1
|
Thye M, Hoffman P, Mirman D. "All the Stars Will Be Wells with a Rusty Pulley": Neural Processing of the Social and Pragmatic Content in a Narrative. J Cogn Neurosci 2024; 36:2495-2517. [PMID: 39106161 DOI: 10.1162/jocn_a_02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Making sense of natural language and narratives requires building and manipulating a situation model by adding incoming information to the model and using the context stored in the model to comprehend subsequent details and events. Situation model maintenance is supported by the default mode network (DMN), but comprehension of the individual moments in the narrative relies on access to the conceptual store within the semantic system. The present study examined how these systems are engaged by different narrative content to investigate whether highly informative, or semantic, content is a particularly strong driver of semantic system activation compared with contextually driven content that requires using the situation model, which might instead engage DMN regions. The study further investigated which subregions of the graded semantic hub in the left anterior temporal lobe (ATL) were engaged by the type of narrative content. To do this, we quantified the semantic, pragmatic, social, ambiguous, and emotional content for each sentence in a complete narrative, the English translation of The Little Prince. Increased activation in the transmodal hub in the ventral ATL was only observed for high semantic (i.e., informative) relative to low semantic sentences. Activation in the dorsolateral and ventrolateral ATL subregions was observed for both high relative to low semantic and social content sentences, but the ventrolateral ATL effects were more extensive in the social condition. There was high correspondence between the social and pragmatic content results, particularly in the ventrolateral ATL. We argue that the ventrolateral ATL may be particularly engaged by internal, or endogenous, processing demands, aided by functional connections between the anterior middle temporal gyrus and the DMN. Pragmatic and social content may have driven endogenous processing given the pervasive and plot-progressing nature of this content in the narrative. We put forward a revised account of how the semantic system is engaged in naturalistic contexts, a critical step toward better understanding real-world semantic and social processing.
Collapse
|
2
|
Chang W, Zhao X, Wang L, Zhou X. Causal role of frontocentral beta oscillation in comprehending linguistic communicative functions. Neuroimage 2024; 300:120853. [PMID: 39270764 DOI: 10.1016/j.neuroimage.2024.120853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Linguistic communication is often considered as an action serving the function of conveying the speaker's goal to the addressee. Although neuroimaging studies have suggested a role of the motor system in comprehending communicative functions, the underlying mechanism is yet to be specified. Here, by two EEG experiments and a tACS experiment, we demonstrate that the frontocentral beta oscillation, which represents action states, plays a crucial part in linguistic communication understanding. Participants read scripts involving two interlocutors and rated the interlocutors' attitudes. Each script included a critical sentence said by the speaker expressing a context-dependent function of either promise, request, or reply to the addressee's query. These functions were behaviorally discriminated, with higher addressee's will rating for the promise than for the reply and higher speaker's will rating for the request than for the reply. EEG multivariate analyses showed that different communicative functions were represented by different patterns of the frontocentral beta activity but not by patterns of alpha activity. Further tACS results showed that, relative to alpha tACS and sham stimulation, beta tACS improved the predictability of communicative functions of request or reply, as measured by the speaker's will rating. These results convergently suggest a causal role of the frontocentral beta activities in comprehending linguistic communications.
Collapse
Affiliation(s)
- Wenshuo Chang
- Institute of Linguistics, Shanghai International Studies University, Shanghai 201620, China; Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - Xiaoxi Zhao
- Institute of Linguistics, Shanghai International Studies University, Shanghai 201620, China
| | - Lihui Wang
- School of Psychology, Shanghai Jiao Tong University, Shanghai 20030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200125, China.
| | - Xiaolin Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China.
