1
|
Takeda H, Shimba K, Horitani M, Kimura T, Nomura T, Kubo M, Shiro Y, Tosha T. Trapping of a Mononitrosyl Nonheme Intermediate of Nitric Oxide Reductase by Cryo-Photolysis of Caged Nitric Oxide. J Phys Chem B 2023; 127:846-854. [PMID: 36602896 DOI: 10.1021/acs.jpcb.2c05852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Characterization of short-lived reaction intermediates is essential for elucidating the mechanism of the reaction catalyzed by metalloenzymes. Here, we demonstrated that the photolysis of a caged compound under cryogenic temperature followed by thermal annealing is an invaluable technique for trapping of short-lived reaction intermediates of metalloenzymes through the study of membrane-integrated nitric oxide reductase (NOR) that catalyzes reductive coupling of two NO molecules to N2O at its heme/nonheme FeB binuclear center. Although NO produced by the photolysis of caged NO did not react with NOR under cryogenic temperature, annealing to ∼160 K allowed NO to diffuse and react with NOR, which was evident from the appearance of EPR signals assignable to the S = 3/2 state. This indicates that the nonheme FeB-NO species can be trapped as the intermediate. Time-resolved IR spectroscopy with the use of the photolysis of caged NO as a reaction trigger showed that the intermediate formed at 10 μs gave the NO stretching frequency at 1683 cm-1 typical of nonheme Fe-NO, confirming that the combination of the cryo-photolysis of caged NO and annealing enabled us to trap the reaction intermediate. Thus, the cryo-photolysis of the caged compound has great potential for the characterization of short-lived reaction intermediates.
Collapse
Affiliation(s)
- Hanae Takeda
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan.,RIKEN SPring-8 center, Sayo, Hyogo 679-5148, Japan
| | - Kanji Shimba
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan.,RIKEN SPring-8 center, Sayo, Hyogo 679-5148, Japan
| | - Masaki Horitani
- Department of Applied Biochemistry & Food Science, Saga University, Saga 840-8502, Japan.,The United Graduate School of Agricultural Science, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Tetsunari Kimura
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi Nomura
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Takehiko Tosha
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan.,RIKEN SPring-8 center, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
2
|
Schroeter AL, Yang H, James CD, Hoffman BM, Doan PE. A New Reaction for Improved Calibration of EPR Rapid-Freeze Quench Times: Kinetics of Ethylene Diamine Tetraacetate (EDTA) Transfer from Calcium(II) to Copper(II). APPLIED MAGNETIC RESONANCE 2022; 53:1195-1210. [PMID: 37026114 PMCID: PMC10072867 DOI: 10.1007/s00723-021-01448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 06/19/2023]
Abstract
The kinetics of the transfer of the chelate, ethylenediamine tetraacetate (EDTA), from Calcium(II) to Copper(II) in imidazole (Im) buffers near neutral pH, corresponding to the conversion, [Cu(II)Im4]2+→ [Cu(II)EDTA]2-, are characterized with stopped-flow absorption spectroscopy and implemented as a tool for calibrating the interval between mixing and freezing, the freeze-quench time (t Q ), of a rapid freeze-quench (RFQ) apparatus. The kinetics of this reaction are characterized by monitoring changes in UV-visible spectra (300 nm) due to changes in the charge-transfer band associated with the Cu2+ ions upon EDTA binding. Stopped-flow measurements show that the rates of conversion of the Cu2+ ions exhibit exponential kinetics on millisecond time scales at pH values less than 6.8. In parallel, we have developed a simple but precise method to quantitate the speciation of frozen solution mixtures of [Cu(II)(EDTA)]2- and tetraimidazole Cu(II) ([Cu(Im)4]2+) in X-band EPR spectra. The results are implemented in a simple high-precision 'recipe' for determining t Q . These procedures are more accurate and precise than the venerable reaction of aquometmyoglobin with azide for calibrating RFQ apparatus, with the benefit of avoiding high-concentrations of toxic azide solutions.
Collapse
Affiliation(s)
- Abigail L. Schroeter
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Present Address: Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Peter E. Doan
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
Jeon J, Blake Wilson C, Yau WM, Thurber KR, Tycko R. Time-resolved solid state NMR of biomolecular processes with millisecond time resolution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107285. [PMID: 35998398 PMCID: PMC9463123 DOI: 10.1016/j.jmr.2022.107285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 05/21/2023]
Abstract
We review recent efforts to develop and apply an experimental approach to the structural characterization of transient intermediate states in biomolecular processes that involve large changes in molecular conformation or assembly state. This approach depends on solid state nuclear magnetic resonance (ssNMR) measurements that are performed at very low temperatures, typically 25-30 K, with signal enhancements from dynamic nuclear polarization (DNP). This approach also involves novel technology for initiating the process of interest, either by rapid mixing of two solutions or by a rapid inverse temperature jump, and for rapid freezing to trap intermediate states. Initiation by rapid mixing or an inverse temperature jump can be accomplished in approximately-one millisecond. Freezing can be accomplished in approximately 100 microseconds. Thus, millisecond time resolution can be achieved. Recent applications to the process by which the biologically essential calcium sensor protein calmodulin forms a complex with one of its target proteins and the process by which the bee venom peptide melittin converts from an unstructured monomeric state to a helical, tetrameric state after a rapid change in pH or temperature are described briefly. Future applications of millisecond time-resolved ssNMR are also discussed briefly.
Collapse
Affiliation(s)
- Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Kent R Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
4
|
Liu M, Li N, Cui S, Li G, Yang F. Biochemical Reaction Acceleration by Electrokinetic Mixing in a Microfluidic Chip. J Phys Chem Lett 2022; 13:5633-5637. [PMID: 35704845 DOI: 10.1021/acs.jpclett.2c01308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the past two decades, a large number of micromixers have been studied and reported to solve the low mass transfer in microchannels. However, there is still a lack of research on how much biochemical reaction efficiency or detection sensitivity can be improved by microfluidic rapid mixing. In this study, using our previously developed ultrafast microelectrokinetic turbulent (μEKT) mixing method, taking glucose oxidation reaction as the research object, we investigated the effect of increasing microfluidic mass transfer efficiency on the efficiency and sensitivity of biochemical reactions. The results showed that fast mixing could improve the enzymatic reaction efficiency by improving the mass transfer efficiency. Further detection of glucose in glucose solutions and blood samples showed that the fast mixing could significantly improve the sensitivity of detection. These results indicate that mixing enhancement can be a significant step of microfluidics-based applications such as POCT, liquid biopsy, food safety, and so on.
