1
|
Shi T, Fan D, Xu C, Zheng G, Zhong C, Feng F, Chow WS. The Fitting of the OJ Phase of Chlorophyll Fluorescence Induction Based on an Analytical Solution and Its Application in Urban Heat Island Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:452. [PMID: 38337985 PMCID: PMC10857409 DOI: 10.3390/plants13030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Chlorophyll (Chl) fluorescence induction (FI) upon a dark-light transition has been widely analyzed to derive information on initial events of energy conversion and electron transfer in photosystem II (PSII). However, currently, there is no analytical solution to the differential equation of QA reduction kinetics, raising a doubt about the fitting of FI by numerical iteration solution. We derived an analytical solution to fit the OJ phase of FI, thereby yielding estimates of three parameters: the functional absorption cross-section of PSII (σPSII), a probability parameter that describes the connectivity among PSII complexes (p), and the rate coefficient for QA- oxidation (kox). We found that σPSII, p, and kox exhibited dynamic changes during the transition from O to J. We postulated that in high excitation light, some other energy dissipation pathways may vastly outcompete against excitation energy transfer from a closed PSII trap to an open PSII, thereby giving the impression that connectivity seemingly does not exist. We also conducted a case study on the urban heat island effect on the heat stability of PSII using our method and showed that higher-temperature-acclimated leaves had a greater σPSII, lower kox, and a tendency of lower p towards more shade-type characteristics.
Collapse
Affiliation(s)
- Tongxin Shi
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Dayong Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Chengyang Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Guoming Zheng
- Yi Zong Qi Technology (Beijing) Co., Ltd., Beijing 100095, China
| | - Chuanfei Zhong
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Fei Feng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
2
|
Gu L. Optimizing the electron transport chain to sustainably improve photosynthesis. PLANT PHYSIOLOGY 2023; 193:2398-2412. [PMID: 37671674 PMCID: PMC10663115 DOI: 10.1093/plphys/kiad490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
Genetically improving photosynthesis is a key strategy to boosting crop production to meet the rising demand for food and fuel by a rapidly growing global population in a warming climate. Many components of the photosynthetic apparatus have been targeted for genetic modification for improving photosynthesis. Successful translation of these modifications into increased plant productivity in fluctuating environments will depend on whether the electron transport chain (ETC) can support the increased electron transport rate without risking overreduction and photodamage. At present atmospheric conditions, the ETC appears suboptimal and will likely need to be modified to support proposed photosynthetic improvements and to maintain energy balance. Here, I derive photochemical equations to quantify the transport capacity and the corresponding reduction level based on the kinetics of redox reactions along the ETC. Using these theoretical equations and measurements from diverse C3/C4 species across environments, I identify several strategies that can simultaneously increase the transport capacity and decrease the reduction level of the ETC. These strategies include increasing the abundances of reaction centers, cytochrome b6f complexes, and mobile electron carriers, improving their redox kinetics, and decreasing the fraction of secondary quinone-nonreducing photosystem II reaction centers. I also shed light on several previously unexplained experimental findings regarding the physiological impacts of the abundances of the cytochrome b6f complex and plastoquinone. The model developed, and the insights generated from it facilitate the development of sustainable photosynthetic systems for greater crop yields.
Collapse
Affiliation(s)
- Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
3
|
Liu X, Qiao Y, Zhou W, Dong W, Gu L. Determinants of photochemical characteristics of the photosynthetic electron transport chain of maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1279963. [PMID: 38053761 PMCID: PMC10694277 DOI: 10.3389/fpls.2023.1279963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Introduction The photosynthetic electron transport chain (ETC) is the bridge that links energy harvesting during the photophysical reactions at one end and energy consumption during the biochemical reactions at the other. Its functioning is thus fundamental for the proper balance between energy supply and demand in photosynthesis. Currently, there is a lack of understanding regarding how the structural properties of the ETC are affected by nutrient availability and plant developmental stages, which is a major roadblock to comprehensive modeling of photosynthesis. Methods Redox parameters reflect the structural controls of ETC on the photochemical reactions and electron transport. We conducted joint measurements of chlorophyll fluorescence (ChlF) and gas exchange under systematically varying environmental conditions and growth stages of maize and sampled foliar nutrient contents. We utilized the recently developed steady-state photochemical model to infer redox parameters of electron transport from these measurements. Results and discussion We found that the inferred values of these photochemical redox parameters varied with leaf macronutrient content. These variations may be caused either directly by these nutrients being components of protein complexes on the ETC or indirectly by their impacts on the structural integrity of the thylakoid and feedback from the biochemical reactions. Also, the redox parameters varied with plant morphology and developmental stage, reflecting seasonal changes in the structural properties of the ETC. Our findings will facilitate the parameterization and simulation of complete models of photosynthesis.
