1
|
Othman MH, Olsen MH, Hansen KIT, Amiri M, Jensen HR, Nyholm B, Møller K, Kjaergaard J, Kondziella D. Covert Consciousness in Acute Brain Injury Revealed by Automated Pupillometry and Cognitive Paradigms. Neurocrit Care 2024; 41:218-227. [PMID: 38605221 PMCID: PMC11335945 DOI: 10.1007/s12028-024-01983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Identifying covert consciousness in intensive care unit (ICU) patients with coma and other disorders of consciousness (DoC) is crucial for treatment decisions, but sensitive low-cost bedside markers are missing. We investigated whether automated pupillometry combined with passive and active cognitive paradigms can detect residual consciousness in ICU patients with DoC. METHODS We prospectively enrolled clinically low-response or unresponsive patients with traumatic or nontraumatic DoC from ICUs of a tertiary referral center. Age-matched and sex-matched healthy volunteers served as controls. Patients were categorized into clinically unresponsive (coma or unresponsive wakefulness syndrome) or clinically low-responsive (minimally conscious state or better). Using automated pupillometry, we recorded pupillary dilation to passive (visual and auditory stimuli) and active (mental arithmetic) cognitive paradigms, with task-specific success criteria (e.g., ≥ 3 of 5 pupillary dilations on five consecutive mental arithmetic tasks). RESULTS We obtained 699 pupillometry recordings at 178 time points from 91 ICU patients with brain injury (mean age 60 ± 13.8 years, 31% women, and 49.5% nontraumatic brain injuries). Recordings were also obtained from 26 matched controls (59 ± 14.8 years, 38% women). Passive paradigms yielded limited distinctions between patients and controls. However, active paradigms enabled discrimination between different states of consciousness. With mental arithmetic of moderate complexity, ≥ 3 pupillary dilations were seen in 17.8% of clinically unresponsive patients and 50.0% of clinically low-responsive patients (odds ratio 4.56, 95% confidence interval 2.09-10.10; p < 0.001). In comparison, 76.9% healthy controls responded with ≥ 3 pupillary dilations (p = 0.028). Results remained consistent across sensitivity analyses using different thresholds for success. Spearman's rank analysis underscored the robust association between pupillary dilations during mental arithmetic and consciousness levels (rho = 1, p = 0.017). Notably, one behaviorally unresponsive patient demonstrated persistent command-following behavior 2 weeks before overt signs of awareness, suggesting prolonged cognitive motor dissociation. CONCLUSIONS Automated pupillometry combined with mental arithmetic can identify cognitive efforts, and hence covert consciousness, in ICU patients with acute DoC.
Collapse
Affiliation(s)
- Marwan H Othman
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Inge Lehmanns Vej 8, 2100, Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanesthesiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karen Irgens Tanderup Hansen
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Inge Lehmanns Vej 8, 2100, Copenhagen, Denmark
- Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Moshgan Amiri
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Inge Lehmanns Vej 8, 2100, Copenhagen, Denmark
| | - Helene Ravnholt Jensen
- Department of Neuroanesthesiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Benjamin Nyholm
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Neuroanesthesiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Inge Lehmanns Vej 8, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Wang J, Gao X, Xiang Z, Sun F, Yang Y. Evaluation of consciousness rehabilitation via neuroimaging methods. Front Hum Neurosci 2023; 17:1233499. [PMID: 37780959 PMCID: PMC10537959 DOI: 10.3389/fnhum.2023.1233499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Accurate evaluation of patients with disorders of consciousness (DoC) is crucial for personalized treatment. However, misdiagnosis remains a serious issue. Neuroimaging methods could observe the conscious activity in patients who have no evidence of consciousness in behavior, and provide objective and quantitative indexes to assist doctors in their diagnosis. In the review, we discussed the current research based on the evaluation of consciousness rehabilitation after DoC using EEG, fMRI, PET, and fNIRS, as well as the advantages and limitations of each method. Nowadays single-modal neuroimaging can no longer meet the researchers` demand. Considering both spatial and temporal resolution, recent studies have attempted to focus on the multi-modal method which can enhance the capability of neuroimaging methods in the evaluation of DoC. As neuroimaging devices become wireless, integrated, and portable, multi-modal neuroimaging methods will drive new advancements in brain science research.