| |
Collapse
|
3
|
Gao P, Jiang Z, Yang Y, Zheng Y, Feng G, Li X. Temporal neural dynamics of understanding communicative intentions from speech prosody. Neuroimage 2024; 299:120830. [PMID: 39245398 DOI: 10.1016/j.neuroimage.2024.120830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024] Open
Abstract
Understanding the correct intention of a speaker is critical for social interaction. Speech prosody is an important source for understanding speakers' intentions during verbal communication. However, the neural dynamics by which the human brain translates the prosodic cues into a mental representation of communicative intentions in real time remains unclear. Here, we recorded EEG (electroencephalograph) while participants listened to dialogues. The prosodic features of the critical words at the end of sentences were manipulated to signal either suggestion, warning, or neutral intentions. The results showed that suggestion and warning intentions evoked enhanced late positive event-related potentials (ERPs) compared to the neutral condition. Linear mixed-effects model (LMEM) regression and representational similarity analysis (RSA) analyses revealed that these ERP effects were distinctively correlated with prosodic acoustic analysis, emotional valence evaluation, and intention interpretation in different time windows; The onset latency significantly increased as the processing level of abstractness and communicative intentionality increased. Neural representations of intention and emotional information emerged and parallelly persisted over a long time window, guiding the correct identification of communicative intention. These results provide new insights into understanding the structural components of intention processing and their temporal neural dynamics underlying communicative intention comprehension from speech prosody in online social interactions.
Collapse
Affiliation(s)
- Panke Gao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhufang Jiang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yufang Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, China
| | - Yuanyi Zheng
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Gangyi Feng
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Xiaoqing Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
4
|
Antoine S, Grisoni L, Tomasello R, Pulvermüller F. The prediction potential indexes the meaning and communicative function of upcoming utterances. Cortex 2024; 177:346-362. [PMID: 38917725 DOI: 10.1016/j.cortex.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/15/2024] [Accepted: 05/03/2024] [Indexed: 06/27/2024]
Abstract
Prediction has a fundamental role in language processing. However, predictions can be made at different levels, and it is not always clear whether speech sounds, morphemes, words, meanings, or communicative functions are anticipated during dialogues. Previous studies reported specific brain signatures of communicative pragmatic function, in particular enhanced brain responses immediately after encountering an utterance used to request an object from a partner, but relatively smaller ones when the same utterance was used for naming the object. The present experiment now investigates whether similar neuropragmatic signatures emerge in recipients before the onset of upcoming utterances carrying different predictable communicative functions. Trials started with a context question and object pictures displayed on the screen, raising the participant's expectation that words from a specific semantic category (food or tool) would subsequently be used to either name or request one of the objects. Already 600 msec before utterance onset, a larger prediction potential was observed when a request was anticipated relative to naming expectation. As this result is congruent with the neurophysiological difference previously observed right after the critical utterance, the anticipatory brain activity may index predictions about the social-communicative function of upcoming utterances. In addition, we also found that the predictable semantic category of the upcoming word was likewise reflected in the anticipatory brain potential. Thus, the neurophysiological characteristics of the prediction potential can capture different types of upcoming linguistic information, including semantic and pragmatic aspects of an upcoming utterance and communicative action.
Collapse
Affiliation(s)
- Salomé Antoine
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany.
| | - Luigi Grisoni
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany; Cluster of Excellence 'Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, Berlin, Germany
| | - Rosario Tomasello
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany; Cluster of Excellence 'Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, Berlin, Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany; Cluster of Excellence 'Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences, Berlin, Germany.
| |
Collapse
|
5
|
Tomasello R, Carriere M, Pulvermüller F. The impact of early and late blindness on language and verbal working memory: A brain-constrained neural model. Neuropsychologia 2024; 196:108816. [PMID: 38331022 DOI: 10.1016/j.neuropsychologia.2024.108816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Neural circuits related to language exhibit a remarkable ability to reorganize and adapt in response to visual deprivation. Particularly, early and late blindness induce distinct neuroplastic changes in the visual cortex, repurposing it for language and semantic processing. Interestingly, these functional changes provoke a unique cognitive advantage - enhanced verbal working memory, particularly in early blindness. Yet, the underlying neuromechanisms and the impact on language and memory-related circuits remain not fully understood. Here, we applied a brain-constrained neural network mimicking the structural and functional features of the frontotemporal-occipital cortices, to model conceptual acquisition in early and late blindness. The results revealed differential expansion of conceptual-related neural circuits into deprived visual areas depending on the timing of visual loss, which is most prominent in early blindness. This neural recruitment is fundamentally governed by the biological principles of neural circuit expansion and the absence of uncorrelated sensory input. Critically, the degree of these changes is constrained by the availability of neural matter previously allocated to visual experiences, as in the case of late blindness. Moreover, we shed light on the implication of visual deprivation on the neural underpinnings of verbal working memory, revealing longer reverberatory neural activity in 'blind models' as compared to the sighted ones. These findings provide a better understanding of the interplay between visual deprivations, neuroplasticity, language processing and verbal working memory.
