1
|
Zhou T, Abe M, Zhang Y, Kudoh S, Mafuné F. Dissociative Adsorption of Water on CaMn 4O 5 Cationic Clusters. J Phys Chem A 2022; 126:8218-8224. [DOI: 10.1021/acs.jpca.2c06103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tianyue Zhou
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Manami Abe
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yufei Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoshi Kudoh
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Fumitaka Mafuné
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Ibrahim M, Fransson T, Chatterjee R, Cheah MH, Hussein R, Lassalle L, Sutherlin KD, Young ID, Fuller FD, Gul S, Kim IS, Simon PS, de Lichtenberg C, Chernev P, Bogacz I, Pham CC, Orville AM, Saichek N, Northen T, Batyuk A, Carbajo S, Alonso-Mori R, Tono K, Owada S, Bhowmick A, Bolotovsky R, Mendez D, Moriarty NW, Holton JM, Dobbek H, Brewster AS, Adams PD, Sauter NK, Bergmann U, Zouni A, Messinger J, Kern J, Yachandra VK, Yano J. Untangling the sequence of events during the S 2 → S 3 transition in photosystem II and implications for the water oxidation mechanism. Proc Natl Acad Sci U S A 2020; 117:12624-12635. [PMID: 32434915 PMCID: PMC7293653 DOI: 10.1073/pnas.2000529117] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | - Thomas Fransson
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Mun Hon Cheah
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Rana Hussein
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | - Louise Lassalle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kyle D Sutherlin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Iris D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Franklin D Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Casper de Lichtenberg
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, SE 90187 Umeå, Sweden
| | - Petko Chernev
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Cindy C Pham
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Allen M Orville
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, OX11 0FA Didcot, United Kingdom
| | - Nicholas Saichek
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Trent Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Sergio Carbajo
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, 679-5198 Hyogo, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, 679-5148 Hyogo, Japan
| | - Shigeki Owada
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, 679-5198 Hyogo, Japan
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Robert Bolotovsky
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Derek Mendez
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - James M Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Holger Dobbek
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Paul D Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany;
| | - Johannes Messinger
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden;
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, SE 90187 Umeå, Sweden
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
| |
Collapse
|
3
|
Calcium, conformational selection, and redox-active tyrosine YZ in the photosynthetic oxygen-evolving cluster. Proc Natl Acad Sci U S A 2018; 115:5658-5663. [PMID: 29752381 DOI: 10.1073/pnas.1800758115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In Photosystem II (PSII), YZ (Tyr161D1) participates in radical transfer between the chlorophyll donor and the Mn4CaO5 cluster. Under flashing illumination, the metal cluster cycles among five Sn states, and oxygen is evolved from water. The essential YZ is transiently oxidized and reduced on each flash in a proton-coupled electron transfer (PCET) reaction. Calcium is required for function. Of reconstituted divalent ions, only strontium restores oxygen evolution. YZ is predicted to hydrogen bond to calcium-bound water and to His190D1 in PSII structures. Here, we report a vibrational spectroscopic study of YZ radical and singlet in the presence of the metal cluster. The S2 state is trapped by illumination at 190 K; flash illumination then generates the S2YZ radical. Using reaction-induced FTIR spectroscopy and divalent ion depletion/substitution, we identify calcium-sensitive tyrosyl radical and tyrosine singlet bands in the S2 state. In calcium-containing PSII, two CO stretching bands are detected at 1,503 and 1,478 cm-1 These bands are assigned to two different radical conformers in calcium-containing PSII. At pH 6.0, the 1,503-cm-1 band shifts to 1,507 cm-1 in strontium-containing PSII, and the band is reduced in intensity in calcium-depleted PSII. These effects are consistent with a hydrogen-bonding interaction between the calcium site and one conformer of radical YZ. Analysis of the amide I region indicates that calcium selects for a PCET reaction in a subset of the YZ conformers, which are trapped in the S2 state. These results support the interpretation that YZ undergoes a redox-coupled conformational change, which is calcium dependent.