Collapse
Affiliation(s)
| | | | | | - Fangfang Sun
- College of Automation, Hangzhou Dianzi University, Hangzhou, China
| | | |
Collapse
|
3
|
Mizrahi T, Axelrod V. Naturalistic auditory stimuli with fNIRS prefrontal cortex imaging: A potential paradigm for disorder of consciousness diagnostics (a study with healthy participants). Neuropsychologia 2023; 187:108604. [PMID: 37271305 DOI: 10.1016/j.neuropsychologia.2023.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
Disorder of consciousness (DOC) is a devastating condition due to brain damage. A patient in this condition is non-responsive, but nevertheless might be conscious at least at some level. Determining the conscious level of DOC patients is important for both medical and ethical reasons, but reliably achieving this has been a major challenge. Naturalistic stimuli in combination with neuroimaging have been proposed as a promising approach for DOC patient diagnosis. Capitalizing on and extending this proposal, the goal of the present study conducted with healthy participants was to develop a new paradigm with naturalistic auditory stimuli and functional near-infrared spectroscopy (fNIRS) - an approach that can be used at the bedside. Twenty-four healthy participants passively listened to 9 min of auditory story, scrambled auditory story, classical music, and scrambled classical music segments while their prefrontal cortex activity was recorded using fNIRS. We found much higher intersubject correlation (ISC) during story compared to scrambled story conditions both at the group level and in the majority of individual subjects, suggesting that fNIRS imaging of the prefrontal cortex might be a sensitive method to capture neural changes associated with narrative comprehension. In contrast, the ISC during the classical music segment did not differ reliably from scrambled classical music and was also much lower than the story condition. Our main result is that naturalistic auditory stories with fNIRS might be used in a clinical setup to identify high-level processing and potential consciousness in DOC patients.
Collapse
Affiliation(s)
- Tamar Mizrahi
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Head Injuries Rehabilitation Department, Sheba Medical Center, Ramat Gan, Israel
| | - Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
4
|
Lu H, Jiang J, Si J, Wang Y, Huang F. A functional near-infrared spectroscopy study on hemodynamic changes of patients with prolonged disorders of consciousness responding to different auditory stimuli. BMC Neurol 2023; 23:242. [PMID: 37353754 DOI: 10.1186/s12883-023-03292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
Treating prolonged disorders of consciousness (pDoC) is challenging. Thus, accurate assessment of residual consciousness in patients with pDoC is important for the management and recovery of patients. Functional near-infrared spectroscopy (fNIRS) can be used to detect brain activity through changes of oxygenated hemoglobin/deoxygenated hemoglobin (HbO/HbR) concentrations changes and has recently gained increasing attention for its potential applications in assessing residual consciousness. However, the number of fNIRS studies assessing residual awareness in patients with pDoC is still limited. In this study, fNIRS was used to evaluate the brain function in 18 patients with pDoC, including 14 vegetative states (VS) and 4 minimally conscious states (MCS), and 15 healthy controls (HC). All participants accepted two types of external stimuli, i.e., active stimulation (motor imagery, MI) and passive stimulation (subject's own name, SON). The results showed that the mean concentrations of HbO/HbR in the prefrontal cortex of the HC during the passive stimulation were significantly lower than those of the active stimulation, and the fitting slope was high. However, the hemodynamic responses of the patients with pDoC were opposite to those of the HC. Additionally, the mean concentrations of HbO/HbR increased as the level of consciousness decreased during passive stimulation. Our findings suggest that the residual level of consciousness in pDoC patients can be assessed by measuring brain responses to different stimulations using fNIRS. The present study further demonstrates the feasibility and reliability of fNIRS in assessing residual consciousness in patients with pDoC, providing a basis for its expanded clinical application.