Collapse
Affiliation(s)
- Xiuping Liu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yunzhou Qiao
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wangming Zhou
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
4
|
Wu D, Yang C, Zhang X, Hou X, Zhang S, Dai X, Zhang X, Igarashi Y, Luo F. Algicidal effect of tryptoline against Microcystis aeruginosa: Excess reactive oxygen species production mediated by photosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150719. [PMID: 34606873 DOI: 10.1016/j.scitotenv.2021.150719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/26/2023]
Abstract
Cyanobacterial blooms significantly decrease water quality and can damage ecosystems and, as such, require efficient control methods. Algicidal bacteria and their associated substances are promising tools for controlling cyanobacterial blooms; however, their specific algicidal mechanisms remain unclear. Therefore, the current study sought to investigate the algicidal mechanism of tryptoline (1,2,3,4-tetrahydro-9 h-pyrido[3,4-b]indole) against Microcystis aeruginosa, with a specific focus on the contribution made by reactive oxygen species (ROS), the underlying mechanisms of ROS increase, as well as the photosystem response. Results show that the algicidal ratio of tryptoline significantly and positively correlates with algal ROS. Moreover, 93.79% of the algicidal ratio variation is attributed to ROS in the tryptoline group, while only 47.75% can be attributed to ROS in the tryptoline + N-acetyl-L-cysteine (NAC) group, where ROS are partially scavenged by NAC. In the presence of tryptoline, algicidal effect and ROS levels were significantly enhanced in the presence of light as compared to those in the dark (P < 0.001). Hence, the increase in ROS production attributed to tryptoline is primarily affected by the presence of light and photosynthesis. Additionally, tryptoline significantly reduces Fv/Fm, PIABS, ETo/RC, and the expression of psaB and psbA genes related to photosynthesis, while increasing Vj and DIo/RC (P < 0.05). These results suggest that tryptoline hinders algal photosynthesis by significantly decreasing photosynthetic efficiency and carbon assimilation, inhibiting photochemical electron transfer, and increasing closed reaction centers and energy loss. Moreover, following partial blockade of the photosynthetic electron transfer from QA to QB by diuron (3-(3-4-dichlorophenyl)-1,1-dimethylurea), the ROS of algae exposed to tryptoline is significantly decreased. Thus, tryptoline inhibits electron transfer downstream of QA, which increase the number of escaping electron and thereby increase ROS generation. Collectively, this study describes the algicidal mechanism of tryptoline against M. aeruginosa and highlights the critical factors associated with induction of algicidal activity.
Collapse
Affiliation(s)
- Donghao Wu
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Caiyun Yang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xian Zhang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xiping Hou
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Siqi Zhang
- State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resource and Environment, Southwest University, Chongqing 400716, China
| | - Xianzhu Dai
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xiaohui Zhang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yasuo Igarashi
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Feng Luo
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
5
|
Orekhova A, Barták M, Casanova-Katny A, Hájek J. Resistance of Antarctic moss Sanionia uncinata to photoinhibition: chlorophyll fluorescence analysis of samples from the western and eastern coasts of the Antarctic Peninsula. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:653-663. [PMID: 33866664 DOI: 10.1111/plb.13270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Interspecific differences in sensitivity of the Antarctic moss Sanionia uncinata from King George Island (KGI) and James Ross Island (JRI) to photoinhibitory treatment were studied in laboratory conditions using chlorophyll fluorescence techniques. Slow (Kautsky) and fast (OJIP) kinetics were used for the measurements. Samples were exposed to a short-term (60 min) photoinhibitory treatment (PIT, 2000 μmol·m-2 ·s-1 PAR). The photoinhibitory treatment (PIT) led to photoinhibition which was indicated by the decrease in FV /FM and ΦPSII in KGI but not in JRI samples. However, this decrease was small and full recovery was reached 90 min after PIT termination. Non-photochemical quenching (NPQ) was activated during the PIT, and rapidly relaxed during recovery. Early stages of photoinhibition showed a drop in FV /FM and ΦPSII to minimum values within the first 10 s of the PIT, with their subsequent increase apparent within fast (0-5 min PIT) and slow (5-50 min PIT) phases of adjustment. The PIT caused a decrease in the performance index (Pi_Abs), photosynthetic electron transport per reaction centre (RC) (ET0 /RC). The PIT induced an increase in thermal dissipation per RC (DI0 /RC), effectivity of thermal dissipation (Phi_D0 ), absorption per RC (ABS/RC) and trapping rate per RC (TR0 /RC). In conclusion, PIT led to only slight photoinhibition followed by fast recovery in S. uncinata from KGI and JRI, since FV /FM and ΦPSII returned to pre-photoinhibitory conditions. Therefore, S. uncinata might be considered resistant to photoinhibition even in the wet state. The KGI samples showed higher resistance to photoinhibition than the JRI samples.
Collapse
Affiliation(s)
- A Orekhova
- Department of Experimental Biology, Division of Plant Physiology and Anatomy, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - M Barták
- Department of Experimental Biology, Division of Plant Physiology and Anatomy, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - A Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Catholic University Temuco, Campus Luis Rivas del Canto, Temuco, Chile
| | - J Hájek
- Department of Experimental Biology, Division of Plant Physiology and Anatomy, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Belyaeva NE, Bulychev AA, Klementiev KE, Paschenko VZ, Riznichenko GY, Rubin AB. Model quantification of the light-induced thylakoid membrane processes in Synechocystis sp. PCC 6803 in vivo and after exposure to radioactive irradiation. PHOTOSYNTHESIS RESEARCH 2020; 146:259-278. [PMID: 32734447 DOI: 10.1007/s11120-020-00774-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Measurements of OJIP-SMT patterns of fluorescence induction (FI) in Synechocystis sp. PCC 6803 (Synechocystis) cells on a time scale up to several minutes were mathematically treated within the framework of thylakoid membrane (T-M) model (Belyaeva et al., Photosynth Res 140:1-19, 2019) that was renewed to account for the state transitions effects. Principles of describing electron transfer in reaction centers of photosystems II and I (PSII and PSI) and cytochrome b6f complex remained unchanged, whereas parameters for dissipative reactions of non-radiative charge recombination were altered depending on the oxidation state of QB-site (neutral, reduced by one electron, empty, reduced by two electrons). According to our calculations, the initial content of plastoquinol (PQH2) in the total quinone pool of Synechocystis cells adapted to darkness for 10 min ranged between 20 and 40%. The results imply that the PQ pool mediates photosynthetic and respiratory charge flows. The redistribution of PBS antenna units responsible for the increase of Chl fluorescence in cyanobacteria (qT2 → 1) upon state 2 → 1 transition or the fluorescence lowering (qT1 → 2) due to state 1 → 2 transition were described in the model by exponential functions. Parameters of dynamically changed effective cross section were found by means of simulations of OJIP-SMT patterns observed on Synechocystis cells upon strong (3000 μmol photons m-2s-1) and moderate (1000 μmol photons m-2s-1) actinic light intensities. The corresponding light constant values kLΣAnt = 1.2 ms-1 and 0.4 ms-1 define the excitation of total antenna pool dynamically redistributed between PSII and PSI reaction centers. Although the OCP-induced quenching of antenna excitation is not involved in the model, the main features of the induction signals have been satisfactorily explained. In the case of strong illumination, the effective cross section decreases by approximately 33% for irradiated Synechocystis cells as compared to untreated cells. Under moderate light, the irradiated Synechocystis cells showed in simulations the same cross section as the untreated cells. The thylakoid model renewed with state transitions description allowed simulation of fluorescence induction OJIP-SMT curves detected on time scale from microseconds to minutes.
