1
|
Maranata GJ, Megantara S, Hasanah AN. An Update in Computational Methods for Environmental Monitoring: Theoretical Evaluation of the Molecular and Electronic Structures of Natural Pigment-Metal Complexes. Molecules 2024; 29:1680. [PMID: 38611959 PMCID: PMC11013237 DOI: 10.3390/molecules29071680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Metals are beneficial to life, but the presence of these elements in excessive amounts can harm both organisms and the environment; therefore, detecting the presence of metals is essential. Currently, metal detection methods employ powerful instrumental techniques that require a lot of time and money. Hence, the development of efficient and effective metal indicators is essential. Several synthetic metal detectors have been made, but due to their risk of harm, the use of natural pigments is considered a potential alternative. Experiments are needed for their development, but they are expensive and time-consuming. This review explores various computational methods and approaches that can be used to investigate metal-pigment interactions because choosing the right methods and approaches will affect the reliability of the results. The results show that quantum mechanical methods (ab initio, density functional theory, and semiempirical approaches) and molecular dynamics simulations have been used. Among the available methods, the density functional theory approach with the B3LYP functional and the LANL2DZ ECP and basis set is the most promising combination due to its good accuracy and cost-effectiveness. Various experimental studies were also in good agreement with the results of computational methods. However, deeper analysis still needs to be carried out to find the best combination of functions and basis sets.
Collapse
Affiliation(s)
- Gabriella Josephine Maranata
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
2
|
Elias E, Liguori N, Croce R. At the origin of the selectivity of the chlorophyll-binding sites in light harvesting complex II (LHCII). Int J Biol Macromol 2023:125069. [PMID: 37245759 DOI: 10.1016/j.ijbiomac.2023.125069] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
The photosynthetic light-harvesting complexes (LHCs) are responsible for light absorption due to their pigment-binding properties. These pigments are primarily Chlorophyll (Chl) molecules of type a and b, which ensure an excellent coverage of the visible light spectrum. To date, it is unclear which factors drive the selective binding of different Chl types in the LHC binding pockets. To gain insights into this, we employed molecular dynamics simulations on LHCII binding different Chl types. From the resulting trajectories, we have calculated the binding affinities per each Chl-binding pocket using the Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) model. To further examine the importance of the nature of the axial ligand in tuning the Chl selectivity of the binding sites, we used Density Functional Theory (DFT) calculations. The results indicate that some binding pockets have a clear Chl selectivity, and the factors governing these selectivities are identified. Other binding pockets are promiscuous, which is consistent with previous in vitro reconstitution studies. DFT calculations show that the nature of the axial ligand is not a major factor in determining the Chl binding pocket selectivity, which is instead probably controlled by the folding process.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Nicoletta Liguori
- Department of Physics and Astronomy, and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Elias E, Liguori N, Croce R. The origin of pigment-binding differences in CP29 and LHCII: the role of protein structure and dynamics. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00368-7. [PMID: 36740636 DOI: 10.1007/s43630-023-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