Collapse
|
4
|
Semin BK, Davletshina LN, Mamedov MD. Effect of different methods of Ca 2+ extraction from PSII oxygen-evolving complex on the Q A- oxidation kinetics. PHOTOSYNTHESIS RESEARCH 2018; 136:83-91. [PMID: 28895009 DOI: 10.1007/s11120-017-0441-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Lumenal extrinsic proteins PsbO, PsbP, and PsbQ of photosystem II (PSII) protect the catalytic cluster Mn4CaO5 of oxygen-evolving complex (OEC) from the bulk solution and from soluble compounds in the surrounding medium. Extraction of PsbP and PsbQ proteins by NaCl-washing together with chelator EGTA is followed also by the depletion of Ca2+ cation from OEC. In this study, the effects of PsbP and PsbQ proteins, as well as Ca2+ extraction from OEC on the kinetics of the reduced primary electron acceptor (QA-) oxidation, have been studied by fluorescence decay kinetics measurements in PSII membrane fragments. We found that in addition to the impairment of OEC, removal of PsbP and PsbQ significantly slows the rate of electron transfer from QA- to the secondary quinone acceptor QB. Electron transfer from QA- to QB in photosystem II membranes with an occupied QB site was slowed down by a factor of 8. However, addition of EGTA or CaCl2 to NaCl-washed PSII did not change the kinetics of fluorescence decay. Moreover, the kinetics of QA- oxidation by QB in Ca-depleted PSII membranes obtained by treatment with citrate buffer at pH 3.0 (such treatment keeps all extrinsic proteins in PSII but extracts Ca2+ from OEC) was not changed. The results obtained indicate that the effect of NaCl-washing on the QA- to QB electron transport is due to PsbP and PsbQ extrinsic proteins extraction, but not due to Ca2+ depletion.
Collapse
Affiliation(s)
- Boris K Semin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Lira N Davletshina
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
5
|
Mamedov MD, Petrova IO, Yanykin DV, Zaspa AA, Semenov AY. Effect of trehalose on oxygen evolution and electron transfer in photosystem 2 complexes. BIOCHEMISTRY (MOSCOW) 2015; 80:61-6. [DOI: 10.1134/s0006297915010071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Shen JR. The Structure of Photosystem II and the Mechanism of Water Oxidation in Photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:23-48. [PMID: 25746448 DOI: 10.1146/annurev-arplant-050312-120129] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Oxygenic photosynthesis forms the basis of aerobic life on earth by converting light energy into biologically useful chemical energy and by splitting water to generate molecular oxygen. The water-splitting and oxygen-evolving reaction is catalyzed by photosystem II (PSII), a huge, multisubunit membrane-protein complex located in the thylakoid membranes of organisms ranging from cyanobacteria to higher plants. The structure of PSII has been analyzed at 1.9-Å resolution by X-ray crystallography, revealing a clear picture of the Mn4CaO5 cluster, the catalytic center for water oxidation. This article provides an overview of the overall structure of PSII followed by detailed descriptions of the specific structure of the Mn4CaO5 cluster and its surrounding protein environment. Based on the geometric organization of the Mn4CaO5 cluster revealed by the crystallographic analysis, in combination with the results of a vast number of experimental studies involving spectroscopic and other techniques as well as various theoretical studies, the article also discusses possible mechanisms for water splitting that are currently under consideration.
Collapse
Affiliation(s)
- Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan;
| |
Collapse
|
7
|
Belatik A, Joly D, Hotchandani S, Carpentier R. Re-evaluation of the side effects of cytochrome b6f inhibitor dibromothymoquinone on photosystem II excitation and electron transfer. PHOTOSYNTHESIS RESEARCH 2013; 117:489-496. [PMID: 23377902 DOI: 10.1007/s11120-013-9798-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
Dibromothymoquinone (DBMIB) has been used as a specific inhibitor of plastoquinol oxidation at the Q0 binding site of the cytochrome b6f complex for 40 years. It is thought to suppress electron transfer between photosystem (PS) II and I, as well as cyclic electron transfer around PSI. However, DBMIB has also been reported to act as a quencher of chlorophyll excited states. In this study, we have re-evaluated the effects of DBMIB on chlorophyll excited states and PSII photochemistry. The results show that DBMIB significantly quenches the chlorophyll excited states of PSII antenna even at low concentration (from 0.1 μM), lowering the effective excitation rate of the actinic light. It also acts as a potent PSII electron acceptor retarding the reduction of the plastoquinone pool with almost maximal potency at 2 μM. Altogether, these results suggest that experiments using DBMIB can easily be misinterpreted and stress on the importance of taking into account all these side effects that occur in the same range of DBMIB concentration used for inhibition of plastoquinol oxidation (1 μM).