Collapse
Affiliation(s)
- N E Belyaeva
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - A A Bulychev
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - K E Klementiev
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - V Z Paschenko
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - G Yu Riznichenko
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - A B Rubin
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
7
|
Guéra A, Gasulla F, Barreno E. Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. PHOTOSYNTHESIS RESEARCH 2016; 128:15-33. [PMID: 26482588 DOI: 10.1007/s11120-015-0196-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Lichens are poikilohydric symbiotic organisms that can survive in the absence of water. Photosynthesis must be highly regulated in these organisms, which live under continuous desiccation-rehydration cycles, to avoid photooxidative damage. Analysis of chlorophyll a fluorescence induction curves in the lichen microalgae of the Trebouxiophyceae Asterochloris erici and in Trebouxia jamesii (TR1) and Trebouxia sp. (TR9) phycobionts, isolated from the lichen Ramalina farinacea, shows differences with higher plants. In the presence of the photosynthetic electron transport inhibitor DCMU, the kinetics of Q(A) reduction is related to variable fluorescence by a sigmoidal function that approaches a horizontal asymptote. An excellent fit to these curves was obtained by applying a model based on the following assumptions: (1) after closure, the reaction centers (RCs) can be converted into "energy sink" centers (sRCs); (2) the probability of energy leaving the sRCs is very low or zero and (3) energy is not transferred from the antenna of PSII units with sRCs to other PSII units. The formation of sRCs units is also induced by repetitive light saturating pulses or at the transition from dark to light and probably requires the accumulation of reduced Q(A), as well as structural changes in the reaction centers of PSII. This type of energy sink would provide a very efficient way to protect symbiotic microalgae against abrupt changes in light intensity.
Collapse
Affiliation(s)
- Alfredo Guéra
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Edificio de Ciencias, Campus externo, 28871, Alcalá de Henares, Madrid, Spain.
| | - Francisco Gasulla
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Edificio de Ciencias, Campus externo, 28871, Alcalá de Henares, Madrid, Spain
- Botánica, ICBIBE, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Eva Barreno
- Botánica, ICBIBE, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
8
|
Zivcak M, Brestic M, Kunderlikova K, Olsovska K, Allakhverdiev SI. Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: Does activity of photosystem I play any role in OJIP rise? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:318-24. [PMID: 26388470 DOI: 10.1016/j.jphotobiol.2015.08.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 01/09/2023]
Abstract
Interpretation of the fast chlorophyll a fluorescence induction is still a subject of continuing discussion. One of the contentious issues is the influence of photosystem I (PSI) activity on the kinetics of the thermal JIP-phase of OJIP rise. To demonstrate this influence, we realized a series of measurements in wheat leaves subjected to PSI photoinactivation by the sequence of red saturation pulses (15,000 μmol photons m(-2) s(-1) for 0.3 s, every 10 s) applied in darkness. Such a treatment led to a moderate decrease of maximum quantum efficiency of PSII (by ~8%), but a strong decrease of the number of oxidizable PSI (by ~55%), which considerably limited linear electron transport and CO2 assimilation. Surprisingly, the PSI photoinactivation had low effects on OJIP kinetics of variable fluorescence. In particular, the amplitude of variable fluorescence of IP-step (ΔVIP), which has been considered to be a measure of PSI content, was not decreased, despite the low content of photooxidizable PSI. On the other hand, the slower relaxation of chlorophyll fluorescence after saturation pulse as well as the results of the double-hit method suggest that PSI inactivation treatment led to an increase of the fraction of QB-nonreducing PSII reaction centers. Our results somewhat challenge the mainstream interpretations of JIP-thermal phase, and at least suggest that the IP amplitude cannot serve to estimate reliably the PSI content or the PSI to PSII ratio. Moreover, these results recommend the use of the novel method of PSI inactivation, which might help clarify some important issues needed for the correct understanding of the OJIP fluorescence rise.