Collapse
Affiliation(s)
- Mingzhan Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Na Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shunyu Cui
- Department of Breast Surgery, Jilin Cancer Hospital, Changchun, Jilin 130012, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Eady RR, Samar Hasnain S. New horizons in structure-function studies of copper nitrite reductase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Time-resolved DEER EPR and solid-state NMR afford kinetic and structural elucidation of substrate binding to Ca 2+-ligated calmodulin. Proc Natl Acad Sci U S A 2022; 119:2122308119. [PMID: 35105816 PMCID: PMC8833187 DOI: 10.1073/pnas.2122308119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/29/2022] Open
Abstract
Complex formation between calmodulin and target proteins underlies numerous calcium signaling processes in biology, yet structural and mechanistic details, which entail major conformational changes in both calmodulin and its substrates, have been unclear. We show that a combination of time-resolved electron paramagnetic and NMR measurements can elucidate the molecular mechanism, at the quantitative kinetic and structural levels, of the binding pathway of a peptide substrate from skeletal muscle myosin light-chain kinase to calcium-loaded calmodulin. The mechanism involves coupled folding and binding and comprises a bifurcated process, with rapid, direct complex formation when the peptide interacts first with the C-terminal domain of calmodulin or a slower, two-step complex formation when the peptide interacts initially with the N-terminal domain. Recent advances in rapid mixing and freeze quenching have opened the path for time-resolved electron paramagnetic resonance (EPR)-based double electron-electron resonance (DEER) and solid-state NMR of protein–substrate interactions. DEER, in conjunction with phase memory time filtering to quantitatively extract species populations, permits monitoring time-dependent probability distance distributions between pairs of spin labels, while solid-state NMR provides quantitative residue-specific information on the appearance of structural order and the development of intermolecular contacts between substrate and protein. Here, we demonstrate the power of these combined approaches to unravel the kinetic and structural pathways in the binding of the intrinsically disordered peptide substrate (M13) derived from myosin light-chain kinase to the universal eukaryotic calcium regulator, calmodulin. Global kinetic analysis of the data reveals coupled folding and binding of the peptide associated with large spatial rearrangements of the two domains of calmodulin. The initial binding events involve a bifurcating pathway in which the M13 peptide associates via either its N- or C-terminal regions with the C- or N-terminal domains, respectively, of calmodulin/4Ca2+ to yield two extended “encounter” complexes, states A and A*, without conformational ordering of M13. State A is immediately converted to the final compact complex, state C, on a timescale τ ≤ 600 μs. State A*, however, only reaches the final complex via a collapsed intermediate B (τ ∼ 1.5 to 2.5 ms), in which the peptide is only partially ordered and not all intermolecular contacts are formed. State B then undergoes a relatively slow (τ ∼ 7 to 18 ms) conformational rearrangement to state C.
Collapse
|
7
|
Püschmann J, Mahor D, de Geus DC, Strampraad MJF, Srour B, Hagen WR, Todorovic S, Hagedoorn PL. Unique Biradical Intermediate in the Mechanism of the Heme Enzyme Chlorite Dismutase. ACS Catal 2021; 11:14533-14544. [PMID: 34888122 PMCID: PMC8650003 DOI: 10.1021/acscatal.1c03432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/04/2021] [Indexed: 11/30/2022]
Abstract
![]()
The heme enzyme chlorite
dismutase (Cld) catalyzes O–O bond
formation as part of the conversion of the toxic chlorite (ClO2–) to chloride (Cl–) and
molecular oxygen (O2). Enzymatic O–O bond formation
is rare in nature, and therefore, the reaction mechanism of Cld is
of great interest. Microsecond timescale pre-steady-state kinetic
experiments employing Cld from Azospira oryzae (AoCld), the natural substrate chlorite, and the
model substrate peracetic acid (PAA) reveal the formation of distinct
intermediates. AoCld forms a complex with PAA rapidly,
which is cleaved heterolytically to yield Compound I, which is sequentially
converted to Compound II. In the presence of chlorite, AoCld forms an initial intermediate with spectroscopic characteristics
of a 6-coordinate high-spin ferric substrate adduct, which subsequently
transforms at kobs = 2–5 ×
104 s–1 to an intermediate 5-coordinated
high-spin ferric species. Microsecond-timescale freeze-hyperquench
experiments uncovered the presence of a transient low-spin ferric
species and a triplet species attributed to two weakly coupled amino
acid cation radicals. The intermediates of the chlorite reaction were
not observed with the model substrate PAA. These findings demonstrate
the nature of physiologically relevant catalytic intermediates and
show that the commonly used model substrate may not behave as expected,
which demands a revision of the currently proposed mechanism of Clds.
The transient triplet-state biradical species that we designate as
Compound T is, to the best of our knowledge, unique in heme enzymology.
The results highlight electron paramagnetic resonance spectroscopic
evidence for transient intermediate formation during the reaction
of AoCld with its natural substrate chlorite. In
the proposed mechanism, the heme iron remains ferric throughout the
catalytic cycle, which may minimize the heme moiety’s reorganization
and thereby maximize the enzyme’s catalytic efficiency.
Collapse
Affiliation(s)
- Julia Püschmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Durga Mahor
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniël C. de Geus
- Janssen Vaccines & Prevention, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Marc J. F. Strampraad
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Batoul Srour
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
8
|
Nandy A, Duan C, Taylor MG, Liu F, Steeves AH, Kulik HJ. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chem Rev 2021; 121:9927-10000. [PMID: 34260198 DOI: 10.1021/acs.chemrev.1c00347] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties. The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e., force field, semiempirical, and density functional theory methods) as it pertains to data generation for inorganic molecular discovery. The review will also discuss the opportunities and limitations in leveraging experimental data sources. We will focus on how advances in statistical modeling, artificial intelligence, multiobjective optimization, and automation accelerate discovery of lead compounds and design rules. The overall objective of this review is to showcase how bringing together advances from diverse areas of computational chemistry and computer science have enabled the rapid uncovering of structure-property relationships in transition-metal chemistry. We aim to highlight how unique considerations in motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding strength/nature) set them and their discovery apart from more commonly considered organic molecules. We will also highlight how uncertainty and relative data scarcity in transition-metal chemistry motivate specific developments in machine learning representations, model training, and in computational chemistry. Finally, we will conclude with an outlook of areas of opportunity for the accelerated discovery of transition-metal complexes.
Collapse
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Hett T, Zbik T, Mukherjee S, Matsuoka H, Bönigk W, Klose D, Rouillon C, Brenner N, Peuker S, Klement R, Steinhoff HJ, Grubmüller H, Seifert R, Schiemann O, Kaupp UB. Spatiotemporal Resolution of Conformational Changes in Biomolecules by Combining Pulsed Electron-Electron Double Resonance Spectroscopy with Microsecond Freeze-Hyperquenching. J Am Chem Soc 2021; 143:6981-6989. [PMID: 33905249 DOI: 10.1021/jacs.1c01081] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The function of proteins is linked to their conformations that can be resolved with several high-resolution methods. However, only a few methods can provide the temporal order of intermediates and conformational changes, with each having its limitations. Here, we combine pulsed electron-electron double resonance spectroscopy with a microsecond freeze-hyperquenching setup to achieve spatiotemporal resolution in the angstrom range and lower microsecond time scale. We show that the conformational change of the Cα-helix in the cyclic nucleotide-binding domain of the Mesorhizobium loti potassium channel occurs within about 150 μs and can be resolved with angstrom precision. Thus, this approach holds great promise for obtaining 4D landscapes of conformational changes in biomolecules.
Collapse
Affiliation(s)
- Tobias Hett
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Tobias Zbik
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Shatanik Mukherjee
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Hideto Matsuoka
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Daniel Klose
- Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany
| | - Christophe Rouillon
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Norbert Brenner
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Sebastian Peuker
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Reinhard Klement
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.,Life & Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| |
Collapse
|
10
|
Calvey GD, Katz AM, Zielinski KA, Dzikovski B, Pollack L. Characterizing Enzyme Reactions in Microcrystals for Effective Mix-and-Inject Experiments using X-ray Free-Electron Lasers. Anal Chem 2020; 92:13864-13870. [PMID: 32955854 PMCID: PMC8367009 DOI: 10.1021/acs.analchem.0c02569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mix-and-inject serial crystallography is an emerging technique that utilizes X-ray free-electron lasers (XFELs) and microcrystalline samples to capture atomically detailed snapshots of biomolecules as they function. Early experiments have yielded exciting results; however, there are limited options to characterize reactions in crystallo in advance of the beamtime. Complementary measurements are needed to identify the best conditions and timescales for observing structural intermediates. Here, we describe the interface of XFEL compatible mixing injectors with rapid freeze-quenching and X-band EPR spectroscopy, permitting characterization of reactions in crystals under the same conditions as an XFEL experiment. We demonstrate this technology by tracking the reaction of azide with microcrystalline myoglobin, using only a fraction of the sample required for a mix-and-inject experiment. This spectroscopic method enables optimization of sample and mixer conditions to maximize the populations of intermediate states, eliminating the guesswork of current mix-and-inject experiments.