Collapse
Affiliation(s)
- Haitao Lu
- Department of Neurorehabilitation, Beijing Bo'ai Hospital, Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University, Beijing, China.
| | - Jin Jiang
- Laboratory of Human Factors Engineering, China Astronaut Research and Training Centre, Beijing, China
| | - Juanning Si
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, 100192, Beijing, China
| | - Yizheng Wang
- Department of Neurorehabilitation, Beijing Bo'ai Hospital, Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fubiao Huang
- Department of Occupational Therapy, Rehabilitation Research Center, School of Rehabilitation Medicine, Beijing Bo'ai Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Si J, Yang Y, Xu L, Xu T, Liu H, Zhang Y, Jing R, Li J, Wang D, Wu S, He J. Evaluation of residual cognition in patients with disorders of consciousness based on functional near-infrared spectroscopy. NEUROPHOTONICS 2023; 10:025003. [PMID: 37064779 PMCID: PMC10091901 DOI: 10.1117/1.nph.10.2.025003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/26/2023] [Indexed: 06/06/2023]
Abstract
SIGNIFICANCE Accurate evaluation of consciousness in patients with prolonged disorders of consciousness (DOC) is critical for designing therapeutic plans, determining rehabilitative services, and predicting prognosis. Effective ways for detecting consciousness in patients with DOC are still needed. AIM Evaluation of the residual awareness in patients with DOC and investigation of the spatiotemporal differences in the hemodynamic responses between the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS) groups using active command-driven motor imagery (MI) tasks. APPROACH In this study, functional near-infrared spectroscopy (fNIRS) was used to measure the changes of hemodynamic responses in 19 patients with DOC (9 MCS and 10 UWS) using active command-driven MI tasks. The characteristics of the hemodynamic responses were extracted to compare the differences between the MCS and UWS groups. Moreover, the correlations between the hemodynamic responses and the clinical behavioral evaluations were also studied. RESULTS The results showed significant differences in the spatiotemporal distribution of the hemodynamic responses between the MCS and UWS groups. For the patients with MCS, significant increases in task-evoked hemodynamic responses occurred during the "YES" questions of the command-driven MI tasks. Importantly, these changes were significantly correlated with their coma-recovery scale-revised (CRS-R) scores. However, for the patients with UWS, no significant changes of the hemodynamic responses were found. Additionally, the results did not show any statistical correlation between the hemodynamic responses and their CRS-R scores. CONCLUSIONS The fNIRS-based command-driven MI tasks can be used as a promising tool for detecting residual awareness in patients with DOC. We hope that the findings and the active paradigm used in this study will provide useful insights into the diagnosis, therapy, and prognosis of this challenging patient population.
Collapse
Affiliation(s)
- Juanning Si
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Yi Yang
- Beijing Tiantan Hospital, Capital Medical University, Department of Neurosurgery, Beijing, China
| | - Long Xu
- Beijing Tiantan Hospital, Capital Medical University, Department of Neurosurgery, Beijing, China
| | - Tianshuai Xu
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Hao Liu
- Chinese Academy of Sciences, Institute of Automation, Brainnetome Center, Beijing, China
- Chinese Academy of Sciences, Institute of Automation, National Laboratory of Pattern Recognition, Beijing, China
| | - Yujin Zhang
- Chinese Academy of Sciences, Institute of Automation, Brainnetome Center, Beijing, China
- Chinese Academy of Sciences, Institute of Automation, National Laboratory of Pattern Recognition, Beijing, China
| | - Rixing Jing
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Jinglian Li
- Sanhe Yanjiao Fuhe First Hospital, Department of Neurosurgery, Langfang, China
| | - Dongdong Wang
- Sanhe Yanjiao Fuhe First Hospital, Department of Neurosurgery, Langfang, China
| | - Sijin Wu
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Jianghong He
- Beijing Tiantan Hospital, Capital Medical University, Department of Neurosurgery, Beijing, China
| |
Collapse
|
6
|
Norton L, Graham M, Kazazian K, Gofton T, Weijer C, Debicki D, Fernandez-Espejo D, Thenayan EA, Owen AM. Use of functional magnetic resonance imaging to assess cognition and consciousness in severe Guillain-Barré syndrome. Int J Clin Health Psychol 2023; 23:100347. [DOI: 10.1016/j.ijchp.2022.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022] Open