Collapse
Affiliation(s)
- Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Kristyna Kunderlikova
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Katarina Olsovska
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia.
| |
Collapse
|
9
|
Fisher N, Kramer DM. Non-photochemical reduction of thylakoid photosynthetic redox carriers in vitro: relevance to cyclic electron flow around photosystem I? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1837:1944-1954. [PMID: 25251244 DOI: 10.1016/j.bbabio.2014.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/07/2014] [Accepted: 09/14/2014] [Indexed: 01/17/2023]
Abstract
UNLABELLED Non-photochemical (dark) increases in chlorophyll a fluorescence yield associated with non-photochemical reduction of redox carriers (Fnpr) have been attributed to the reduction of plastoquinone (PQ) related to cyclic electron flow (CEF) around photosystem I. In vivo, this rise in fluorescence is associated with activity of the chloroplast plastoquinone reductase (plastid NAD(P)H plastoquinone oxidoreductase) complex. In contrast, this signal measured in isolated thylakoids has been attributed to the activity of the protein gradient regulation-5 (PGR5)/PGR5-like (PGRL1)-associated CEF pathway. Here, we report a systematic experimentation on the origin of Fnpr in isolated thylakoids. Addition of NADPH and ferredoxin to isolated spinach thylakoids resulted in the reduction of the PQ pool, but neither its kinetics nor its inhibitor sensitivities matched those of Fnpr. Notably, Fnpr was more rapid than PQ reduction, and completely insensitive to inhibitors of the PSII QB site and oxygen evolving complex as well as inhibitors of the cytochrome b6f complex. We thus conclude that Fnpr in isolated thylakoids is not a result of redox equilibrium with bulk PQ. Redox titrations and fluorescence emission spectra imply that Fnpr is dependent on the reduction of a low potential redox component (Em about − 340 mV) within photosystem II (PSII), and is likely related to earlier observations of low potential variants of QA within a subpopulation of PSII that is directly reducible by ferredoxin. The implications of these results for our understanding of CEF and other photosynthetic processes are discussed.
Collapse
Affiliation(s)
- Nicholas Fisher
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Vredenberg W. A simple routine for quantitative analysis of light and dark kinetics of photochemical and non-photochemical quenching of chlorophyll fluorescence in intact leaves. PHOTOSYNTHESIS RESEARCH 2015; 124:87-106. [PMID: 25739901 PMCID: PMC4368846 DOI: 10.1007/s11120-015-0097-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/10/2015] [Indexed: 05/09/2023]
Abstract
Paper describes principles and application of a novel routine that enables the quantitative analysis of the photochemical O-J phase of the variable fluorescence F v associated with the reversible photo-reduction of the secondary electron acceptor QA of photosystem II (PSII) in algae and intact leaves. The kinetic parameters that determine the variable fluorescence F (PP)(t) associated with the release of photochemical quenching are estimated from 10 µs time-resolved light-on and light-off responses of F v induced by two subsequent light pulses of 0.25 (default) and 1000 ms duration, respectively. Application of these pulses allows estimations of (i) the actual value of the rate constants k L and k AB of the light excitation (photoreduction of QA) and of the dark re-oxidation of photoreduced QA ([Formula: see text]), respectively, (ii) the actual maximal normalized variable fluorescence [nF v] associated with 100 % photoreduction of QA of open RCs, and (iii) the actual size β of RCs in which the re-oxidation of [Formula: see text] is largely suppressed (QB-nonreducing RC with k AB ~ 0). The rate constants of the dark reversion of Fv associated with the release of photo-electrochemical quenching F (PE) and photo-electric stimulation F (CET) in the successive J-I and I-P parts of the thermal phase are in the range of (100 ms)(-1) and (1 s)(-1), respectively. The kinetics of fluorescence changes during and after the I-P phase are given special attention in relation to the hypothesis on the involvement of a Δµ H+-dependent effect during this phase and thereafter. Paper closes with author's personal view on the demands that should be fulfilled for chlorophyll fluorescence methods being a correct and unchallenged signature of photosynthesis in algae and plants.
Collapse
Affiliation(s)
- Wim Vredenberg
- Department of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands,
| |
Collapse
|
11
|
Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli D, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. PHOTOSYNTHESIS RESEARCH 2014; 122:121-58. [PMID: 25119687 PMCID: PMC4210649 DOI: 10.1007/s11120-014-0024-6] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/02/2014] [Indexed: 05/18/2023]
Abstract
The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.