Collapse
Affiliation(s)
- Ahmed Belatik
- Groupe de Recherche en Biologie Végétale, Département de Chimie-Biologie, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | | | | | | |
Collapse
|
8
|
Petrova IO, Kurashov VN, Zaspa AA, Semenov AY, Mamedov MD. Vectorial charge transfer reactions on the donor side of manganese-depleted and reconstituted photosystem 2 core complexes. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:395-402. [PMID: 23590442 DOI: 10.1134/s0006297913040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The light-induced functioning of photosystem 2 (PS 2) is directly linked to the translocation of both electrons and protons across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). Generation of ΔΨ due to S-state transitions of the water oxidation complex was demonstrated for the first time in Mn-depleted and reconstituted PS 2 core complexes incorporated into liposomes. The kinetics and relative amplitudes of the electrogenic reactions in dark-adapted samples during S1→S2, S2→S3, and S4→S0 transitions in response to the first, second and third laser flashes were comparable to those obtained in the intact PS 2 core particles. These results expand current understanding of the nature and mechanisms of electrogenic (vectorial) reactions due to a charge transfer on the donor side of PS 2.
Collapse
Affiliation(s)
- I O Petrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | | | | | | |
Collapse
|
9
|
Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 2013; 3:849-915. [PMID: 23720333 PMCID: PMC3926130 DOI: 10.1002/cphy.c120003] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | |
Collapse
|
10
|
Mamedov MD, Kurashov VN, Petrova IO, Semenov AY. Transmembrane electric potential difference in the protein-pigment complex of photosystem 2. BIOCHEMISTRY. BIOKHIMIIA 2012; 77:947-955. [PMID: 23157254 DOI: 10.1134/s0006297912090015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The protein-pigment complex of photosystem 2 (PS2) localized in the thylakoid membranes of higher plants, algae, and cyanobacteria is the main source of oxygen on Earth. The light-induced functioning of PS2 is directly linked to electron and proton transfer across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). The major contribution to ΔΨ of the PS2 reaction center is due to charge separation between the primary chlorophyll donor P(680) and the quinone acceptor Q(A), accompanied by re-reduction of P(680)(+) by the redox-active tyrosine residue Y(Z). The processes associated with the uptake and release of protons on the acceptor and donor sides of the enzyme, respectively, are also coupled with ΔΨ generation. The objective of this work was to describe the mechanisms of ΔΨ generation associated with the S-state transitions of the water-oxidizing complex in intact PS2 complex and in PS2 preparation depleted of Mn(4)Ca cluster in the presence of artificial electron donors. The findings elucidate the mechanisms of electrogenic reactions on the PS2 donor side and may be a basis for development of an effective solar energy conversion system.
Collapse
Affiliation(s)
- M D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | | | | |
Collapse
|
11
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1125] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
12
|
Renger G. Mechanism of light induced water splitting in Photosystem II of oxygen evolving photosynthetic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1164-76. [PMID: 22353626 DOI: 10.1016/j.bbabio.2012.02.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/27/2012] [Accepted: 02/05/2012] [Indexed: 11/24/2022]
Abstract
The reactions of light induced oxidative water splitting were analyzed within the framework of the empirical rate constant-distance relationship of non-adiabatic electron transfer in biological systems (C. C. Page, C. C. Moser, X. Chen , P. L. Dutton, Nature 402 (1999) 47-52) on the basis of structure information on Photosystem II (PS II) (A. Guskov, A. Gabdulkhakov, M. Broser, C. Glöckner, J. Hellmich, J. Kern, J. Frank, W. Saenger, A. Zouni, Chem. Phys. Chem. 11 (2010) 1160-1171, Y. Umena, K. Kawakami, J-R Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 47 (2011) 55-60). Comparison of these results with experimental data leads to the following conclusions: 1) The oxidation of tyrosine Y(z) by the cation radical P680(+·) in systems with an intact water oxidizing complex (WOC) is kinetically limited by the non-adiabatic electron transfer step and the extent of this reaction is thermodynamically determined by relaxation processes in the environment including rearrangements of hydrogen bond network(s). In marked contrast, all Y(z)(ox) induced oxidation steps in the WOC up to redox state S(3) are kinetically limited by trigger reactions which are slower by orders of magnitude than the rates calculated for non-adiabatic electron transfer. 3) The overall rate of the triggered reaction sequence of Y(z)(ox) reduction by the WOC in redox state S(3) eventually leading to formation and release of O(2) is kinetically limited by an uphill electron transfer step. Alternative models are discussed for this reaction. The protein matrix of the WOC and bound water molecules provide an optimized dynamic landscape of hydrogen bonded protons for catalyzing oxidative water splitting energetically driven by light induced formation of the cation radical P680(+·). In this way the PS II core acts as a molecular machine formed during a long evolutionary process. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
13
|
Light induced oxidative water splitting in photosynthesis: Energetics, kinetics and mechanism. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:35-43. [DOI: 10.1016/j.jphotobiol.2011.01.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/20/2022]