Collapse
Affiliation(s)
- Rosario Tomasello
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4 Freie Universität Berlin, 14195, Berlin, Germany; Cluster of Excellence' Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, 10099, Berlin, Germany.
| | - Maxime Carriere
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4 Freie Universität Berlin, 14195, Berlin, Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4 Freie Universität Berlin, 14195, Berlin, Germany; Cluster of Excellence' Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, 10099, Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10117, Berlin, Germany; Einstein Center for Neurosciences, 10117, Berlin, Germany
| |
Collapse
|
6
|
Gnedykh D, Tsvetova D, Mkrtychian N, Blagovechtchenski E, Kostromina S, Shtyrov Y. tDCS of right-hemispheric Wernicke's area homologue affects contextual learning of novel lexicon. Neurobiol Learn Mem 2024; 210:107905. [PMID: 38403010 DOI: 10.1016/j.nlm.2024.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Numerous studies have shown robust evidence of the right hemisphere's involvement in the language function, for instance in the processing of intonation, grammar, word meanings, metaphors, etc. However, its role in lexicon acquisition remains obscure. We applied transcranial direct current stimulation (tDCS) over the right-hemispheric homologue of Wernicke's area to assess its putative involvement in the processing of different types of novel semantics. After receiving 15 min of anodal, cathodal, or sham (placebo) tDCS, three groups of healthy participants learnt novel concrete and abstract words in the context of short stories. Learning outcomes were assessed using a battery of tests immediately after this contextual learning session and 24 h later. As a result, an inhibitory effect of cathodal tDCS and a facilitatory effect of anodal tDCS were found for abstract word acquisition only. We also found a significant drop in task performance on the second day of the assessment for both word types in all the stimulation groups, suggesting no significant influence of tDCS on the post-learning consolidation of new memory traces. The results suggest an involvement of Wernicke's right-hemispheric counterpart in initial encoding (but not consolidation) of abstract semantics, which may be explained either by the right hemispheres direct role in processing lexical semantics or by an indirect impact of tDCS on contralateral (left-hemispheric) cortical areas through cross-callosal connections.
Collapse
Affiliation(s)
- Daria Gnedykh
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, 199034 St. Petersburg, Russia; Department of Psychology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Diana Tsvetova
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Nadezhda Mkrtychian
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Evgeny Blagovechtchenski
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, 199034 St. Petersburg, Russia; Department of Psychology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Svetlana Kostromina
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, 199034 St. Petersburg, Russia; Department of Psychology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
7
|
Calignano G, Lettere G, Leo I, Maritan F, Mattera L, Granata P, Lucangeli D, Valenza E. Interconnected Pathways: Postural Stability and Vocabulary Skills in Preschool-Aged Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1891. [PMID: 38136093 PMCID: PMC10741731 DOI: 10.3390/children10121891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Previous research has highlighted an interplay between postural abilities and linguistic skills during infancy. However, this relationship could undergo further radical transformations in other periods of development. This current study explored a plausible network of relationships among postural abilities and vocabulary skills in a substantial cohort (N = 222) of preschoolers aged between 2 and 5 years-a developmental phase critical for refining both language and motor competencies. Here, postural stability was measured in terms of balance duration and accuracy, alongside an assessment of comprehension and expressive vocabulary skills. Employing a diverse set of techniques, i.e., data and missing data visualization and multilevel regression analysis, task complexity and age emerged as crucial factors explaining our data. In addition, network analysis indicates that language production plays a central role within postural and language interdomain networks. The resulting discussion focuses on the useful implications of this study for the assessment of typical preschool development, which would benefit from tailored methodological inspections guided by developmental theories that are framed in inter-domain approaches.