Collapse
Affiliation(s)
- Hazem M. Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Gert Schansker
- Avenue des Amazones 2, 1226 Chêne-Bougeries, Switzerland
| | - Richard J. Ladle
- Institute of Biological and Health Sciences, Federal University of Alagoas, Praça Afrânio Jorge, s/n, Prado, Maceió, AL Brazil
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dr. Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Karolina Bosa
- Department of Pomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Suleyman I. Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Filippo Bussotti
- Department of Agri-Food Production and Environmental Science (DISPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Angeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5, Moncada, 46113 Valencia, Spain
| | - Piotr Dąbrowski
- Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Nabil I. Elsheery
- Agricultural Botany Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, Via del Borghetto, 80, 56124 Pisa, Italy
| | | | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya University, Indore, 452 001 M.P India
| | - Amarendra N. Misra
- Centre for Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Ranchi, 835205 India
| | - Sergio G. Nebauer
- Departamento de Producción vegetal, Universitat Politècnica de València, C de Vera sn, 46022 Valencia, Spain
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Consuelo Penella
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5, Moncada, 46113 Valencia, Spain
| | - DorothyBelle Poli
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153 USA
| | - Martina Pollastrini
- Department of Agri-Food Production and Environmental Science (DISPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | | | - Beata Rutkowska
- Agricultural Chemistry Department, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - João Serôdio
- Departamento de Biologia, CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Kancherla Suresh
- Directorate of Oil Palm Research, West Godavari Dt., Pedavegi, 534 450 Andhra Pradesh India
| | - Wiesław Szulc
- Agricultural Chemistry Department, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Eduardo Tambussi
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata – Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, 327 La Plata, Argentina
| | - Marcos Yanniccari
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata – Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, 327 La Plata, Argentina
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
12
|
Schansker G, Tóth SZ, Holzwarth AR, Garab G. Chlorophyll a fluorescence: beyond the limits of the Q(A) model. PHOTOSYNTHESIS RESEARCH 2014; 120:43-58. [PMID: 23456268 DOI: 10.1007/s11120-013-9806-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/18/2013] [Indexed: 05/03/2023]
Abstract
Chlorophyll a fluorescence is a non-invasive tool widely used in photosynthesis research. According to the dominant interpretation, based on the model proposed by Duysens and Sweers (1963, Special Issue of Plant and Cell Physiology, pp 353-372), the fluorescence changes reflect primarily changes in the redox state of Q(A), the primary quinone electron acceptor of photosystem II (PSII). While it is clearly successful in monitoring the photochemical activity of PSII, a number of important observations cannot be explained within the framework of this simple model. Alternative interpretations have been proposed but were not supported satisfactorily by experimental data. In this review we concentrate on the processes determining the fluorescence rise on a dark-to-light transition and critically analyze the experimental data and the existing models. Recent experiments have provided additional evidence for the involvement of a second process influencing the fluorescence rise once Q(A) is reduced. These observations are best explained by a light-induced conformational change, the focal point of our review. We also want to emphasize that-based on the presently available experimental findings-conclusions on α/ß-centers, PSII connectivity, and the assignment of FV/FM to the maximum PSII quantum yield may require critical re-evaluations. At the same time, it has to be emphasized that for a deeper understanding of the underlying physical mechanism(s) systematic studies on light-induced changes in the structure and reaction kinetics of the PSII reaction center are required.
Collapse
Affiliation(s)
- Gert Schansker
- Institute of Plant Biology, Biological Research Center Szeged, Hungarian Academy of Sciences, Szeged, 6701, Hungary,
| | | | | | | |
Collapse
|
13
|
Vredenberg W, Prasil O. On the polyphasic quenching kinetics of chlorophyll a fluorescence in algae after light pulses of variable length. PHOTOSYNTHESIS RESEARCH 2013; 117:321-37. [PMID: 24046022 DOI: 10.1007/s11120-013-9917-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/26/2013] [Indexed: 05/24/2023]
Abstract
This study reports on kinetics of the fluorescence decay in a suspension of the alga Scenedesmus quadricauda after actinic illumination. These are monitored as the variable fluorescence signal in the dark following light pulses of variable intensity and duration. The decay reflects the restoration of chlorophyll fluorescence quenching of the photosystem II (PSII) antennas and shows a polyphasic pattern which suggests the involvement of different processes. The overall quenching curve after a fluorescence-saturating pulse (SP) of 250-ms duration, commonly used in pulse amplitude modulation applications as the tool for estimating the maximal fluorescence (F m), has been termed P-O, in which P and O have the same meaning as used in the OJIP induction curve in the light. Deconvolution of this signal shows at least three distinguishable exponential phases with reciprocal rate constants of the order of 10, 10(2), and 10(3) ms. The size of the long (>10(3) ms) and moderate (~10(2) ms) lasting components relative to the complete quenching signal after an SP increases with the duration of the actinic pulse concomitantly with an increase in the reciprocal rate constants of the fast (~10 ms) and moderate quenching phases. Fluorescence responses upon single turnover flashes of 30-μs duration (STFs) given at discrete times during the P-O quenching were used as tools for identifying the quencher involved in the P-O quenching phase preceding the STF excitation. Results are difficult to interpret in terms of a single-hit two-state trapping mechanism with distinguishable quenching properties of open and closed reaction centers only. They give support for an earlier hypothesis on a double-hit three-state trapping mechanism in which the so-called semi-closed reaction centers of PSII are considered. In these trapping-competent centers the single reduced acceptor pair [PheQ A](1-), depending on the size of photoelectrochemically induced pH effects on the Q B-binding site, functions as an efficient fluorescence quencher.
Collapse
Affiliation(s)
- Wim Vredenberg
- Department of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands,
| | | |
Collapse
|
14
|
Stirbet A. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. PHOTOSYNTHESIS RESEARCH 2012; 113:15-61. [PMID: 22810945 DOI: 10.1007/s11120-012-9754-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/29/2012] [Indexed: 05/03/2023]
Abstract
The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence rise during the thermal phase. However, we suggest that some of the factors influencing the fluorescence yield that have been proposed in these newer theories, as e.g., the membrane potential ΔΨ, as suggested by Vredenberg and his associates, can potentially contribute to modulate the O-J-I-P transient in parallel with the reduction of Q(A), through changes at the PSII antenna and/or at the reaction center, or, possibly, through the control of the oxidation-reduction of the PQ-pool, including proton transfer into the lumen, as suggested by Rubin and his associates. We present in this review our personal perspective mainly on our understanding of the thermal phase, the J-I-P rise during Chl a FI in plants and algae.