|
14
|
Gauthier A, Joly D, Boisvert S, Carpentier R. Period-four Modulation of Photosystem II Primary Quinone Acceptor (QA) Reduction/Oxidation Kinetics in Thylakoid Membranes. Photochem Photobiol 2010; 86:1064-70. [DOI: 10.1111/j.1751-1097.2010.00765.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Low-temperature electron transfer suggests two types of QA in intact photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:339-46. [DOI: 10.1016/j.bbabio.2009.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 11/23/2022]
|
16
|
Ren Y, Zhang C, Bao H, Shen J, Zhao J. Probing tyrosine Z oxidation in Photosystem II core complex isolated from spinach by EPR at liquid helium temperatures. PHOTOSYNTHESIS RESEARCH 2009; 99:127-138. [PMID: 19214772 DOI: 10.1007/s11120-009-9410-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Tyrosine Z (Tyr(Z)) oxidation observed at liquid helium temperatures provides new insights into the structure and function of Tyr(Z) in active Photosystem II (PSII). However, it has not been reported in PSII core complex from higher plants. Here, we report Tyr(Z) oxidation in the S(1) and S(2) states in PSII core complex from spinach for the first time. Moreover, we identified a 500 G-wide symmetric EPR signal (peak position g = 2.18, trough position g = 1.85) together with the g = 2.03 signal induced by visible light at 10 K in the S(1) state in the PSII core complex. These two signals decay with a similar rate in the dark and both disappear in the presence of 6% methanol. We tentatively assign this new feature to the hyperfine structure of the S(1)Tyr(Z)(*) EPR signal. Furthermore, EPR signals of the S(2) state of the Mn-cluster, the oxidation of the non-heme iron, and the S(1)Tyr(Z)(*) in PSII core complexes and PSII-enriched membranes from spinach are compared, which clearly indicate that both the donor and acceptor sides of the reaction center are undisturbed after the removal of LHCII. These results suggest that the new spinach PSII core complex is suitable for the electron transfer study of PSII at cryogenic temperatures.
Collapse
Affiliation(s)
- Yanan Ren
- Laboratory of Photochemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
17
|
Wydrzynski TJ. Water splitting by Photosystem II--where do we go from here? PHOTOSYNTHESIS RESEARCH 2008; 98:43-51. [PMID: 19037741 DOI: 10.1007/s11120-008-9391-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/10/2008] [Indexed: 05/27/2023]
Abstract
As this special issue shows, we know quite a lot about the workings of Photosystem II and the oxidation of water to molecular O(2). However, there are still many questions and details that remain to be answered. In this article, I very briefly outline some aspects of Photosystem II electron transport that are crucial for the efficient oxidation of water and require further studies. To fully understand Photosystem II reactions is not only a satisfying intellectual pursuit, but is also an important goal as we develop new solar technologies for the splitting of water into pure O(2) and H(2) for use as a potential fuel source. "As Students of the Past, We Send Greetings to the Students of the Future".
Collapse
Affiliation(s)
- Thomas J Wydrzynski
- School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberrra, ACT 0200, Australia.
| |
Collapse
|
18
|
Renger G, Renger T. Photosystem II: The machinery of photosynthetic water splitting. PHOTOSYNTHESIS RESEARCH 2008; 98:53-80. [PMID: 18830685 DOI: 10.1007/s11120-008-9345-7] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
This review summarizes our current state of knowledge on the structural organization and functional pattern of photosynthetic water splitting in the multimeric Photosystem II (PS II) complex, which acts as a light-driven water: plastoquinone-oxidoreductase. The overall process comprises three types of reaction sequences: (1) photon absorption and excited singlet state trapping by charge separation leading to the ion radical pair [Formula: see text] formation, (2) oxidative water splitting into four protons and molecular dioxygen at the water oxidizing complex (WOC) with P680+* as driving force and tyrosine Y(Z) as intermediary redox carrier, and (3) reduction of plastoquinone to plastoquinol at the special Q(B) binding site with Q(A)-* acting as reductant. Based on recent progress in structure analysis and using new theoretical approaches the mechanism of reaction sequence (1) is discussed with special emphasis on the excited energy transfer pathways and the sequence of charge transfer steps: [Formula: see text] where (1)(RC-PC)* denotes the excited singlet state (1)P680* of the reaction centre pigment complex. The structure of the catalytic Mn(4)O(X)Ca cluster of the WOC and the four step reaction sequence leading to oxidative water splitting are described and problems arising for the electronic configuration, in particular for the nature of redox state S(3), are discussed. The unravelling of the mode of O-O bond formation is of key relevance for understanding the mechanism of the process. This problem is not yet solved. A multistate model is proposed for S(3) and the functional role of proton shifts and hydrogen bond network(s) is emphasized. Analogously, the structure of the Q(B) site for PQ reduction to PQH(2) and the energetic and kinetics of the two step redox reaction sequence are described. Furthermore, the relevance of the protein dynamics and the role of water molecules for its flexibility are briefly outlined. We end this review by presenting future perspectives on the water oxidation process.