The first step of photosynthesis in plants is performed by the light-harvesting complexes (LHC), a large family of pigment-binding proteins embedded in the photosynthetic membranes. These complexes are conserved across species, suggesting that each has a distinct role. However, they display a high degree of sequence homology and their static structures are almost identical. What are then the structural features that determine their different properties? In this work, we compared the two best-characterized LHCs of plants: LHCII and CP29. Using molecular dynamics simulations, we could rationalize the difference between them in terms of pigment-binding properties. The data also show that while the loops between the helices are very flexible, the structure of the transmembrane regions remains very similar in the crystal and the membranes. However, the small structural differences significantly affect the excitonic coupling between some pigment pairs. Finally, we analyzed in detail the structure of the long N-terminus of CP29, showing that it is structurally stable and it remains on top of the membrane even in the absence of other proteins. Although the structural changes upon phosphorylation are minor, they can explain the differences in the absorption properties of the pigments observed experimentally.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nicoletta Liguori
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Vázquez-Durán A, Téllez-Isaías G, Hernández-Rodríguez M, Ruvalcaba RM, Martínez J, Nicolás-Vázquez MI, Aceves-Hernández JM, Méndez-Albores A. The Ability of Chlorophyll to Trap Carcinogen Aflatoxin B 1: A Theoretical Approach. Int J Mol Sci 2022; 23:6068. [PMID: 35682746 PMCID: PMC9181093 DOI: 10.3390/ijms23116068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
The coordination of one and two aflatoxin B1 (AFB1, a potent carcinogen) molecules with chlorophyll a (chl a) was studied at a theoretical level. Calculations were performed using the M06-2X method in conjunction with the 6-311G(d,p) basis set, in both gas and water phases. The molecular electrostatic potential map shows the chemical activity of various sites of the AFB1 and chl a molecules. The energy difference between molecular orbitals of AFB1 and chl a allowed for the establishment of an intermolecular interaction. A charge transfer from AFB1 to the central cation of chl a was shown. The energies of the optimized structures for chl a show two configurations, unfolded and folded, with a difference of 15.41 kcal/mol. Chl a appeared axially coordinated to the plane (α-down or β-up) of the porphyrin moiety, either with the oxygen atom of the ketonic group, or with the oxygen atom of the lactone moiety of AFB1. The complexes of maximum stability were chl a 1-α-E-AFB1 and chl a 2-β-E-AFB1, at -36.4 and -39.2 kcal/mol, respectively. Additionally, with two AFB1 molecules were chl a 1-D-2AFB1 and chl a 2-E-2AFB1, at -60.0 and -64.8 kcal/mol, respectively. Finally, biosorbents containing chlorophyll could improve AFB1 adsorption.
Collapse
Affiliation(s)
- Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de Mexico 54714, Mexico; (A.V.-D.); (J.M.A.-H.); (A.M.-A.)
| | | | - Maricarmen Hernández-Rodríguez
- Laboratorio de Cultivo Celular, Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico;
| | - René Miranda Ruvalcaba
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli, Estado de Mexico 54740, Mexico;
| | - Joel Martínez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi 78210, Mexico
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli, Estado de Mexico 54740, Mexico;
| | - Juan Manuel Aceves-Hernández
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de Mexico 54714, Mexico; (A.V.-D.); (J.M.A.-H.); (A.M.-A.)
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de Mexico 54714, Mexico; (A.V.-D.); (J.M.A.-H.); (A.M.-A.)
| |
Collapse
|
5
|
Elias E, Liguori N, Saga Y, Schäfers J, Croce R. Harvesting Far-Red Light with Plant Antenna Complexes Incorporating Chlorophyll d. Biomacromolecules 2021; 22:3313-3322. [PMID: 34269578 PMCID: PMC8356222 DOI: 10.1021/acs.biomac.1c00435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/28/2021] [Indexed: 11/28/2022]
Abstract
Increasing the absorption cross section of plants by introducing far-red absorbing chlorophylls (Chls) has been proposed as a strategy to boost crop yields. To make this strategy effective, these Chls should bind to the photosynthetic complexes without altering their functional architecture. To investigate if plant-specific antenna complexes can provide the protein scaffold to accommodate these Chls, we have reconstituted the main light-harvesting complex (LHC) of plants LHCII in vitro and in silico, with Chl d. The results demonstrate that LHCII can bind Chl d in a number of binding sites, shifting the maximum absorption ∼25 nm toward the red with respect to the wild-type complex (LHCII with Chl a and b) while maintaining the native LHC architecture. Ultrafast spectroscopic measurements show that the complex is functional in light harvesting and excitation energy transfer. Overall, we here demonstrate that it is possible to obtain plant LHCs with enhanced far-red absorption and intact functional properties.