Collapse
|
15
|
Vredenberg W, Durchan M, Prášil O. The analysis of PS II photochemical activity using single and multi-turnover excitations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 107:45-54. [DOI: 10.1016/j.jphotobiol.2011.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/18/2011] [Accepted: 11/29/2011] [Indexed: 11/16/2022]
|
16
|
van Rensen JJS, Vredenberg WJ. Adaptation of photosystem II to high and low light in wild-type and triazine-resistant Canola plants: analysis by a fluorescence induction algorithm. PHOTOSYNTHESIS RESEARCH 2011; 108:191-200. [PMID: 21877236 PMCID: PMC3170478 DOI: 10.1007/s11120-011-9680-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/11/2011] [Indexed: 05/12/2023]
Abstract
Plants of wild-type and triazine-resistant Canola (Brassica napus L.) were exposed to very high light intensities and after 1 day placed on a laboratory table at low light to recover, to study the kinetics of variable fluorescence after light, and after dark-adaptation. This cycle was repeated several times. The fast OJIP fluorescence rise curve was measured immediately after light exposure and after recovery during 1 day in laboratory room light. A fluorescence induction algorithm has been used for resolution and analysis of these curves. This algorithm includes photochemical and photo-electrochemical quenching release components and a photo-electrical dependent IP-component. The analysis revealed a substantial suppression of the photo-electrochemical component (even complete in the resistant biotype), a partial suppression of the photochemical component and a decrease in the fluorescence parameter F (o) after high light. These effects were recovered after 1 day in the indoor light.
Collapse
Affiliation(s)
- Jack J S van Rensen
- Laboratory of Plant Physiology, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | | |
Collapse
|
17
|
The development of microalgal biotechnology in the Czech Republic. J Ind Microbiol Biotechnol 2010; 37:1307-17. [PMID: 21086106 DOI: 10.1007/s10295-010-0802-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 07/30/2010] [Indexed: 10/18/2022]
Abstract
Microscopic algae and cyanobacteria are excellent sources of numerous compounds, from raw biomass rich in proteins, oils, and antioxidants to valuable secondary metabolites with potential medical use. In the former Czechoslovakia, microalgal biotechnology developed rapidly in the 1960s with the main aim of providing industrial, high-yield sources of algal biomass. Unique cultivation techniques that are still in use were successfully developed and tested. Gradually, the focus changed from bulk production to more sophisticated use of microalgae, including production of bioactive compounds. Along the way, better understanding of the physiology and cell biology of productive microalgal strains was achieved. Currently, microalgae are in the focus again, mostly as possible sources of bioactive compounds and next-generation biofuels for the 21st century.
Collapse
|
18
|
Vredenberg W. Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems. Biosystems 2010; 103:138-51. [PMID: 21070830 DOI: 10.1016/j.biosystems.2010.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/28/2022]
Abstract
In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with multi-turnover pulses (MTFs) of variable intensity and duration. These analyses have led to definition and formulation of rate equations that describe the sequence of primary linear electron transfer (LET) steps in photosystem II (PSII) and of cyclic electron transport (CET) in PSI. The model considers heterogeneity in PSII reaction centers (RCs) associated with the S-states of the OEC and incorporates in a dark-adapted state the presence of a 15-35% fraction of Q(B)-nonreducing RCs that probably is identical with the S₀ fraction. The fluorescence induction algorithm (FIA) in the 10 μs-1s excitation time range considers a photochemical O-J-D, a photo-electrochemical J-I and an I-P phase reflecting the response of the variable fluorescence to the electric trans-thylakoid potential generated by the proton pump fuelled by CET in PSI. The photochemical phase incorporates the kinetics associated with the double reduction of the acceptor pair of pheophytin (Phe) and plastoquinone Q(A) [PheQ(A)] in Q(B) nonreducing RCs and the associated doubling of the variable fluorescence, in agreement with the three-state trapping model (TSTM) of PS II. The decline in fluorescence emission during the so called SMT in the 1-100s excitation time range, known as the Kautsky curve, is shown to be associated with a substantial decrease of CET-powered proton efflux from the stroma into the chloroplast lumen through the ATPsynthase of the photosynthetic machinery.
Collapse
Affiliation(s)
- Wim Vredenberg
- Dept. of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
19
|
Vredenberg WJ, Bulychev AA. Photoelectrochemical control of the balance between cyclic- and linear electron transport in photosystem I. Algorithm for P700+ induction kinetics. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1521-32. [PMID: 20359461 DOI: 10.1016/j.bbabio.2010.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/21/2022]
Abstract
Redox transients of chlorophyll P700, monitored as absorbance changes DeltaA810, were measured during and after exclusive PSI excitation with far-red (FR) light in pea (Pisum sativum, cv. Premium) leaves under various pre-excitation conditions. Prolonged adaptation in the dark terminated by a short PSII+PSI- exciting light pulse guarantees pre-conditions in which the initial photochemical events in PSI RCs are carried out by cyclic electron transfer (CET). Pre-excitation with one or more 10s FR pulses creates conditions for induction of linear electron transport (LET). These converse conditions give rise to totally different, but reproducible responses of P700- oxidation. System analyses of these responses were made based on quantitative solutions of the rate equations dictated by the associated reaction scheme for each of the relevant conditions. These provide the mathematical elements of the P700 induction algorithm (PIA) with which the distinguishable components of the P700+ response can be resolved and interpreted. It enables amongst others the interpretation and understanding of the characteristic kinetic profile of the P700+ response in intact leaves upon 10s illumination with far-red light under the promotive condition for CET. The system analysis provides evidence that this unique kinetic pattern with a non-responsive delay followed by a steep S-shaped signal increase is caused by a photoelectrochemically controlled suppression of the electron transport from Fd to the PQ-reducing Qr site of the cytb6f complex in the cyclic pathway. The photoelectrochemical control is exerted by the PSI-powered proton pump associated with CET. It shows strong similarities with the photoelectrochemical control of LET at the acceptor side of PSII which is reflected by release of photoelectrochemical quenching of chlorophyll a fluorescence.