|
7
|
Chen H, Miao G, Wang S, Zheng J, Zhang X, Lin J, Hao C, Huang H, Jiang T, Gong Y, Liao W. Disturbed functional connectivity and topological properties of the frontal lobe in minimally conscious state based on resting-state fNIRS. Front Neurosci 2023; 17:1118395. [PMID: 36845431 PMCID: PMC9950516 DOI: 10.3389/fnins.2023.1118395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Background Patients in minimally conscious state (MCS) exist measurable evidence of consciousness. The frontal lobe is a crucial part of the brain that encodes abstract information and is closely related to the conscious state. We hypothesized that the disturbance of the frontal functional network exists in MCS patients. Methods We collected the resting-state functional near-infrared spectroscopy (fNIRS) data of fifteen MCS patients and sixteen age- and gender-matched healthy controls (HC). The Coma Recovery Scale-Revised (CRS-R) scale of MCS patients was also composed. The topology of the frontal functional network was analyzed in two groups. Results Compared with HC, the MCS patients showed widely disrupted functional connectivity in the frontal lobe, especially in the frontopolar area and right dorsolateral prefrontal cortex. Moreover, the MCS patients displayed lower clustering coefficient, global efficiency, local efficiency, and higher characteristic path length. In addition, the nodal clustering coefficient and nodal local efficiency in the left frontopolar area and right dorsolateral prefrontal cortex were significantly reduced in MCS patients. Furthermore, the nodal clustering coefficient and nodal local efficiency in the right dorsolateral prefrontal cortex were positively correlated to auditory subscale scores. Conclusion This study reveals that MCS patients' frontal functional network is synergistically dysfunctional. And the balance between information separation and integration in the frontal lobe is broken, especially the local information transmission in the prefrontal cortex. These findings help us to understand the pathological mechanism of MCS patients better.
Collapse
Affiliation(s)
| | | | - Sirui Wang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Zheng
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junbin Lin
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chizi Hao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hailong Huang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ting Jiang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | | | | |
Collapse
|
8
|
Zheng RZ, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward. Neurosci Bull 2023; 39:138-162. [PMID: 35804219 PMCID: PMC9849546 DOI: 10.1007/s12264-022-00909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Bicciato G, Narula G, Brandi G, Eisele A, Schulthess S, Friedl S, Willms JF, Westphal L, Keller E. Functional NIRS to detect covert consciousness in neurocritical patients. Clin Neurophysiol 2022; 144:72-82. [PMID: 36306692 DOI: 10.1016/j.clinph.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This pilot study assesses the feasibility to detect covert consciousness in clinically unresponsive patients by means of functional near infrared spectroscopy (fNIRS) in a real intensive care unit setting. We aimed to verify if the hemodynamic response to familiar music measured with fNIRS varies according to the level consciousness of the patients. METHODS 22 neurocritical patients and 6 healthy controls were included. The experiment consisted in 3 subsequent blocks including a first resting state recording, a period of music playback and a second resting state recording. fNIRS measurement were performed on each subject with two optodes on the forehead. Main oscillatory frequencies of oxyhemoglobin signal were analyzed. Spectral changes of low frequency oscillations (LFO) between subsequent experimental blocks were used as a marker of cortical response. Cortical response was compared to the level of consciousness of the patients and their functional outcome, through validated clinical scores. RESULTS Cortical hemodynamic response to music on the left prefrontal brain was associated with the level of consciousness of the patients and with their clinical outcome after three months. CONCLUSIONS Variations in LFO spectral power measured with fNIRS may be a new marker of cortical responsiveness to detect covert consciousness in neurocritical patients. Left prefrontal cortex may play an important role in the perception of familiar music. SIGNIFICANCE We showed the feasibility of a simple fNIRS approach to detect cortical response in the real setting of an intensive care unit.