Collapse
Affiliation(s)
- Eduard Elias
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Nicoletta Liguori
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Yoshitaka Saga
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Department
of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Osaka, Japan
| | - Judith Schäfers
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Takahashi T, Ogasawara S, Shinozaki Y, Tamiaki H. Synthesis of Cationic Pyridinium–Chlorin Conjugates with Various Counter Anions and Effects of the Anions on Their Photophysical Properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tatsuya Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yoshinao Shinozaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
7
|
Palm DM, Agostini A, Averesch V, Girr P, Werwie M, Takahashi S, Satoh H, Jaenicke E, Paulsen H. Chlorophyll a/b binding-specificity in water-soluble chlorophyll protein. NATURE PLANTS 2018; 4:920-929. [PMID: 30297830 DOI: 10.1038/s41477-018-0273-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/06/2018] [Indexed: 05/27/2023]
Abstract
We altered the chlorophyll (Chl) binding sites in various versions of water-soluble chlorophyll protein (WSCP) by amino acid exchanges to alter their preferences for either Chl a or Chl b. WSCP is ideally suited for this mutational analysis since it forms a tetrameric complex with only four identical Chl binding sites. A loop of 4-6 amino acids is responsible for Chl a versus Chl b selectivity. We show that a single amino acid exchange within this loop changes the relative Chl a/b affinities by a factor of 40. We obtained crystal structures of this WSCP variant binding either Chl a or Chl b. The Chl binding sites in these structures were compared with those in the major light-harvesting complex (LHCII) of the photosynthetic apparatus in plants to search for similar structural features involved in Chl a/b binding specificity.
Collapse
Affiliation(s)
- Daniel M Palm
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Alessandro Agostini
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Vivien Averesch
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Philipp Girr
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Mara Werwie
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | | | - Hiroyuki Satoh
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Elmar Jaenicke
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany.
| | - Harald Paulsen
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
8
|
Nürnberg DJ, Morton J, Santabarbara S, Telfer A, Joliot P, Antonaru LA, Ruban AV, Cardona T, Krausz E, Boussac A, Fantuzzi A, Rutherford AW. Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science 2018; 360:1210-1213. [PMID: 29903971 DOI: 10.1126/science.aar8313] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/18/2018] [Indexed: 11/02/2022]
Abstract
Photosystems I and II convert solar energy into the chemical energy that powers life. Chlorophyll a photochemistry, using red light (680 to 700 nm), is near universal and is considered to define the energy "red limit" of oxygenic photosynthesis. We present biophysical studies on the photosystems from a cyanobacterium grown in far-red light (750 nm). The few long-wavelength chlorophylls present are well resolved from each other and from the majority pigment, chlorophyll a. Charge separation in photosystem I and II uses chlorophyll f at 745 nm and chlorophyll f (or d) at 727 nm, respectively. Each photosystem has a few even longer-wavelength chlorophylls f that collect light and pass excitation energy uphill to the photochemically active pigments. These photosystems function beyond the red limit using far-red pigments in only a few key positions.
Collapse
Affiliation(s)
| | | | - Stefano Santabarbara
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy
| | - Alison Telfer
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Pierre Joliot
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Laura A Antonaru
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Tanai Cardona
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Elmars Krausz
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy
| | - Alain Boussac
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Andrea Fantuzzi
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
| | | |
Collapse
|
9
|
Badshah SL, Mabkhot Y, Al-Showiman SS. Photosynthesis at the far-red region of the spectrum in Acaryochloris marina. Biol Res 2017; 50:16. [PMID: 28526061 PMCID: PMC5438491 DOI: 10.1186/s40659-017-0120-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/05/2017] [Indexed: 11/21/2022] Open
Abstract
Acaryochloris marina is an oxygenic cyanobacterium that utilizes far-red light for photosynthesis. It has an expanded genome, which helps in its adaptability to the environment, where it can survive on low energy photons. Its major light absorbing pigment is chlorophyll d and it has α-carotene as a major carotenoid. Light harvesting antenna includes the external phycobilin binding proteins, which are hexameric rods made of phycocyanin and allophycocyanins, while the small integral membrane bound chlorophyll binding proteins are also present. There is specific chlorophyll a molecule in both the reaction center of Photosystem I (PSI) and PSII, but majority of the reaction center consists of chlorophyll d. The composition of the PSII reaction center is debatable especially the role and position of chlorophyll a in it. Here we discuss the photosystems of this bacterium and its related biology.
Collapse
Affiliation(s)
- Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan.