Collapse
Affiliation(s)
- George D Calvey
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Andrea M Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Kara A Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, United States
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Ghosh R, Kragelj J, Xiao Y, Frederick KK. Cryogenic Sample Loading into a Magic Angle Spinning Nuclear Magnetic Resonance Spectrometer that Preserves Cellular Viability. J Vis Exp 2020:10.3791/61733. [PMID: 32955491 PMCID: PMC7797162 DOI: 10.3791/61733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dynamic nuclear polarization (DNP) can dramatically increase the sensitivity of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. These sensitivity gains increase as temperatures decrease and are large enough to enable the study of molecules at very low concentrations at the operating temperatures (~100 K) of most commercial DNP-equipped NMR spectrometers. This leads to the possibility of in-cell structural biology on cryopreserved cells for macromolecules at their endogenous levels in their native environments. However, the freezing rates required for cellular cryopreservation are exceeded during typical sample handling for DNP MAS NMR and this results in loss of cellular integrity and viability. This article describes a detailed protocol for the preparation and cryogenic transfer of a frozen sample of mammalian cells into a MAS NMR spectrometer.
Collapse
Affiliation(s)
- Rupam Ghosh
- Department of Biophysics, University of Texas Southwestern Medical Center
| | - Jaka Kragelj
- Department of Biophysics, University of Texas Southwestern Medical Center
| | - Yiling Xiao
- Department of Biophysics, University of Texas Southwestern Medical Center
| | - Kendra K Frederick
- Department of Biophysics, University of Texas Southwestern Medical Center; Center for Alzheimer's and Neurodegenerative Disease and Center for Systems Biology, University of Texas Southwestern Medical Center;
| |
Collapse
|
12
|
Schmidt T, Jeon J, Okuno Y, Chiliveri SC, Clore GM. Submillisecond Freezing Permits Cryoprotectant-Free EPR Double Electron-Electron Resonance Spectroscopy. Chemphyschem 2020; 21:1224-1229. [PMID: 32383308 DOI: 10.1002/cphc.202000312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/06/2020] [Indexed: 01/22/2023]
Abstract
Double electron-electron resonance (DEER) EPR spectroscopy is a powerful method for obtaining distance distributions between pairs of engineered nitroxide spin-labels in proteins and other biological macromolecules. These measurements require the use of cryogenic temperatures (77 K or less) to prolong the phase memory relaxation time (Tm ) sufficiently to enable detection of a DEER echo curve. Generally, a cryoprotectant such as glycerol is added to protein samples to facilitate glass formation and avoid protein clustering (which can result in a large decrease in Tm ) during relatively slow flash freezing in liquid N2 . However, cryoprotectants are osmolytes and can influence protein folding/unfolding equilibria, as well as species populations in weak multimeric systems. Here we show that submillisecond rapid freezing, achieved by high velocity spraying of the sample onto a rapidly spinning, liquid nitrogen cooled copper disc obviates the requirement for cryoprotectants and permits high quality DEER data to be obtained in absence of glycerol. We demonstrate this approach on five different protein systems: protein A, the metastable drkN SH3 domain, urea-unfolded drkN SH3, HIV-1 reverse transcriptase, and the transmembrane domain of HIV-1 gp41 in lipid bicelles.
Collapse
Affiliation(s)
- Thomas Schmidt
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Jaekyun Jeon
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Yusuke Okuno
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Sai C Chiliveri
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| |
Collapse
|
13
|
Panarelli EG, van der Meer H, Gast P, Groenen EJJ. Effective coupling of rapid freeze-quench to high-frequency electron paramagnetic resonance. PLoS One 2020; 15:e0232555. [PMID: 32392255 PMCID: PMC7213726 DOI: 10.1371/journal.pone.0232555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/16/2020] [Indexed: 11/18/2022] Open
Abstract
We report an easy, efficient and reproducible way to prepare Rapid-Freeze-Quench samples in sub-millimeter capillaries and load these into the probe head of a 275 GHz Electron Paramagnetic Resonance spectrometer. Kinetic data obtained for the binding reaction of azide to myoglobin demonstrate the feasibility of the method for high-frequency EPR. Experiments on the same samples at 9.5 GHz show that only a single series of Rapid-Freeze-Quench samples is required for studies at multiple microwave frequencies.
Collapse
Affiliation(s)
- E Gabriele Panarelli
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Harmen van der Meer
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Peter Gast
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Edgar J J Groenen
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| |
Collapse
|
14
|
Ash PA, Kendall-Price SET, Vincent KA. Unifying Activity, Structure, and Spectroscopy of [NiFe] Hydrogenases: Combining Techniques To Clarify Mechanistic Understanding. Acc Chem Res 2019; 52:3120-3131. [PMID: 31675209 DOI: 10.1021/acs.accounts.9b00293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Achieving a unified understanding of the mechanism of a multicenter redox enzyme such as [NiFe] hydrogenase is complicated by difficulties in reconciling information obtained by using different techniques and on samples in different physical forms. Measurements of the activity of the enzyme, and of factors which perturb activity, are generally carried out using biochemical assays in solution or with electrode-immobilized enzymes using protein film electrochemistry (PFE). Conversely, spectroscopy aimed at reporting on features of the metalloclusters in the enzyme, such as electron paramagnetic resonance (EPR) or X-ray absorption spectroscopy (XAS), is often conducted on frozen samples and is thus difficult to relate to catalytically relevant states as information about turnover and activity has been lost. To complicate matters further, most of our knowledge of the atomic-level structure of metalloenzymes comes from X-ray diffraction studies in the solid, crystalline state, which are again difficult to link to turnover conditions. Taking [NiFe] hydrogenases as our case study, we show here how it is possible to apply infrared (IR) spectroscopic sampling approaches to unite direct spectroscopic study with catalytic turnover. Using a method we have named protein film IR electrochemistry (PFIRE), we reveal the steady-state distribution of intermediates during catalysis and identify catalytic "bottlenecks" introduced by site-directed mutagenesis. We also show that it is possible to study dynamic transitions between active site states of enzymes in single crystals, uniting solid state and solution spectroscopic information. In all of these cases, the spectroscopic data complement and enhance interpretation of purely activity-based measurements by providing direct chemical insight that is otherwise hidden. The [NiFe] hydrogenases possess a bimetallic [NiFe] active site, coordinated by CO and CN- ligands, linked to the protein via bridging and terminal cysteine sulfur ligands, as well as an electron relay chain of iron sulfur clusters. Infrared spectroscopy is ideal for probing hydrogenases because the CO and CN- ligands are strong IR absorbers, but the suite of IR-based approaches we describe here will be equally valuable in studying substrate- or intermediate-bound states of other metalloenzymes where key mechanistic questions remain open, such as nitrogenase, formate dehydrogenase, or carbon monoxide dehydrogenase. We therefore hope that this Account will encourage future studies which unify information from different techniques across bioinorganic chemistry.
