at frontal and centro-parietal electrodes and for LPC at fronto-central electrodes. Source localization analyses also revealed a reduced current density during gating effect in the older group in frontal areas in N100 and LPC. Moreover, older individuals showed delayed latencies in N100. No significant gating effect differences were found between groups in P50. These findings suggest an age-related slowing of processing speed and a reduced efficiency of inhibitory mechanisms in response to repetitive somatosensory information during stimulus evaluation, and a preservation of processing speed and inhibitory control during early stimulus coding in aging.
Collapse
Affiliation(s)
- Juan L Terrasa
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS), Balearic Islands Health Research Institute, University of the Balearic Islands, Palma, Spain
| | - Pedro Montoya
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS), Balearic Islands Health Research Institute, University of the Balearic Islands, Palma, Spain
| | - Ana M González-Roldán
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS), Balearic Islands Health Research Institute, University of the Balearic Islands, Palma, Spain
| | - Carolina Sitges
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS), Balearic Islands Health Research Institute, University of the Balearic Islands, Palma, Spain
| |
Collapse
|
23
|
Cheng CH, Lin MY, Yang SH. Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study. Front Aging Neurosci 2018; 10:53. [PMID: 29551971 PMCID: PMC5840154 DOI: 10.3389/fnagi.2018.00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/16/2018] [Indexed: 01/03/2023] Open
Abstract
Age-related deficiency in the top-down modulation of cognitive inhibition has been extensively documented, whereas the effects of age on a bottom-up or automatic operation of inhibitory function were less investigated. It is unknown that whether the older adults (OA)’ reduced behavioral performance and neural responses are due to the insufficient bottom-up processes. Compared to behavioral assessments which have been widely used to examine the top-down control of response inhibition, electrophysiological recordings are more suitable to probe the early-stage processes of automatic inhibitory function. Sensory gating (SG), a phenomenon of attenuated neural response to the second identical stimulus in a paired-pulse paradigm, is an indicator to assess automatic inhibitory function of the sensory cortex. On the other hand, electricity-induced beta rebound oscillation in a single-pulse paradigm reflects cortical inhibition of the motor cortex. From the neurophysiological perspective, SG and beta rebound oscillation are replicable indicators to examine the automatic inhibitory function of human sensorimotor cortices. Thus, the present study aimed to use a whole-head magnetoencephalography (MEG) to investigate the age-related alterations of SG function in the primary somatosensory cortex (SI) and of beta rebound oscillation in the primary motor cortex (MI) in 17 healthy younger and 15 older adults. The Stimulus 2/Stimulus 1 (S2/S1) amplitude ratio in response to the paired-pulse electrical stimulation to the left median nerve was used to evaluate the automatic inhibitory function of SI, and the beta rebound response in the single-pulse paradigm was used to evaluate the automatic inhibitory function of MI. Although there were no significant age-related differences found in the SI SG ratios, the MI beta rebound power was reduced and peak latency was prolonged in the OA. Furthermore, significant association between the SI SG ratio and the MI beta rebound power, which was seen in the younger adults (YA), was absent in the OA. In conclusion, our data suggested an age-related defect of association between sensorimotor cortices regarding automatic inhibitory function.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Mei-Yin Lin
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Shiou-Han Yang
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
24
|
Cheng CH, Niddam DM, Hsu SC, Liu CY, Tsai SY. Resting GABA concentration predicts inhibitory control during an auditory Go-Nogo task. Exp Brain Res 2017; 235:3833-3841. [DOI: 10.1007/s00221-017-5101-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 10/03/2017] [Indexed: 01/27/2023]
|
25
|
Automatic inhibitory function in the human somatosensory and motor cortices: An MEG-MRS study. Sci Rep 2017; 7:4234. [PMID: 28652623 PMCID: PMC5484662 DOI: 10.1038/s41598-017-04564-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/17/2017] [Indexed: 11/27/2022] Open
Abstract
While the automatic inhibitory function of the human cerebral cortex has been extensively investigated by means of electrophysiological recordings, the corresponding modulating neurochemical mechanisms remain unclear. We aimed to examine whether the primary somatosensory (SI) and primary motor cortical (MI) inhibitory function is associated with endogenous GABA levels. Eighteen young participants received paired-pulse and single-pulse electrical stimulation to the median nerve during magnetoencephalographic recordings. The SI sensory gating (SG), considered as an automatic inhibitory ability, was measured as the amplitude ratio of Stimulus 2 over Stimulus 1, in the paired-pulse paradigm. In addition, stimulus-induced beta activity, considered to originate from MI and also to be related to inhibitory function, was estimated using the single-pulse paradigm. The GABA+ concentration of the sensorimotor cortex was acquired from each subject by using magnetic resonance spectroscopy (MRS). A lower SG ratio in SI was significantly associated with an increased beta power in MI. More importantly, the beta rebound power, but not SI SG ratio, was positively correlated with GABA+ concentration. Our findings show a tight functional relationship between SI and MI during processing of automatic inhibition. GABA+ levels appear to be more closely related to the automatic inhibitory function of MI than SI.
Collapse
|