Collapse
Affiliation(s)
- Giulio Bicciato
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091 Zurich, Switzerland; Department of Neurology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Gagan Narula
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091 Zurich, Switzerland
| | - Giovanna Brandi
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091 Zurich, Switzerland
| | - Amanda Eisele
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091 Zurich, Switzerland; Department of Neurology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Sven Schulthess
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091 Zurich, Switzerland
| | - Susanne Friedl
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091 Zurich, Switzerland
| | - Jan Folkard Willms
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091 Zurich, Switzerland
| | - Laura Westphal
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091 Zurich, Switzerland; Department of Neurology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Emanuela Keller
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
10
|
Liu Y, Kang XG, Chen BB, Song CG, Liu Y, Hao JM, Yuan F, Jiang W. Detecting residual brain networks in disorders of consciousness: a resting-state fNIRS study. Brain Res 2022; 1798:148162. [DOI: 10.1016/j.brainres.2022.148162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
|
11
|
Jing J, Qi M, Gao H. A functional near-infrared spectroscopy investigation of item-method directed forgetting. Neurosci Res 2022; 185:11-19. [PMID: 36084700 DOI: 10.1016/j.neures.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Whether directed forgetting is passive or active remains debated. Using functional near-infrared spectroscopy (fNIRS), blood-oxygen level-dependent responses of intentional forgetting were investigated in the item-method directed forgetting (DF) paradigm. During the study phase, each word was followed by a random remembering or forgetting cue indicating whether the word is to be remembered (TBR) or to be forgotten (TBF). A recognition test was used in the test phase and four cue-response conditions were obtained: remembering/forgetting cues associated with the subsequently remembered (TBR-r/TBF-r) or forgotten (TBR-f/TBF-f) words. Data from 16 healthy adult participants showed a DF effect. The fNIRS data revealed that, during the 5-9 s time window, the oxygenate hemoglobin (oxy-Hb) levels were higher during intentional forgetting compared to intentional remembering in the left inferior frontal (TBF-f vs. TBR-f) and right superior frontal gyrus (TBF-r vs. TBR-r), indicating more frontal inhibition involved during intentional forgetting. During the 9-11 s time window, the oxy-Hb level in the frontal and parietal gyrus was higher for forgetting than remembering cues, indicating that the TBF words might be automatically encoded. In sum, the TBF words might receive inhibition control triggered by forgetting cues and then be automatically encoded with the increase of the post-cue interval.
Collapse
Affiliation(s)
- Jingyan Jing
- School of Psychology, Liaoning Normal University, Dalian 116029, China
| | - Mingming Qi
- School of Psychology, Liaoning Normal University, Dalian 116029, China.
| | - Heming Gao
- School of Psychology, Liaoning Normal University, Dalian 116029, China.
| |
Collapse
|
12
|
Zhao J, Yang Y, An X, Liu S, Du H, Ming D. Auditory event-related potentials based on name stimuli: A pilot study. Front Neurosci 2022; 16:808897. [PMID: 36117639 PMCID: PMC9477379 DOI: 10.3389/fnins.2022.808897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, diagnostic studies of brain disorders based on auditory event-related potentials (AERP) have become a hot topic. Research showed that AERP might help to detect patient consciousness, especially using the subjects' own name (SON). In this study, we conducted a preliminary analysis of the brain response to Chinese name stimuli. Twelve subjects participated in this study. SONs were used as target stimuli for each trial. The names used for non-target stimuli were divided into three Chinese character names condition (3CC) and two Chinese characters names condition (2CC). Thus, each subject was required to be in active (silent counting) and passive mode (without counting) with four conditions [(passive, active) × (3CC, 2CC)]. We analyzed the spatio-temporal features for each condition, and we used SVM for target vs. non-target classification. The results showed that the passive mode under 3CC conditions showed a similar brain response to the active mode, and when 3CC was used as a non-target stimulus, the brain response induced by the target stimulus would have a better interaction than 2CC. We believe that the passive mode 3CC may be a good paradigm to replace the active mode which might need more attention from subjects. The results of this study can provide certain guidelines for the selection and optimization of the paradigm of auditory event-related potentials based on name stimulation.