Collapse
Affiliation(s)
- Wim J Vredenberg
- Department of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
| | | |
Collapse
|
20
|
Van Rensen JJS, Vredenberg WJ. Higher concentration of Q(B)-nonreducing photosystem II centers in triazine-resistant Chenopodium album plants as revealed by analysis of chlorophyll fluorescence kinetics. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1616-1623. [PMID: 19477550 DOI: 10.1016/j.jplph.2009.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 05/26/2023]
Abstract
Plants resistant to triazine-type herbicides are known to be altered in their photosystem II reaction center. Serine at site 264 in D1 protein is replaced by glycine. The measurements of chlorophyll a fluorescence excitations with a variable number of saturating flashes in Chenopodium album plants show characteristic differences between the resistant and the wild-type plants. These differences appear in response to the first flash as well as in the rise pattern of subsequent flashes of a 12.5 Hz flash train. The differences indicate a higher concentration of Q(B)-nonreducing reaction centers in the resistant biotype, and confirm earlier results on a slower rate of electron transport between the primary and secondary electron acceptors.
Collapse
Affiliation(s)
- Jack J S Van Rensen
- Laboratory of Plant Physiology, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | | |
Collapse
|
21
|
Vredenberg WJ. Kinetic models of photosystem II should accommodate the effect of donor side quenching on variable chlorophyll A fluorescence in the microseconds time range. PHOTOSYNTHESIS RESEARCH 2009; 102:99-101. [PMID: 19636807 PMCID: PMC2755756 DOI: 10.1007/s11120-009-9477-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 07/13/2009] [Indexed: 05/12/2023]
Abstract
Quantitative data on laser flash-induced variable fluorescence in the 100 ns to 1 ms time range (Belyaeva et al. in Photosynth Res 98:105-119, 2008) confirming those of others (Steffen et al. in Biochemistry 40:173-180, 2001, Biochemistry 44:3123-3132, 2005; Belyaeva et al. in Biophysics 51(6):976-990, 2006), need a substantial correction with respect to magnitude of the normalized variable fluorescence associated with single turnover-induced charge separation in RCs of PS II. Their data are conclusive with the involvement of donor side quenching, the release of which occurs with a rate constant in the range of tens of ms(-1), and presumed to be associated with reduction of Y(+)(z) by the OEC.
Collapse
Affiliation(s)
- Wim J. Vredenberg
- Department of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
22
|
Vredenberg W, Durchan M, Prásil O. Photochemical and photoelectrochemical quenching of chlorophyll fluorescence in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1468-78. [PMID: 19576167 DOI: 10.1016/j.bbabio.2009.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 11/19/2022]
Abstract
This paper deals with kinetics and properties of variable fluorescence in leaves and thylakoids upon excitation with low intensity multi-turnover actinic light pulses corresponding with an excitation rate of about 10 Hz. These show a relatively small and amply documented rise in the sub-s time range towards the plateau level F(pl) followed by a delayed and S-shaped rise towards a steady state level F(m) which is between three and four fold the initial dark fluorescence level F(o). Properties of this retarded slow rise are i) rate of dark recovery is (1-6 s)(-1), ii) suppression by low concentration of protonophores, iii) responsiveness to complementary single turnover flash excitation with transient amplitude towards a level F(m) which is between five and six fold the initial dark fluorescence level F(o) and iv) in harmony with and quantitatively interpretable in terms of a release of photoelectrochemical quenching controlled by the trans-thylakoid proton pump powered by the light-driven Q cycle. Data show evidence for a sizeable fluorescence increase upon release of (photo) electrochemical quenching, defined as qPE. Release of qPE occurs independent of photochemical quenching defined here as qPP even under conditions at which qPP = 1. The term photochemical quenching, hitherto symbolized by qP, will require a new definition, because it incorporates in its present form a sizeable photoelectrochemical component. The same is likely to be true for definition and use of qN as an indicator of non photochemical quenching.
Collapse
Affiliation(s)
- Wim Vredenberg
- Department of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
| | | | | |
Collapse
|
23
|
Rubin A, Riznichenko G. Modeling of the Primary Processes in a Photosynthetic Membrane. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Modeling of Chlorophyll a Fluorescence Kinetics in Plant Cells: Derivation of a Descriptive Algorithm. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Response to Kinetic Models of Photosystem II Should Incorporate a Role for QB-Nonreducing Reaction Centers. Biophys J 2008. [DOI: 10.1529/biophysj.108.135566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Kinetic models of photosystem II should incorporate a role for QB-nonreducing reaction centers. Biophys J 2008; 95:3113-4; author reply 3115-6. [PMID: 18599639 DOI: 10.1529/biophysj.108.135426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Vredenberg WJ. Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 96:83-97. [PMID: 18197465 DOI: 10.1007/s11120-007-9287-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 12/21/2007] [Indexed: 05/24/2023]
Abstract
The fluorescence induction F(t) of dark-adapted chloroplasts has been studied in multi-turnover 1 s light flashes (MTFs). A theoretical expression for the initial fluorescence rise is derived from a set of rate equations that describes the sequence of transfer steps associated with the reduction of the primary quinone acceptor Q (A) and the release of photochemical fluorescence quenching of photosystem II (PSII). The initial F(t) rise in the hundreds of mus time range is shown to follow the theoretical function dictated by the rate constants of light excitation (k (L)) and release of donor side quenching (k ( si )). The bi-exponential function shows sigmoidicity when one of the two rate constants differs by less than one order of magnitude from the other. It is shown, in agreement with the theory, that the sigmoidicity of the fluorescence rise is variable with light intensity and mainly, if not exclusively, determined by the ratio between rate of light excitation and the rate constant of donor side quenching release.