Collapse
Affiliation(s)
- Gernot Renger
- Max Volmer Laboratory for Biophysical Chemistry, Berlin Institute of Technology, Berlin, Germany.
| | | |
Collapse
|
19
|
Bao H, Zhang C, Kawakami K, Ren Y, Shen JR, Zhao J. Acceptor side effects on the electron transfer at cryogenic temperatures in intact photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1109-15. [DOI: 10.1016/j.bbabio.2008.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
|
20
|
Evidence for intermediate S-states as initial phase in the process of oxygen-evolving complex oxidation. Biophys J 2008; 94:2725-36. [PMID: 18178650 DOI: 10.1529/biophysj.107.122861] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have analyzed flash-induced period-four damped oscillation of oxygen evolution and chlorophyll fluorescence with the aid of a kinetic model of photosystem II. We have shown that, for simulation of the period-four oscillatory behavior of oxygen evolution, it is essential to consider the so-called intermediate S-state as an initial phase of each of the S(n)-S(n+1), (n = 0, 1, 2, 3) transitions. The intermediate S-states are defined as [S(n)Y(Z)(ox)]-states (n = 0, 1, 2, 3) and are formed with rate constant k(iSn) approximately 1.5 x 10(6) s(-1), which was determined from comparison of theoretical predictions with experimental data. The assumed intermediate S-states shift the equilibrium in reaction P680(+)Y(Z)<-->P680Y(Z)(ox) more to the right and we suggest that kinetics of the intermediate S-states reflects a relaxation process associated with changes of the redox equilibrium in the above reaction. The oxygen oscillation is simulated without the miss and double-hit parameters, if the intermediate S-states, which are not the source of the misses or the double-hits, are included in the simulation. Furthermore, we have shown that the intermediate S-states, together with S(2)Q(A)(-) charge recombination, are prerequisites for the simulation of the period-four oscillatory behavior of the chlorophyll fluorescence.
Collapse
|
21
|
Affiliation(s)
- My Hang V Huynh
- DE-1: High Explosive Science and Technology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|
22
|
Kern J, Renger G. Photosystem II: structure and mechanism of the water:plastoquinone oxidoreductase. PHOTOSYNTHESIS RESEARCH 2007; 94:183-202. [PMID: 17634752 DOI: 10.1007/s11120-007-9201-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 05/16/2007] [Indexed: 05/07/2023]
Abstract
This mini-review briefly summarizes our current knowledge on the reaction pattern of light-driven water splitting and the structure of Photosystem II that acts as a water:plastoquinone oxidoreductase. The overall process comprises three types of reaction sequences: (a) light-induced charge separation leading to formation of the radical ion pair P680+*QA(-*) ; (b) reduction of plastoquinone to plastoquinol at the QB site via a two-step reaction sequence with QA(-*) as reductant and (c) oxidative water splitting into O2 and four protons at a manganese-containing catalytic site via a four-step sequence driven by P680+* as oxidant and a redox active tyrosine YZ acting as mediator. Based on recent progress in X-ray diffraction crystallographic structure analysis the array of the cofactors within the protein matrix is discussed in relation to the functional pattern. Special emphasis is paid on the structure of the catalytic sites of PQH2 formation (QB-site) and oxidative water splitting (Mn4OxCa cluster). The energetics and kinetics of the reactions taking place at these sites are presented only in a very concise manner with reference to recent up-to-date reviews. It is illustrated that several questions on the mechanism of oxidative water splitting and the structure of the catalytic sites are far from being satisfactorily answered.
Collapse
Affiliation(s)
- Jan Kern
- Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| | | |
Collapse
|