Collapse
Affiliation(s)
- Giulia Calignano
- Department of Developmental and Social Psychology (DPSS), University of Padova, 35131 Padua, Italy; (G.L.); (I.L.); (D.L.); (E.V.)
| | - Giorgia Lettere
- Department of Developmental and Social Psychology (DPSS), University of Padova, 35131 Padua, Italy; (G.L.); (I.L.); (D.L.); (E.V.)
| | - Irene Leo
- Department of Developmental and Social Psychology (DPSS), University of Padova, 35131 Padua, Italy; (G.L.); (I.L.); (D.L.); (E.V.)
| | - Francesca Maritan
- “Giovanni XXIII” Centro Infanzia, 35142 Padua, Italy; (F.M.); (L.M.); (P.G.)
| | - Laura Mattera
- “Giovanni XXIII” Centro Infanzia, 35142 Padua, Italy; (F.M.); (L.M.); (P.G.)
| | - Patrizia Granata
- “Giovanni XXIII” Centro Infanzia, 35142 Padua, Italy; (F.M.); (L.M.); (P.G.)
| | - Daniela Lucangeli
- Department of Developmental and Social Psychology (DPSS), University of Padova, 35131 Padua, Italy; (G.L.); (I.L.); (D.L.); (E.V.)
| | - Eloisa Valenza
- Department of Developmental and Social Psychology (DPSS), University of Padova, 35131 Padua, Italy; (G.L.); (I.L.); (D.L.); (E.V.)
| |
Collapse
|
8
|
Linders GM, Louwerse MM. Surface and Contextual Linguistic Cues in Dialog Act Classification: A Cognitive Science View. Cogn Sci 2023; 47:e13367. [PMID: 37867372 DOI: 10.1111/cogs.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
What role do linguistic cues on a surface and contextual level have in identifying the intention behind an utterance? Drawing on the wealth of studies and corpora from the computational task of dialog act classification, we studied this question from a cognitive science perspective. We first reviewed the role of linguistic cues in dialog act classification studies that evaluated model performance on three of the most commonly used English dialog act corpora. Findings show that frequency-based, machine learning, and deep learning methods all yield similar performance. Classification accuracies, moreover, generally do not explain which specific cues yield high performance. Using a cognitive science approach, in two analyses, we systematically investigated the role of cues in the surface structure of the utterance and cues of the surrounding context individually and combined. By comparing the explained variance, rather than the prediction accuracy of these cues in a logistic regression model, we found that (1) while surface and contextual linguistic cues can complement each other, surface linguistic cues form the backbone in human dialog act identification, (2) with word frequency statistics being particularly important for the dialog act, and (3) the similar trends across corpora, despite differences in the type of dialog, corpus setup, and dialog act tagset. The importance of surface linguistic cues in dialog act classification sheds light on how both computers and humans take advantage of these cues in speech act recognition.
Collapse
Affiliation(s)
- Guido M Linders
- Department of Cognitive Science & Artificial Intelligence, Tilburg University
- Department of Comparative Language Science, University of Zurich
| | - Max M Louwerse
- Department of Cognitive Science & Artificial Intelligence, Tilburg University
| |
Collapse
|
9
|
Jensen M, Hyder R, Westner BU, Højlund A, Shtyrov Y. Speech comprehension across time, space, frequency, and age: MEG-MVPA classification of intertrial phase coherence. Neuropsychologia 2023; 188:108602. [PMID: 37270028 DOI: 10.1016/j.neuropsychologia.2023.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Language is a key part of human cognition, essential for our well-being at all stages of our lives. Whereas many neurocognitive abilities decline with age, for language the picture is much less clear, and how exactly speech comprehension changes with ageing is still unknown. To investigate this, we employed magnetoencephalography (MEG) and recorded neuromagnetic brain responses to auditory linguistic stimuli in healthy participants of younger and older age using a passive task-free paradigm and a range of different linguistic stimulus contrasts, which enabled us to assess neural processing of spoken language at multiple levels (lexical, semantic, morphosyntactic). Using machine learning-based classification algorithms to scrutinise intertrial phase coherence of MEG responses in cortical source space, we found that patterns of oscillatory neural activity diverged between younger and older participants across several frequency bands (alpha, beta, gamma) for all tested linguistic information types. The results suggest multiple age-related changes in the brain's neurolinguistic circuits, which may be due to both healthy ageing in general and compensatory processes in particular.