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakhtunkhwa, Pakistan.
| | - Yahia Mabkhot
- Department of Chemistry, College of Science, King Saud University, Riyad, Saudi Arabia.
| | - Salim S Al-Showiman
- Department of Chemistry, College of Science, King Saud University, Riyad, Saudi Arabia.
| |
Collapse
|
10
|
The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels. G3-GENES GENOMES GENETICS 2017; 7:517-532. [PMID: 27974439 PMCID: PMC5295598 DOI: 10.1534/g3.116.036855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA, we detected a similar transcriptional pattern for psbJ and psbU, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels.
Collapse
|
11
|
Miyatake T, Hasunuma Y, Mukai Y, Oki H, Watanabe M, Yamazaki S. Assemblies of ionic zinc chlorins assisted by water-soluble polypeptides. Bioorg Med Chem 2016; 24:1155-61. [DOI: 10.1016/j.bmc.2016.01.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
12
|
Abstract
Chlorophylls are magnesium-tetrapyrrole molecules that play essential roles in photosynthesis. All chlorophylls have similar five-membered ring structures, with variations in the side chains and/or reduction states. Formyl group substitutions on the side chains of chlorophyll a result in the different absorption properties of chlorophyll b, chlorophyll d, and chlorophyll f. These formyl substitution derivatives exhibit different spectral shifts according to the formyl substitution position. Not only does the presence of various types of chlorophylls allow the photosynthetic organism to harvest sunlight at different wavelengths to enhance light energy input, but the pigment composition of oxygenic photosynthetic organisms also reflects the spectral properties on the surface of the Earth. Two major environmental influencing factors are light and oxygen levels, which may play central roles in the regulatory pathways leading to the different chlorophylls. I review the biochemical processes of chlorophyll biosynthesis and their regulatory mechanisms.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia;
| |
Collapse
|
13
|
Loughlin P, Lin Y, Chen M. Chlorophyll d and Acaryochloris marina: current status. PHOTOSYNTHESIS RESEARCH 2013; 116:277-93. [PMID: 23615924 DOI: 10.1007/s11120-013-9829-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/14/2013] [Indexed: 05/03/2023]
Abstract
The discovery of the chlorophyll d-containing cyanobacterium Acaryochloris marina in 1996 precipitated a shift in our understanding of oxygenic photosynthesis. The presence of the red-shifted chlorophyll d in the reaction centre of the photosystems of Acaryochloris has opened up new avenues of research on photosystem energetics and challenged the unique status of chlorophyll a in oxygenic photosynthesis. In this review, we detail the chemistry and role of chlorophyll d in photosynthesis and summarise the unique adaptations that have allowed the proliferation of Acaryochloris in diverse ecological niches around the world.
Collapse
Affiliation(s)
- Patrick Loughlin
- School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia
| | | | | |
Collapse
|
14
|
Chen M, Blankenship RE. Expanding the solar spectrum used by photosynthesis. TRENDS IN PLANT SCIENCE 2011; 16:427-31. [PMID: 21493120 DOI: 10.1016/j.tplants.2011.03.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 05/03/2023]
Abstract
A limiting factor for photosynthetic organisms is their light-harvesting efficiency, that is the efficiency of their conversion of light energy to chemical energy. Small modifications or variations of chlorophylls allow photosynthetic organisms to harvest sunlight at different wavelengths. Oxygenic photosynthetic organisms usually utilize only the visible portion of the solar spectrum. The cyanobacterium Acaryochloris marina carries out oxygenic photosynthesis but contains mostly chlorophyll d and only traces of chlorophyll a. Chlorophyll d provides a potential selective advantage because it enables Acaryochloris to use infrared light (700-750 nm) that is not absorbed by chlorophyll a. Recently, an even more red-shifted chlorophyll termed chlorophyll f has been reported. Here, we discuss using modified chlorophylls to extend the spectral region of light that drives photosynthetic organisms.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
15
|
Hoober JK, Eggink LL, Chen M, Larkum AWD. Chapter 15 The Chemistry and Biology of Light-Harvesting Complex II and Thylakoid Biogenesis: raison d’etre of Chlorophylls b and c. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-8531-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
16
|