Collapse
Affiliation(s)
- Wim J Vredenberg
- Department of Plant Physiology, Wageningen University and Research (WUR), Arboretumlaan 4, 6703 BD Wageningen, The Netherlands.
| |
Collapse
|
28
|
Algorithm for analysis of OJDIP fluorescence induction curves in terms of photo- and electrochemical events in photosystems of plant cells: derivation and application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 91:58-65. [PMID: 18329277 DOI: 10.1016/j.jphotobiol.2008.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 11/21/2022]
Abstract
The algorithm for simulation of the OJDIP fluorescence induction curve in chloroplasts under variable conditions is presented. It is derived from analyzes of chlorophyll a fluorescence kinetics upon excitation with single- (STF), twin- (TTF) and repetitive STF excitations, and from the rate equations that describe the sequence of transfer steps associated with the reduction of the primary quinone acceptor Q(A) and the release of photochemical fluorescence quenching of photosystem II (PSII) in multi-turnover excitation (MTF). The fluorescence induction algorithm (FIA) considers a photochemical O-J-D, a photo-electrochemical J-I and an I-P component (phase) which probably is associated with a photo-electric interaction between PSI and PSII. The photochemical phase incorporates the kinetics associated with the double reduction of the acceptor pair [PheQ(A)] in Q(B)-nonreducing reaction centers (RCs) and the associated doubling of the variable fluorescence, in agreement with the three-state trapping model (TSTM) of PSII. Application of and results with the algorithm are illustrated for MTF-induced OJDIP curves, measured in dark-adapted, in STF pre-excited and in DCMU inhibited thylakoids.
Collapse
|
29
|
Papageorgiou GC, Tsimilli-Michael M, Stamatakis K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. PHOTOSYNTHESIS RESEARCH 2007; 94:275-90. [PMID: 17665151 DOI: 10.1007/s11120-007-9193-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/03/2007] [Indexed: 05/16/2023]
Abstract
The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the mus-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 --> 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 --> 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS-containing cyanobacteria.
Collapse
Affiliation(s)
- George C Papageorgiou
- National Center for Scientific Research Demokritos, Institute of Biology, Athens, 153 10, Greece.
| | | | | |
Collapse
|
30
|
Garstka M, Venema JH, Rumak I, Gieczewska K, Rosiak M, Koziol-Lipinska J, Kierdaszuk B, Vredenberg WJ, Mostowska A. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature. PLANTA 2007; 226:1165-81. [PMID: 17569078 DOI: 10.1007/s00425-007-0562-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 05/24/2007] [Indexed: 05/15/2023]
Abstract
The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements.
Collapse
Affiliation(s)
- Maciej Garstka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vredenberg W, Durchan M, Prasil O. On the chlorophyll a fluorescence yield in chloroplasts upon excitation with twin turnover flashes (TTF) and high frequency flash trains. PHOTOSYNTHESIS RESEARCH 2007; 93:183-92. [PMID: 17486427 DOI: 10.1007/s11120-007-9150-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 02/19/2007] [Indexed: 05/15/2023]
Abstract
Chlorophyll fluorescence is routinely taken as a quantifiable measure of the redox state of the primary quinone acceptor Q(A) of PSII. The variable fluorescence in thylakoids increases in a single turnover flash (STF) from its low dark level F (o) towards a maximum F (m) (STF) when Q(A) becomes reduced. We found, using twin single turnover flashes (TTFs) that the fluorescence increase induced by the first twin-partner is followed by a 20-30% increase when the second partner is applied within 20-100 micros after the first one. The amplitude of the twin response shows a period-of-four oscillation associated with the 4-step oxidation of water in the Kok cycle (S states) and originates from two different trapped states with a life time of 0.2-0.4 and 2-5 ms, respectively. The oscillation is supplemented with a binary oscillation associated with the two-electron gate mechanism at the PSII acceptor side. The F(t) response in high frequency flash trains (1-4 kHz) shows (i) in the first 3-4 flashes a transient overshoot 20-30% above the F (m) (STF) = 3*F (o) level reached in the 1st flash with a partial decline towards a dip D in the next 2-3 ms, independent of the flash frequency, and (ii) a frequency independent rise to F (m) = 5*F (o) in the 3-60 ms time range. The initial overshoot is interpreted to be due to electron trapping in the S(0) fraction with Q(B)-nonreducing centers and the dip to the subsequent recovery accompanying the reoxidation of the double reduced acceptor pair in these RCs after trapping. The rise after the overshoot is, in agreement with earlier findings, interpreted to indicate a photo-electrochemical control of the chlorophyll fluorescence yield of PSII. It is anticipated that the double exciton and electron trapping property of PSII is advantageous for the plant. It serves to alleviate the depression of electron transport in single reduced Q(B)-nonreducing RCs, associated with electrochemically coupled proton transport, by an increased electron trapping efficiency in these centers.
Collapse
Affiliation(s)
- Wim Vredenberg
- Laboratory of Plant Physiology, Wageningen University and Research, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands.
| | | | | |
Collapse
|