Collapse
Affiliation(s)
- Mads Jensen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Research Unit for Robophilosophy and Integrative Social Robotics, School of Culture and Society, Aarhus University, Aarhus, Denmark; Interacting Minds Centre, School of Culture and Society, Aarhus University, Aarhus, Denmark.
| | - Rasha Hyder
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Britta U Westner
- Radboud University, Donders Centre for Cognition, Nijmegen, the Netherlands
| | - Andreas Højlund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
10
|
Mauchand M, Pell MD. Complain like you mean it! How prosody conveys suffering even about innocuous events. BRAIN AND LANGUAGE 2023; 244:105305. [PMID: 37562118 DOI: 10.1016/j.bandl.2023.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
When complaining, speakers can use their voice to convey a feeling of pain, even when describing innocuous events. Rapid detection of emotive and identity features of the voice may constrain how the semantic content of complaints is processed, as indexed by N400 and P600 effects evoked by the final, pain-related word. Twenty-six participants listened to statements describing painful and innocuous events expressed in a neutral or complaining voice, produced by ingroup and outgroup accented speakers. Participants evaluated how hurt the speaker felt under EEG monitoring. Principal Component Analysis of Event-Related Potentials from the final word onset demonstrated N400 and P600 increases when complainers described innocuous vs. painful events in a neutral voice, but these effects were altered when utterances were expressed in a complaining voice. Independent of prosody, N400 amplitudes increased for complaints spoken in outgroup vs. ingroup accents. Results demonstrate that prosody and accent constrain the processing of spoken complaints as proposed in a parallel-constraint-satisfaction model.
Collapse
Affiliation(s)
- Maël Mauchand
- McGill University, School of Communication Sciences and Disorders, Montréal, Québec, Canada.
| | - Marc D Pell
- McGill University, School of Communication Sciences and Disorders, Montréal, Québec, Canada
| |
Collapse
|
11
|
Sinha S, Del Goleto S, Kostova M, Debruille JB. Unveiling the need of interactions for social N400s and supporting the N400 inhibition hypothesis. Sci Rep 2023; 13:12613. [PMID: 37537222 PMCID: PMC10400652 DOI: 10.1038/s41598-023-39345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
When participants (Pps) are presented with stimuli in the presence of another person, they may consider that person's perspective. Indeed, five recent ERP studies show that the amplitudes of their N400s are increased. The two most recent ones reveal that these social-N400 increases occur even when instructions do not require a focus on the other's perspective. These increases also happen when Pps know that this other person has the same stimulus information as they have. However, in all these works, Pps could see the other person. Here, we tested whether the interaction occurring with this sight is important or whether these social N400 increases also occur when the other person is seated a bit behind Pps, who are aware of it. All had to decide whether the word ending short stories was coherent, incoherent, or equivocal. No social N400 increase was observed: N400s elicited by those words in Pps who were with a confederate (n = 50) were similar to those of Pps who were alone (n = 51). On the other hand, equivocal endings did not elicit larger N400s than coherent ones but triggered larger late posterior positivities (LPPs), like in previous studies. The discussion focuses on the circumstances in which perspective-taking occurs and on the functional significance of the N400 and the LPP.
Collapse
Affiliation(s)
- Sujata Sinha
- Department of Neurosciences, Faculty of Medicine, McGill University, Montréal, Canada
- Research Center of the Douglas Mental Health University Institute, Montréal, Canada
| | - Sarah Del Goleto
- UR Paragraphe, Université Paris 8 Vincennes-Saint-Denis, Saint-Denis, France
| | - Milena Kostova
- UR Paragraphe, Université Paris 8 Vincennes-Saint-Denis, Saint-Denis, France
| | - J Bruno Debruille
- Department of Neurosciences, Faculty of Medicine, McGill University, Montréal, Canada.
- Research Center of the Douglas Mental Health University Institute, Montréal, Canada.
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Canada.
| |
Collapse
|