Collapse
Affiliation(s)
- Philip A. Ash
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
- School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | - Kylie A. Vincent
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
15
|
Wu JLY, Tellkamp F, Khajehpour M, Robertson WD, Miller RJD. Rapid mixing of colliding picoliter liquid droplets delivered through-space from piezoelectric-actuated pipettes characterized by time-resolved fluorescence monitoring. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:055109. [PMID: 31153275 DOI: 10.1063/1.5050270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Rapid mixing of aqueous solutions is a crucial first step to study the kinetics of fast biochemical reactions with high temporal resolution. Remarkable progress toward this goal has been made through the development of advanced stopped-flow mixing techniques resulting in reduced dead times, and thereby extending reaction monitoring capabilities to numerous biochemical systems. Concurrently, piezoelectric actuators for through-space liquid droplet sample delivery have also been applied in several experimental systems, providing discrete picoliter sample volume delivery and precision sample deposition onto a surface, free of confinement within microfluidic devices, tubing, or other physical constraints. Here, we characterize the inertial mixing kinetics of two aqueous droplets (130 pl) produced by piezoelectric-actuated pipettes, following droplet collision in free space and deposition on a surface in a proof of principle experiment. A time-resolved fluorescence system was developed to monitor the mixing and fluorescence quenching of 5-carboxytetramethylrhodamine (5-Tamra) and N-Bromosuccinimide, which we show to occur in less than 10 ms. In this respect, this methodology is unique in that it offers millisecond mixing capabilities for very small quantities of discrete sample volumes. Furthermore, the use of discrete droplets for sample delivery and mixing in free space provides potential advantages, including the elimination of the requirement for a physical construction as with microfluidic systems, and thereby makes possible and extends the experimental capabilities of many systems.
Collapse
Affiliation(s)
- Jamie L Y Wu
- Division of Engineering Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Friedjof Tellkamp
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 27761, Germany
| | - Mazdak Khajehpour
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Wesley D Robertson
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 27761, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 27761, Germany
| |
Collapse
|
16
|
Collauto A, DeBerg HA, Kaufmann R, Zagotta WN, Stoll S, Goldfarb D. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy. Phys Chem Chem Phys 2018; 19:15324-15334. [PMID: 28569901 DOI: 10.1039/c7cp01925d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.
Collapse
Affiliation(s)
- Alberto Collauto
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | | | | | |
Collapse
|
17
|
Mitić S, Strampraad MJF, Hagen WR, de Vries S. Microsecond time-scale kinetics of transient biochemical reactions. PLoS One 2017; 12:e0185888. [PMID: 28973014 PMCID: PMC5626514 DOI: 10.1371/journal.pone.0185888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
To afford mechanistic studies in enzyme kinetics and protein folding in the microsecond time domain we have developed a continuous-flow microsecond time-scale mixing instrument with an unprecedented dead-time of 3.8 ± 0.3 μs. The instrument employs a micro-mixer with a mixing time of 2.7 μs integrated with a 30 mm long flow-cell of 109 μm optical path length constructed from two parallel sheets of silver foil; it produces ultraviolet-visible spectra that are linear in absorbance up to 3.5 with a spectral resolution of 0.4 nm. Each spectrum corresponds to a different reaction time determined by the distance from the mixer outlet, and by the fluid flow rate. The reaction progress is monitored in steps of 0.35 μs for a total duration of ~600 μs. As a proof of principle the instrument was used to study spontaneous protein refolding of pH-denatured cytochrome c. Three folding intermediates were determined: after a novel, extremely rapid initial phase with τ = 4.7 μs, presumably reflecting histidine re-binding to the iron, refolding proceeds with time constants of 83 μs and 345 μs to a coordinatively saturated low-spin iron form in quasi steady state. The time-resolution specifications of our spectrometer for the first time open up the general possibility for comparison of real data and molecular dynamics calculations of biomacromolecules on overlapping time scales.
Collapse
Affiliation(s)
- Sandra Mitić
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- * E-mail:
| | - Simon de Vries
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
18
|
Asano S, Yamada S, Maki T, Muranaka Y, Mae K. Design protocol of microjet mixers for achieving desirable mixing times with arbitrary flow rate ratios. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00051k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We extensively examined the performance of microjet mixers.
Collapse
Affiliation(s)
- S. Asano
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyoto University
- 6158510 Kyoto
- Japan
| | - S. Yamada
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyoto University
- 6158510 Kyoto
- Japan
| | - T. Maki
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyoto University
- 6158510 Kyoto
- Japan
| | - Y. Muranaka
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyoto University
- 6158510 Kyoto
- Japan
| | - K. Mae
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyoto University
- 6158510 Kyoto
- Japan
| |
Collapse
|
19
|
Nami F, Gast P, Groenen EJJ. Rapid Freeze-Quench EPR Spectroscopy: Improved Collection of Frozen Particles. APPLIED MAGNETIC RESONANCE 2016; 47:643-653. [PMID: 27340337 PMCID: PMC4875044 DOI: 10.1007/s00723-016-0783-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/18/2016] [Indexed: 05/22/2023]
Abstract
Rapid freeze-quench (RFQ) in combination with electron paramagnetic resonance (EPR) spectroscopy at X-band is a proven technique to trap and characterize paramagnetic intermediates of biochemical reactions. Preparation of suitable samples is still cumbersome, despite many attempts to remedy this problem, and limits the wide applicability of RFQ EPR. We present a method, which improves the collection of freeze-quench particles from isopentane and their packing in an EPR tube. The method is based on sucking the particle suspension into an EPR tube with a filter at the bottom. This procedure results in a significant reduction of the required volume of reactants, which allows the economical use of valuable reactants such as proteins. The approach also enables the successful collection of smaller frozen particles, which are generated at higher flow rates. The method provides for a reproducible, efficient and fast collection of the freeze-quench particles and can be easily adapted to RFQ EPR at higher microwave frequencies than X-band.
Collapse
Affiliation(s)
- Faezeh Nami
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Peter Gast
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Edgar J. J. Groenen
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
20
|
Gnandt E, Dörner K, Strampraad MFJ, de Vries S, Friedrich T. The multitude of iron-sulfur clusters in respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1068-1072. [PMID: 26944855 DOI: 10.1016/j.bbabio.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
Respiratory complex I couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. Complex I contains one non-covalently bound flavin mononucleotide and, depending on the species, up to ten iron-sulfur (Fe/S) clusters as cofactors. The reason for the presence of the multitude of Fe/S clusters in complex I remained enigmatic for a long time. The question was partly answered by investigations on the evolution of the complex revealing the stepwise construction of the electron transfer domain from several modules. Extension of the ancestral to the modern electron input domain was associated with the acquisition of several Fe/S-proteins. The X-ray structure of the complex showed that the NADH oxidation-site is connected with the quinone-reduction site by a chain of seven Fe/S-clusters. Fast enzyme kinetics revealed that this chain of Fe/S-clusters is used to regulate electron-tunneling rates within the complex. A possible function of the off-pathway cluster N1a is discussed. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Emmanuel Gnandt
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, Albertstr. 21, 79104 Freiburg i. Br., Germany
| | - Katerina Dörner
- Deutsches Elektronen-Synchrotron DESY, CFEL, Notkestr. 85, Hamburg, Germany
| | - Marc F J Strampraad
- Delft University of Technology, Department of Biotechnology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Simon de Vries
- Delft University of Technology, Department of Biotechnology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, Albertstr. 21, 79104 Freiburg i. Br., Germany.
| |
Collapse
|
21
|
The cytochrome ba3 oxidase from Thermus thermophilus does not generate a tryptophan radical during turnover: Implications for the mechanism of proton pumping. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1093-100. [DOI: 10.1016/j.bbabio.2015.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/26/2015] [Accepted: 05/15/2015] [Indexed: 11/30/2022]
|
22
|
Matsumura H, Moënne-Loccoz P. Characterizing millisecond intermediates in hemoproteins using rapid-freeze-quench resonance Raman spectroscopy. Methods Mol Biol 2015; 1122:107-23. [PMID: 24639256 DOI: 10.1007/978-1-62703-794-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The combination of rapid freeze quenching (RFQ) with resonance Raman (RR) spectroscopy represents a unique tool with which to investigate the nature of short-lived intermediates formed during the enzymatic reactions of metalloproteins. Commercially available equipment allows trapping of intermediates within a millisecond to second time scale for low-temperature RR analysis resulting in the direct detection of metal-ligand vibrations and porphyrin skeletal vibrations in hemoproteins. This chapter briefly discusses RFQ-RR studies carried out previously in our laboratory and presents, as a practical example, protocols for the preparation of RFQ samples of the reaction of metmyoglobin with nitric oxide (NO) under anaerobic conditions. Also described are important controls and practical procedures for the analysis of these samples by low-temperature RR spectroscopy.