Collapse
Affiliation(s)
- Jindi Zhao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuancheng Yang
- College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Xingwei An
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Hongyin Du
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Dong Ming
| |
Collapse
|
13
|
Effects of Acupuncture on Cortical Activation in Patients with Disorders of Consciousness: A Functional Near-Infrared Spectroscopy Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5711961. [PMID: 35958938 PMCID: PMC9363174 DOI: 10.1155/2022/5711961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Background. Disorder of consciousness (DoC) is a clinical condition caused by severe brain damage. Some studies have reported that acupuncture, a traditional Chinese treatment, could facilitate the recovery of the patient’s consciousness. The therapeutic effects of acupuncture may be due to its modulation of facilitating cortex (PFC) activity, but it has not been greatly demonstrated. Objectives. We intended to observe the effects of acupuncture on prefrontal cortical activity, explore the potential correlation between cortical activation and the severity of DoC, and analyze the functional brain network connectivity to provide a theoretical basis for its application in clinical practice. Methods. Participants diagnosed with DoC were included in the study. Before the intervention, we assessed the patient’s state of consciousness using relevant scales, such as the Glasgow coma scale (GCS) and the coma recovery scale-revised (CRS-R). All patients received acupuncture manipulation with the functional near-infrared spectroscopy (fNIRS) system monitored. Result. A total of 16 subjects participated in our study. We observed that the concentration of oxygenated hemoglobin (HbO) in the PFC was increased during the acupuncture manipulation and declined during the resting state. Then, the connection strength of the left cerebral cortex was generally higher than that of the right. Finally, we observed only a weak difference in hemodynamic responses of PFC between the vegetative state (VS) and minimally conscious state (MCS) groups. However, the difference was not statistically significant. Conclusion. Our results indicated that acupuncture can increase the concentration of HbO in the PFC and strengthen the connection strength of the left cerebral cortex. However, our present study did not find a significant correlation between the cortical hemodynamic response and the severity of DoC.
Collapse
|
14
|
Aubinet C, Schnakers C, Majerus S. Language Assessment in Patients with Disorders of Consciousness. Semin Neurol 2022; 42:273-282. [PMID: 36100226 DOI: 10.1055/s-0042-1755561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The assessment of residual language abilities in patients with disorders of consciousness (DoC) after severe brain injury is particularly challenging due to their limited behavioral repertoire. Moreover, associated language impairment such as receptive aphasia may lead to an underestimation of actual consciousness levels. In this review, we examine past research on the assessment of residual language processing in DoC patients, and we discuss currently available tools for identifying language-specific abilities and their prognostic value. We first highlight the need for validated and sensitive bedside behavioral assessment tools for residual language abilities in DoC patients. As regards neuroimaging and electrophysiological methods, the tasks involving higher level linguistic commands appear to be the most informative about level of consciousness and have the best prognostic value. Neuroimaging methods should be combined with the most appropriate behavioral tools in multimodal assessment protocols to assess receptive language abilities in DoC patients in the most complete and sensitive manner.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium.,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, California
| | - Steve Majerus
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
15
|
Tsow F, Kumar A, Hosseini SMH, Bowden A. A low-cost, wearable, do-it-yourself functional near-infrared spectroscopy (DIY-fNIRS) headband. HARDWAREX 2021; 10:e00204. [PMID: 34734152 PMCID: PMC8562714 DOI: 10.1016/j.ohx.2021.e00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 05/27/2023]
Abstract
Neuromonitoring in naturalistic environments is of increasing interest for a variety of research fields including psychology, economics, and productivity. Among functional neuromonitoring modalities, functional near-infrared spectroscopy (fNIRS) is well regarded for its potential for miniaturization, good spatial and temporal resolutions, and resilience to motion artifacts. Historically, the large size and high cost of fNIRS systems have precluded widespread adoption of the technology. In this article, we describe the first open source, fully integrated wireless fNIRS headband system with a single LED-pair source and four detectors. With ease of operation and comfort in mind, the system is encased in a soft, lightweight cloth and silicone enclosure. Accompanying computer and smartphone data collection software have also been provided, and the hardware has been validated using classic fNIRS tasks. This wear-and-go design can easily be scaled to accommodate a larger number of fNIRS channels and opens the door to easily collecting fNIRS data during routine activities in naturalistic conditions.