Björn LO, Papageorgiou GC, Blankenship RE. A viewpoint: why chlorophyll a? PHOTOSYNTHESIS RESEARCH 2009; 99:85-98. [PMID: 19125349 DOI: 10.1007/s11120-008-9395-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 12/09/2008] [Indexed: 05/21/2023]
Abstract
Chlorophyll a (Chl a) serves a dual role in oxygenic photosynthesis: in light harvesting as well as in converting energy of absorbed photons to chemical energy. No other Chl is as omnipresent in oxygenic photosynthesis as is Chl a, and this is particularly true if we include Chl a(2), (=[8-vinyl]-Chl a), which occurs in Prochlorococcus, as a type of Chl a. One exception to this near universal pattern is Chl d, which is found in some cyanobacteria that live in filtered light that is enriched in wavelengths >700 nm. They trap the long wavelength electronic excitation, and convert it into chemical energy. In this Viewpoint, we have traced the possible reasons for the near ubiquity of Chl a for its use in the primary photochemistry of Photosystem II (PS II) that leads to water oxidation and of Photosystem I (PS I) that leads to ferredoxin reduction. Chl a appears to be unique and irreplaceable, particularly if global scale oxygenic photosynthesis is considered. Its uniqueness is determined by its physicochemical properties, but there is more. Other contributing factors include specially tailored protein environments, and functional compatibility with neighboring electron transporting cofactors. Thus, the same molecule, Chl a in vivo, is capable of generating a radical cation at +1 V or higher (in PS II), a radical anion at -1 V or lower (in PS I), or of being completely redox silent (in antenna holochromes).
Collapse
Affiliation(s)
- Lars Olof Björn
- Department of Cell and Organism Biology, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
17
|
Wydrzynski TJ. Water splitting by Photosystem II--where do we go from here? PHOTOSYNTHESIS RESEARCH 2008; 98:43-51. [PMID: 19037741 DOI: 10.1007/s11120-008-9391-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/10/2008] [Indexed: 05/27/2023]
Abstract
As this special issue shows, we know quite a lot about the workings of Photosystem II and the oxidation of water to molecular O(2). However, there are still many questions and details that remain to be answered. In this article, I very briefly outline some aspects of Photosystem II electron transport that are crucial for the efficient oxidation of water and require further studies. To fully understand Photosystem II reactions is not only a satisfying intellectual pursuit, but is also an important goal as we develop new solar technologies for the splitting of water into pure O(2) and H(2) for use as a potential fuel source. "As Students of the Past, We Send Greetings to the Students of the Future".
Collapse
Affiliation(s)
- Thomas J Wydrzynski
- School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberrra, ACT 0200, Australia.
| |
Collapse
|
18
|
Hoober JK, Eggink LL, Chen M. Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. PHOTOSYNTHESIS RESEARCH 2007; 94:387-400. [PMID: 17505910 PMCID: PMC2117338 DOI: 10.1007/s11120-007-9181-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 04/19/2007] [Indexed: 05/15/2023]
Abstract
Chlorophyll (Chl) b serves an essential function in accumulation of light-harvesting complexes (LHCs) in plants. In this article, this role of Chl b is explored by considering the properties of Chls and the ligands with which they interact in the complexes. The overall properties of the Chls, not only their spectral features, are altered as consequences of chemical modifications on the periphery of the molecules. Important modifications are introduction of oxygen atoms at specific locations and reduction or desaturation of sidechains. These modifications influence formation of coordination bonds by which the central Mg atom, the Lewis acid, of Chl molecules interacts with amino acid sidechains, as the Lewis base, in proteins. Chl a is a versatile Lewis acid and interacts principally with imidazole groups but also with sidechain amides and water. The 7-formyl group on Chl b withdraws electron density toward the periphery of the molecule and consequently the positive Mg is less shielded by the molecular electron cloud than in Chl a. Chl b thus tends to form electrostatic bonds with Lewis bases with a fixed dipole, such as water and, in particular, peptide backbone carbonyl groups. The coordination bonds are enhanced by H-bonds between the protein and the 7-formyl group. These additional strong interactions with Chl b are necessary to achieve assembly of stable LHCs.
Collapse
Affiliation(s)
- J Kenneth Hoober
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|