Collapse
Affiliation(s)
- Hirotoshi Matsumura
- Oregon Health & Science University, Institute of Environmental Health, Mail code: HRC3, 3181 SW Sam Jackson Park Road, Portland, OR97239, USA
| | | |
Collapse
|
23
|
de Vries S, Dörner K, Strampraad MJF, Friedrich T. Die Elektronentunnelraten im Atmungskettenkomplex I sind auf eine effiziente Energiewandlung abgestimmt. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
de Vries S, Dörner K, Strampraad MJF, Friedrich T. Electron tunneling rates in respiratory complex I are tuned for efficient energy conversion. Angew Chem Int Ed Engl 2015; 54:2844-8. [PMID: 25600069 PMCID: PMC4506566 DOI: 10.1002/anie.201410967] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Indexed: 12/13/2022]
Abstract
Respiratory complex I converts the free energy of ubiquinone reduction by NADH into a proton motive force, a redox reaction catalyzed by flavin mononucleotide(FMN) and a chain of seven iron–sulfur centers. Electron transfer rates between the centers were determined by ultrafast freeze-quenching and analysis by EPR and UV/Vis spectroscopy. The complex rapidly oxidizes three NADH molecules. The electron-tunneling rate between the most distant centers in the middle of the chain depends on the redox state of center N2 at the end of the chain, and is sixfold slower when N2 is reduced. The conformational changes that accompany reduction of N2 decrease the electronic coupling of the longest electron-tunneling step. The chain of iron–sulfur centers is not just a simple electron-conducting wire; it regulates the electron-tunneling rate synchronizing it with conformation-mediated proton pumping, enabling efficient energy conversion. Synchronization of rates is a principle means of enhancing the specificity of enzymatic reactions.
Collapse
Affiliation(s)
- Simon de Vries
- Department of Biotechnology, Institution Delft University of Technology, Julianalaan 67, 2628 BC, Delft (The Netherlands).
| | | | | | | |
Collapse
|
25
|
Mitic S, van Nieuwkasteele JW, van den Berg A, de Vries S. Design of turbulent tangential micro-mixers that mix liquids on the nanosecond time scale. Anal Biochem 2015; 469:19-26. [DOI: 10.1016/j.ab.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/03/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
26
|
Wang D, Weierstall U, Pollack L, Spence J. Double-focusing mixing jet for XFEL study of chemical kinetics. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:1364-6. [PMID: 25343806 PMCID: PMC4211133 DOI: 10.1107/s160057751401858x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/14/2014] [Indexed: 05/19/2023]
Abstract
Several liquid sample injection methods have been developed to satisfy the requirements for serial femtosecond X-ray nanocrystallography, which enables radiation-damage-free determination of molecular structure at room temperature. Time-resolved nanocrystallography would combine structure analysis with chemical kinetics by determining the structures of the transient states and chemical kinetic mechanisms simultaneously. A windowless liquid mixing jet device has been designed for this purpose. It achieves fast uniform mixing of substrates and enzymes in the jet within 250 µs, with an adjustable delay between mixing and probing by the X-ray free-electron laser beam of up to 1 s for each frame of a `movie'. The principle of the liquid mixing jet device is illustrated using numerical simulation, and experimental results are presented using a fluorescent dye.
Collapse
Affiliation(s)
- Dingjie Wang
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - John Spence
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| |
Collapse
|
27
|
Pievo R, Angerstein B, Fielding AJ, Koch C, Feussner I, Bennati M. A rapid freeze-quench setup for multi-frequency EPR spectroscopy of enzymatic reactions. Chemphyschem 2013; 14:4094-101. [PMID: 24323853 DOI: 10.1002/cphc.201300714] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/22/2013] [Indexed: 11/11/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy in combination with the rapid freeze-quench (RFQ) technique is a well-established method to trap and characterize intermediates in chemical or enzymatic reactions at the millisecond or even shorter time scales. The method is particularly powerful for mechanistic studies of enzymatic reactions when combined with high-frequency EPR (ν≥90 GHz), which permits the identification of substrate or protein radical intermediates by their electronic g values. In this work, we describe a new custom-designed micro-mix rapid freeze-quench apparatus, for which reagent volumes for biological samples as small as 20 μL are required. The apparatus was implemented with homemade sample collectors appropriate for 9, 34, and 94 GHz EPR capillaries (4, 2, and 0.87 mm outer diameter, respectively) and the performance was evaluated. We demonstrate the application potential of the RFQ apparatus by following the enzymatic reaction of PpoA, a fungal dioxygenase producing hydro(pero)xylated fatty acids. The larger spectral resolution at 94 GHz allows the discernment of structural changes in the EPR spectra, which are not detectable in the same samples at the standard 9 GHz frequency.
Collapse
Affiliation(s)
- Roberta Pievo
- Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen (Germany).
| | | | | | | | | | | |
Collapse
|
28
|
Ullrich SJ, Glaubitz C. Perspectives in enzymology of membrane proteins by solid-state NMR. Acc Chem Res 2013; 46:2164-71. [PMID: 23745719 DOI: 10.1021/ar4000289] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Membrane proteins catalyze reactions at the cell membrane and facilitate thetransport of molecules or signals across the membrane. Recently researchers have made great progress in understanding the structural biology of membrane proteins, mainly based on X-ray crystallography. In addition, the application of complementary spectroscopic techniques has allowed researchers to develop a functional understanding of these proteins. Solid-state NMR has become an indispensable tool for the structure-function analysis of insoluble proteins and protein complexes. It offers the possibility of investigating membrane proteins directly in their environment, which provides essential information about the intrinsic coupling of protein structure and functional dynamics within the lipid bilayer. However, to date, researchers have hardly explored the enzymology of mem-brane proteins. In this Account, we review the perspectives for investigating membrane-bound enzymes by solid-state NMR. Understanding enzyme mechanisms requires access to kinetic parameters, structural analysis of the catalytic center, knowledge of the 3D structure and methods to follow the structural dynamics of the enzyme during the catalytic cycle. In principle, solid-state NMR can address all of these issues. Researchers can characterize the enzyme kinetics by observing substrate turnover within the membrane or at the membrane interphase in a time-resolved fashion as shown for diacylglycerol kinase. Solid-state NMR has also provided a mechanistic understanding of soluble enzymes including triosephosphate isomerase (TIM) and different metal-binding proteins, which demonstrates a promising perspective also for membrane proteins. The increasing availability of high magnetic fields and the development of new experimental schemes and computational protocols have made it easier to determine 3D structure using solid-state NMR. Dynamic nuclear polarization, a key technique to boost sensitivity of solid-state NMR at low temperatures, can help with the analysis of thermally trapped catalytic intermediates, while methods to improve signal-to-noise per time unit enable the real-time measurement of kinetics of conformational changes during the catalytic cycle.