Collapse
Affiliation(s)
- Francis Tsow
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Anupam Kumar
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - SM Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Audrey Bowden
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| |
Collapse
|
16
|
Abdalmalak A, Milej D, Norton L, Debicki DB, Owen AM, Lawrence KS. The Potential Role of fNIRS in Evaluating Levels of Consciousness. Front Hum Neurosci 2021; 15:703405. [PMID: 34305558 PMCID: PMC8296905 DOI: 10.3389/fnhum.2021.703405] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last few decades, neuroimaging techniques have transformed our understanding of the brain and the effect of neurological conditions on brain function. More recently, light-based modalities such as functional near-infrared spectroscopy have gained popularity as tools to study brain function at the bedside. A recent application is to assess residual awareness in patients with disorders of consciousness, as some patients retain awareness albeit lacking all behavioural response to commands. Functional near-infrared spectroscopy can play a vital role in identifying these patients by assessing command-driven brain activity. The goal of this review is to summarise the studies reported on this topic, to discuss the technical and ethical challenges of working with patients with disorders of consciousness, and to outline promising future directions in this field.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King's College, Western University, London, ON, Canada
| | - Derek B Debicki
- Brain and Mind Institute, Western University, London, ON, Canada.,Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Adrian M Owen
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
17
|
Xu C, Zou J, He F, Wen X, Li J, Gao J, Ding N, Luo B. Neural Tracking of Sound Rhythms Correlates With Diagnosis, Severity, and Prognosis of Disorders of Consciousness. Front Neurosci 2021; 15:646543. [PMID: 33994924 PMCID: PMC8113690 DOI: 10.3389/fnins.2021.646543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/19/2021] [Indexed: 12/03/2022] Open
Abstract
Effective diagnosis and prognosis of patients with disorders of consciousness (DOC) provides a basis for family counseling, decision-making, and the design of rehabilitation programs. However, effective and objective bedside evaluation is a challenging problem. In this study, we explored electroencephalography (EEG) response tracking sound rhythms as potential neural markers for DOC evaluation. We analyzed the responses to natural speech and tones modulated at 2 and 41 Hz. At the population level, patients with positive outcomes (DOC-P) showed higher cortical synchronization to modulated tones at 41 Hz compared with patients with negative outcomes (DOC-N). At the individual level, phase coherence to modulated tones at 41 Hz was significantly correlated with Coma Recovery Scale-Revised (CRS-R) and Glasgow Outcome Scale-Extended (GOS-E) scores. Furthermore, SVM classifiers, trained using phase coherences in higher frequency bands or combination of the low frequency aSSR and speech tracking responses, performed very well in diagnosis and prognosis of DOC. These findings show that EEG response to auditory rhythms is a potential tool for diagnosis, severity, and prognosis of DOC.
Collapse
Affiliation(s)
- Chuan Xu
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiajie Zou
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China.,Research Center for Advanced Artificial Intelligence Theory Zhejiang Lab, Hangzhou, China
| | - Fangping He
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinrui Wen
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingqi Li
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Jian Gao
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Nai Ding
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China.,Research Center for Advanced Artificial Intelligence Theory Zhejiang Lab, Hangzhou, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Abdalmalak A, Milej D, Yip LCM, Khan AR, Diop M, Owen AM, St Lawrence K. Assessing Time-Resolved fNIRS for Brain-Computer Interface Applications of Mental Communication. Front Neurosci 2020; 14:105. [PMID: 32132894 PMCID: PMC7040089 DOI: 10.3389/fnins.2020.00105] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Brain-computer interfaces (BCIs) are becoming increasingly popular as a tool to improve the quality of life of patients with disabilities. Recently, time-resolved functional near-infrared spectroscopy (TR-fNIRS) based BCIs are gaining traction because of their enhanced depth sensitivity leading to lower signal contamination from the extracerebral layers. This study presents the first account of TR-fNIRS based BCI for “mental communication” on healthy participants. Twenty-one (21) participants were recruited and were repeatedly asked a series of questions where they were instructed to imagine playing tennis for “yes” and to stay relaxed for “no.” The change in the mean time-of-flight of photons was used to calculate the change in concentrations of oxy- and deoxyhemoglobin since it provides a good compromise between depth sensitivity and signal-to-noise ratio. Features were extracted from the average oxyhemoglobin signals to classify them as “yes” or “no” responses. Linear-discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the responses using the leave-one-out cross-validation method. The overall accuracies achieved for all participants were 75% and 76%, using LDA and SVM, respectively. The results also reveal that there is no significant difference in accuracy between questions. In addition, physiological parameters [heart rate (HR) and mean arterial pressure (MAP)] were recorded on seven of the 21 participants during motor imagery (MI) and rest to investigate changes in these parameters between conditions. No significant difference in these parameters was found between conditions. These findings suggest that TR-fNIRS could be suitable as a BCI for patients with brain injuries.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Daniel Milej
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Lawrence C M Yip
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Ali R Khan
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Mamadou Diop
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Keith St Lawrence
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
19
|
Annen J, Laureys S, Gosseries O. Brain-computer interfaces for consciousness assessment and communication in severely brain-injured patients. BRAIN-COMPUTER INTERFACES 2020; 168:137-152. [DOI: 10.1016/b978-0-444-63934-9.00011-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Mirbagheri M, Hakimi N, Ebrahimzadeh E, Setarehdan SK. Simulation and in vivo investigation of light-emitting diode, near infrared Gaussian beam profiles. JOURNAL OF NEAR INFRARED SPECTROSCOPY 2019. [DOI: 10.1177/0967033519884209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Near infrared spectroscopy is an optical imaging technique which offers a non-invasive, portable, and low-cost method for continuously measuring the oxygenation of tissues. In particular, it can provide the brain activation through measuring the blood oxygenation and blood volume in the cortex. Understanding and then improving the spatial and depth sensitivity of near infrared spectroscopy measurements to brain tissue are essential for designing experiments as well as interpreting research findings. In this study, we investigate the effect of applying two common light beam profiles including Uniform and Gaussian on the penetration depth of an LED-based near infrared spectroscopy. In this regard, two Gaussian profiles were produced by adjusting plano-convex and bi-convex lenses and the Uniform profile was provided by applying a flat lens. Two experiments were conducted in this study. First, a simulation experiment was carried out based on scanning the intra space of a liquid phantom by using static and pulsating absorbers to compare the penetration depth of the configurations applied on the LED-based near infrared spectroscopy with that of a laser-based near infrared spectroscopy. Second, to show the feasibility of the best proposed configuration applied, an in vivo experiment of stress assessment has been performed and its results have been compared with that results obtained by laser one. The results showed that the LED-based near infrared spectroscopy equipped with bi-convex lens provides a penetration depth and hence quality measurements of near infrared spectroscopy and its extracted heart rate variability signals as well as laser-based near infrared spectroscopy especially in the application of stress assessment.
Collapse
Affiliation(s)
- Mahya Mirbagheri
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Naser Hakimi
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Elias Ebrahimzadeh
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - S Kamaledin Setarehdan
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Wriessnegger SC, Bauernfeind G, Kurz EM, Raggam P, Müller-Putz GR. Imagine squeezing a cactus: Cortical activation during affective motor imagery measured by functional near-infrared spectroscopy. Brain Cogn 2018; 126:13-22. [DOI: 10.1016/j.bandc.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
|