Collapse
Affiliation(s)
- Sandra J. Ullrich
- Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max von Laue Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Kaufmann R, Yadid I, Goldfarb D. A novel microfluidic rapid freeze-quench device for trapping reactions intermediates for high field EPR analysis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 230:220-226. [PMID: 23481860 DOI: 10.1016/j.jmr.2013.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 06/01/2023]
Abstract
Rapid freeze quench electron paramagnetic resonance (RFQ)-EPR is a method for trapping short lived intermediates in chemical reactions and subjecting them to EPR spectroscopy investigation for their characterization. Two (or more) reacting components are mixed at room temperature and after some delay the mixture is sprayed into a cold trap and transferred into the EPR tube. A major caveat in using commercial RFQ-EPR for high field EPR applications is the relatively large amount of sample needed for each time point, a major part of which is wasted as the dead volume of the instrument. The small sample volume (∼2μl) needed for high field EPR spectrometers, such as W-band (∼3.5T, 95GHz), that use cavities calls for the development of a microfluidic based RFQ-EPR apparatus. This is particularly important for biological applications because of the difficulties often encountered in producing large amounts of intrinsically paramagnetic proteins and spin labeled nucleic acid and proteins. Here we describe a dedicated microfluidic based RFQ-EPR apparatus suitable for small volume samples in the range of a few μl. The device is based on a previously published microfluidic mixer and features a new ejection mechanism and a novel cold trap that allows collection of a series of different time points in one continuous experiment. The reduction of a nitroxide radical with dithionite, employing the signal of Mn(2+) as an internal standard was used to demonstrate the performance of the microfluidic RFQ apparatus.
Collapse
Affiliation(s)
- Royi Kaufmann
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
30
|
Krest CM, Onderko EL, Yosca TH, Calixto JC, Karp RF, Livada J, Rittle J, Green MT. Reactive intermediates in cytochrome p450 catalysis. J Biol Chem 2013; 288:17074-81. [PMID: 23632017 DOI: 10.1074/jbc.r113.473108] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis.
Collapse
Affiliation(s)
- Courtney M Krest
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liebl U, Lambry JC, Vos MH. Primary processes in heme-based sensor proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1684-92. [PMID: 23485911 DOI: 10.1016/j.bbapap.2013.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/08/2013] [Accepted: 02/16/2013] [Indexed: 12/22/2022]
Abstract
A wide and still rapidly increasing range of heme-based sensor proteins has been discovered over the last two decades. At the molecular level, these proteins function as bistable switches in which the catalytic activity of an enzymatic domain is altered mostly by binding or dissociation of small gaseous ligands (O2, NO or CO) to the heme in a sensor domain. The initial "signal" at the heme level is subsequently transmitted within the protein to the catalytic site, ultimately leading to adapted expression levels of specific proteins. Making use of the photolability of the heme-ligand bond that mimics thermal dissociation, early processes in this intra-protein signaling pathway can be followed using ultrafast optical spectroscopic techniques; they also occur on timescales accessible to molecular dynamics simulations. Experimental studies performed over the last decade on proteins including the sensors FixL (O2), CooA (CO) and soluble guanylate cyclase (NO) are reviewed with an emphasis on emerging general mechanisms. After heme-ligand bond breaking, the ligand can escape from the heme pocket and eventually from the protein, or rebind directly to the heme. Remarkably, in all sensor proteins the rebinding, specifically of the sensed ligand, is highly efficient. This "ligand trap" property possibly provides means to smoothen the effects of fast environmental fluctuations on the switching frequency. For 6-coordinate proteins, where exchange between an internal heme-bound residue and external gaseous ligands occurs, the study of early processes starting from the unliganded form indicates that mobility of the internal ligand may facilitate signal transfer. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Ursula Liebl
- Laboratory for Optics and Biosciences, CNRS, Ecole Polytechnique, Palaiseau, France
| | | | | |
Collapse
|
32
|
Al-Attar S, de Vries S. Energy transduction by respiratory metallo-enzymes: From molecular mechanism to cell physiology. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Krebs C, Dassama LMK, Matthews ML, Jiang W, Price JC, Korboukh V, Li N, Bollinger JM. Novel Approaches for the Accumulation of Oxygenated Intermediates to Multi-Millimolar Concentrations. Coord Chem Rev 2013; 257:10.1016/j.ccr.2012.06.020. [PMID: 24368870 PMCID: PMC3870000 DOI: 10.1016/j.ccr.2012.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metalloenzymes that utilize molecular oxygen as a co-substrate catalyze a wide variety of chemically difficult oxidation reactions. Significant insight into the reaction mechanisms of these enzymes can be obtained by the application of a combination of rapid kinetic and spectroscopic methods to the direct structural characterization of intermediate states. A key limitation of this approach is the low aqueous solubility (< 2 mM) of the co-substrate, O2, which undergoes further dilution (typically by one-third or one-half) upon initiation of reactions by rapid-mixing. This situation imposes a practical upper limit on [O2] (and therefore on the concentration of reactive intermediate(s) that can be rapidly accumulated) of ∼1-1.3 mM in such experiments as they are routinely carried out. However, many spectroscopic methods benefit from or require significantly greater concentrations of the species to be studied. To overcome this problem, we have recently developed two new approaches for the preparation of samples of oxygenated intermediates: (1) direct oxygenation of reduced metalloenzymes using gaseous O2 and (2) the in situ generation of O2 from chlorite catalyzed by the enzyme chlorite dismutase (Cld). Whereas the former method is applicable only to intermediates with half lives of several minutes, owing to the sluggishness of transport of O2 across the gas-liquid interface, the latter approach has been successfully applied to trap several intermediates at high concentration and purity by the freeze-quench method. The in situ approach permits generation of a pulse of at least 5 mM O2 within ∼ 1 ms and accumulation of O2 to effective concentrations of up to ∼ 11 mM (i.e. ∼ 10-fold greater than by the conventional approach). The use of these new techniques for studies of oxygenases and oxidases is discussed.
Collapse
Affiliation(s)
- Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Laura M. K. Dassama
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Megan L. Matthews
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - John C. Price
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Victoria Korboukh
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ning Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
34
|
Marchanka A, van Gastel M. Reversed freeze quench method near the solvent phase transition. J Phys Chem A 2012; 116:3899-906. [PMID: 22413925 DOI: 10.1021/jp300555x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Freeze quenching is a general method for trapping reaction intermediates on a (sub)millisecond time scale. The method relies on a mixing and subsequent rapid freezing of solutions of reactants. If the reaction is limited by diffusion, it may be advantageous to initially mix the reactants under conditions where the reaction does not proceed, e.g., by mixing them at low temperature as solids. The temperature may then be raised close to the melting point of the solvent. Depending on the viscosity of the solvent, the temperature can be raised either by heating or by applying laser pulses of nanosecond length with concomitant conversion of light into heat. A reduction of the dead time and a good control of the reaction speed in comparison to the standard freeze quench technique has been achieved with this method. The feasibility of the method in combination with EPR spectroscopy is verified by examining the important prototypical reductions of benzoquinone and 2,6-dichlorophenolindophenol by ascorbate as representatives for two-step redox reactions. By using light pulses of a laser, the reaction could be driven with rates lowered by 4 orders of magnitude as compared to room temperature reaction rates. This has allowed the observation of previously unobserved radical intermediates: the reduction of DCPIP by ascorbate is found to be strongly pH dependent. It proceeds via two one-electron steps at low pH, whereas at neutral pH, the reduction of DCPIP by ascorbate proceeds in a 1:2 stoichiometry followed by a disproportionation of the ascorbate radicals.
Collapse
Affiliation(s)
- Aliaksandr Marchanka
- Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany
| | | |
Collapse
|
35
|
Georgieva ER, Roy AS, Grigoryants VM, Borbat PP, Earle KA, Scholes CP, Freed JH. Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): a study of doubly-spin-labeled T4 lysozyme. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:69-77. [PMID: 22341208 PMCID: PMC3323113 DOI: 10.1016/j.jmr.2012.01.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 05/11/2023]
Abstract
Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant could possibly affect the conformation of biomacromolecule and/or spin-label. We studied in detail the effect of these experimental variables on the distance distributions obtained by DEER from a series of doubly spin-labeled T4 lysozyme mutants. We found that the rate of sample freezing affects mainly the ensemble of spin-label rotamers, but the distance maxima remain essentially unchanged. This suggests that proteins frozen in a regular manner in liquid nitrogen faithfully maintain the distance-dependent structural properties in solution. We compared the results from rapidly freeze-quenched (≤100 μs) samples to those from commonly shock-frozen (slow freeze, 1 s or longer) samples. For all the mutants studied we obtained inter-spin distance distributions, which were broader for rapidly frozen samples than for slowly frozen ones. We infer that rapid freezing trapped a larger ensemble of spin label rotamers; whereas, on the time-scale of slower freezing the protein and spin-label achieve a population showing fewer low-energy conformers. We used glycerol as a cryoprotectant in concentrations of 10% and 30% by weight. With 10% glycerol and slow freezing, we observed an increased slope of background signals, which in DEER is related to increased local spin concentration, in this case due to insufficient solvent vitrification, and therefore protein aggregation. This effect was considerably suppressed in slowly frozen samples containing 30% glycerol and rapidly frozen samples containing 10% glycerol. The assignment of bimodal distributions to tether rotamers as opposed to protein conformations is aided by comparing results using MTSL and 4-Bromo MTSL spin-labels. The latter usually produce narrower distance distributions.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | | | | | | | |
Collapse
|
36
|
Dassama LMK, Yosca TH, Conner DA, Lee MH, Blanc B, Streit BR, Green MT, DuBois JL, Krebs C, Bollinger JM. O(2)-evolving chlorite dismutase as a tool for studying O(2)-utilizing enzymes. Biochemistry 2012; 51:1607-16. [PMID: 22304240 DOI: 10.1021/bi201906x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct interrogation of fleeting intermediates by rapid-mixing kinetic methods has significantly advanced our understanding of enzymes that utilize dioxygen. The gas's modest aqueous solubility (<2 mM at 1 atm) presents a technical challenge to this approach, because it limits the rate of formation and extent of accumulation of intermediates. This challenge can be overcome by use of the heme enzyme chlorite dismutase (Cld) for the rapid, in situ generation of O(2) at concentrations far exceeding 2 mM. This method was used to define the O(2) concentration dependence of the reaction of the class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis, in which the enzyme's Mn(IV)/Fe(III) cofactor forms from a Mn(II)/Fe(II) complex and O(2) via a Mn(IV)/Fe(IV) intermediate, at effective O(2) concentrations as high as ~10 mM. With a more soluble receptor, myoglobin, an O(2) adduct accumulated to a concentration of >6 mM in <15 ms. Finally, the C-H-bond-cleaving Fe(IV)-oxo complex, J, in taurine:α-ketoglutarate dioxygenase and superoxo-Fe(2)(III/III) complex, G, in myo-inositol oxygenase, and the tyrosyl-radical-generating Fe(2)(III/IV) intermediate, X, in Escherichia coli RNR, were all accumulated to yields more than twice those previously attained. This means of in situ O(2) evolution permits a >5 mM "pulse" of O(2) to be generated in <1 ms at the easily accessible Cld concentration of 50 μM. It should therefore significantly extend the range of kinetic and spectroscopic experiments that can routinely be undertaken in the study of these enzymes and could also facilitate resolution of mechanistic pathways in cases of either sluggish or thermodynamically unfavorable O(2) addition steps.
Collapse
Affiliation(s)
- Laura M K Dassama
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Paulus A, Rossius SGH, Dijk M, de Vries S. Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species. J Biol Chem 2012; 287:8830-8. [PMID: 22287551 DOI: 10.1074/jbc.m111.333542] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b(558) that donates electrons to a binuclear heme b(595)/heme d center. The reaction with O(2) and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O(2), the O-O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b(595). Compound I accumulates to 0.75-0.85 per enzyme in agreement with its much higher rate of formation (~20,000 s(-1)) compared with its rate of decay (~1,900 s(-1)). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b(558) before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O-O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O-O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species.
Collapse
Affiliation(s)
- Angela Paulus
- Department of Biotechnology, Section Enzymology, Delft University of Technology, Delft, The Netherlands
| | | | | | | |
Collapse
|
38
|
Manzerova J, Krymov V, Gerfen GJ. Investigating the intermediates in the reaction of ribonucleoside triphosphate reductase from Lactobacillus leichmannii: An application of HF EPR-RFQ technology. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 213:32-45. [PMID: 21944735 DOI: 10.1016/j.jmr.2011.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 08/23/2011] [Indexed: 05/31/2023]
Abstract
In this investigation high-frequency electron paramagnetic resonance spectroscopy (HFEPR) in conjunction with innovative rapid freeze-quench (RFQ) technology is employed to study the exchange-coupled thiyl radical-cob(II)alamin system in ribonucleotide reductase from a prokaryote Lactobacillus leichmannii. The size of the exchange coupling (Jex) and the values of the thiyl radical g tensor are refined, while confirming the previously determined (Gerfen et al. (1996) [20]) distance between the paramagnets. Conclusions relevant to ribonucleotide reductase catalysis and the architecture of the active site are presented. A key part of this work has been the development of a unique RFQ apparatus for the preparation of millisecond quench time RFQ samples which can be packed into small (0.5 mm ID) sample tubes used for CW and pulsed HFEPR--lack of this ability has heretofore precluded such studies. The technology is compatible with a broad range of spectroscopic techniques and can be readily adopted by other laboratories.
Collapse
Affiliation(s)
- Julia Manzerova
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, United States
| | | | | |
Collapse
|
39
|
Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR. Nat Chem Biol 2011; 7:263-70. [PMID: 21423170 DOI: 10.1038/nchembio.543] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/26/2011] [Indexed: 11/08/2022]
Abstract
The simultaneous observation of interdependent reactions within different phases as catalyzed by membrane-bound enzymes is still a challenging task. One such enzyme, the Escherichia coli integral membrane protein diacylglycerol kinase (DGK), is a key player in lipid regulation. It catalyzes the generation of phosphatidic acid within the membrane through the transfer of the γ-phosphate from soluble MgATP to membrane-bound diacylglycerol. We demonstrate that time-resolved (31)P magic angle spinning NMR offers a unique opportunity to simultaneously and directly detect both ATP hydrolysis and diacylglycerol phosphorylation. This experiment demonstrates that solid-state NMR provides a general approach for the kinetic analysis of coupled reactions at the membrane interface regardless of their compartmentalization. The enzymatic activity of DGK was probed with different lipid substrates as well as ATP analogs. Our data yield conclusions about intersubunit cooperativity, reaction stoichiometries and phosphoryl transfer mechanism and are discussed in the context of known structural data.
Collapse
|
40
|
Jung C, Vries SD, Schünemann V. Spectroscopic characterization of cytochrome P450 Compound I. Arch Biochem Biophys 2011; 507:44-55. [DOI: 10.1016/j.abb.2010.12.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/25/2022]
|
41
|
Schmidt B, Mahmud G, Soh S, Kim SH, Page T, O’Halloran TV, Grzybowski BA, Hoffman BM. Design, Implementation, Simulation, and Visualization of a Highly Efficient RIM Microfluidic Mixer for Rapid Freeze-Quench of Biological Samples. APPLIED MAGNETIC RESONANCE 2011; 40:415-425. [PMID: 22180701 PMCID: PMC3237052 DOI: 10.1007/s00723-011-0195-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rapid freeze-quench (RFQ) trapping of short-lived reaction intermediates for spectroscopic study plays an important role in the characterization of biological reactions. Recently there has been considerable effort to achieve submillisecond reaction deadtimes. We present here a new, robust, high-velocity microfluidic mixer that enables such rapid freeze-quenching. It is a based on the mixing method of two impinging jets commonly used in reaction injection molding (RIM) of plastics. This method achieves efficient mixing by inducing chaotic flow at relatively low Reynolds numbers (Re =140). We present the first mathematical simulation and microscopic visualization of mixing in such RFQ micromixers, the results of which show that the impinging solutions efficiently mix within the mixing chamber. These tests, along with a practical demonstration in a RFQ setup that involves copper wheels, show this new mixer can in practice provide reaction deadtimes as low as 100 microseconds.
Collapse
Affiliation(s)
- Bryan Schmidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Goher Mahmud
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Siowling Soh
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Sun Hee Kim
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Taylor Page
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | | | - Bartosz A. Grzybowski
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| |
Collapse
|
42
|
Thompson MK, Franzen S, Ghiladi RA, Reeder BJ, Svistunenko DA. Compound ES of Dehaloperoxidase Decays via Two Alternative Pathways Depending on the Conformation of the Distal Histidine. J Am Chem Soc 2010; 132:17501-10. [DOI: 10.1021/ja106620q] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew K. Thompson
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Brandon J. Reeder
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Dimitri A. Svistunenko
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
43
|
Cherepanov AV, Glaubitz C, Schwalbe H. High-resolution studies of uniformly 13C,15N-labeled RNA by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2010; 49:4747-50. [PMID: 20533472 DOI: 10.1002/anie.200906885] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Alexey V Cherepanov
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
44
|
Hu KN, Tycko R. What can solid state NMR contribute to our understanding of protein folding? Biophys Chem 2010; 151:10-21. [PMID: 20542371 PMCID: PMC2906680 DOI: 10.1016/j.bpc.2010.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 11/29/2022]
Abstract
Complete understanding of the folding process that connects a structurally disordered state of a protein to an ordered, biochemically functional state requires detailed characterization of intermediate structural states with high resolution and site specificity. While the intrinsically inhomogeneous and dynamic nature of unfolded and partially folded states limits the efficacy of traditional X-ray diffraction and solution NMR in structural studies, solid state NMR methods applied to frozen solutions can circumvent the complications due to molecular motions and conformational exchange encountered in unfolded and partially folded states. Moreover, solid state NMR methods can provide both qualitative and quantitative structural information at the site-specific level, even in the presence of structural inhomogeneity. This article reviews relevant solid state NMR methods and their initial applications to protein folding studies. Using either chemical denaturation to prepare unfolded states at equilibrium or a rapid freezing apparatus to trap non-equilibrium, transient structural states on a sub-millisecond time scale, recent results demonstrate that solid state NMR can contribute essential information about folding processes that is not available from more familiar biophysical methods.
Collapse
Affiliation(s)
- Kan-Nian Hu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | | |
Collapse
|
45
|
Cherepanov A, Glaubitz C, Schwalbe H. Hochauflösende Festkörper-NMR-Spektroskopie an vollständig 13C,15N-markierter RNA. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Krebs C, Bollinger JM. Freeze-quench (57)Fe-Mössbauer spectroscopy: trapping reactive intermediates. PHOTOSYNTHESIS RESEARCH 2009; 102:295-304. [PMID: 19238577 DOI: 10.1007/s11120-009-9406-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/15/2009] [Indexed: 05/24/2023]
Abstract
(57)Fe-Mössbauer spectroscopy is a method that probes transitions between the nuclear ground state (I=1/2) and the first nuclear excited state (I=3/2). This technique provides detailed information about the chemical environment and electronic structure of iron. Therefore, it has played an important role in studies of the numerous iron-containing proteins and enzymes. In conjunction with the freeze-quench method, (57)Fe-Mössbauer spectroscopy allows for monitoring changes of the iron site(s) during a biochemical reaction. This approach is particularly powerful for detection and characterization of reactive intermediates. Comparison of experimentally determined Mössbauer parameters to those predicted by density functional theory for hypothetical model structures can then provide detailed insight into the structures of reactive intermediates. We have recently used this methodology to study the reactions of various mononuclear non-heme-iron enzymes by trapping and characterizing several Fe(IV)-oxo reaction intermediates. In this article, we summarize these findings and demonstrate the potential of the method.
Collapse
Affiliation(s)
- Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, 332 Chemistry Building, Pennsylvania, PA 16802, USA.
| | | |
Collapse
|
47
|
Yukl ET, de Vries S, Moënne-Loccoz P. The millisecond intermediate in the reaction of nitric oxide with oxymyoglobin is an iron(III)--nitrato complex, not a peroxynitrite. J Am Chem Soc 2009; 131:7234-5. [PMID: 19469573 DOI: 10.1021/ja9026924] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dioxygenation of nitric oxide by oxyheme in globin proteins is a major route for NO detoxification in aerobic biological systems. In myoglobin, this reaction is thought to proceed through an iron(III)-bound peroxynitrite before homolytic cleavage of the O-O bond to form an iron(IV)-oxo and NO(2) radical followed by recombination and nitrate production. Single turnover experiments at alkaline pH have revealed the presence of a millisecond high-spin heme intermediate. It is widely presumed that this species is an iron(III)-peroxynitrite species, but detailed characterization of the intermediate is lacking. Using resonance Raman spectroscopy and rapid-freeze quench techniques, we identify the millisecond intermediate as an iron(III)-nitrato complex with a symmetric NO(2) stretch at 1282 cm(-1). Greater time resolution techniques will be required to detect the putative iron(III) peroxynitrite complex.
Collapse
Affiliation(s)
- Erik T Yukl
- Department of Science and Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon 97006-8921, USA
| | | | | |
Collapse
|
48
|
Hu KN, Havlin RH, Yau WM, Tycko R. Quantitative determination of site-specific conformational distributions in an unfolded protein by solid-state nuclear magnetic resonance. J Mol Biol 2009; 392:1055-73. [PMID: 19647001 DOI: 10.1016/j.jmb.2009.07.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/27/2009] [Accepted: 07/25/2009] [Indexed: 10/20/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) techniques are used to investigate the structure of the 35-residue villin headpiece subdomain (HP35) in folded, partially denatured, and fully denatured states. Experiments are carried out in frozen glycerol/water solutions, with chemical denaturation by guanidine hydrochloride (GdnHCl). Without GdnHCl, two-dimensional solid-state (13)C NMR spectra of samples prepared with uniform (13)C labeling of selected residues show relatively sharp cross-peaks at chemical shifts that are consistent with the known three-helix bundle structure of folded HP35. At high GdnHCl concentrations, most cross-peaks broaden and shift, qualitatively indicating disruption of the folded structure and development of static conformational disorder in the frozen denatured state. Conformational distributions at one residue in each helical segment are probed quantitatively with three solid-state NMR techniques that provide independent constraints on backbone varphi and psi torsion angles in samples with sequential pairs of carbonyl (13)C labels. Without GdnHCl, the combined data are well fit by alpha-helical conformations. At [GdnHCl]=4.5 M, corresponding to the approximate denaturation midpoint, the combined data are well fit by a combination of alpha-helical and partially extended conformations at each site, but with a site-dependent population ratio. At [GdnHCl]=7.0 M, corresponding to the fully denatured state, the combined data are well fit by a combination of partially extended and polyproline II conformations, again with a site-dependent population ratio. Two entirely different models for conformational distributions lead to nearly the same best-fit distributions, demonstrating the robustness of these conclusions. This work represents the first quantitative investigation of site-specific conformational distributions in partially folded and unfolded states of a protein by solid-state NMR.
Collapse
Affiliation(s)
- Kan-Nian Hu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 112, Bethesda, MD 20892-0520, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Based on explicit definitions of biomolecular EPR spectroscopy and of the metallome, this tutorial review positions EPR in the field of metallomics as a unique method to study native, integrated systems of metallobiomolecular coordination complexes subject to external stimuli. The specific techniques of whole-system bioEPR spectroscopy are described and their historic, recent, and anticipated applications are discussed.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands.
| |
Collapse
|
50
|
|