1
|
Russum S, Lam KJK, Wong NA, Iddamsetty V, Hendargo KJ, Wang J, Dubey A, Zhang Y, Medrano-Soto A, Saier MH. Comparative population genomic analyses of transporters within the Asgard archaeal superphylum. PLoS One 2021; 16:e0247806. [PMID: 33770091 PMCID: PMC7997004 DOI: 10.1371/journal.pone.0247806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/15/2021] [Indexed: 01/02/2023] Open
Abstract
Upon discovery of the first archaeal species in the 1970s, life has been subdivided into three domains: Eukarya, Archaea, and Bacteria. However, the organization of the three-domain tree of life has been challenged following the discovery of archaeal lineages such as the TACK and Asgard superphyla. The Asgard Superphylum has emerged as the closest archaeal ancestor to eukaryotes, potentially improving our understanding of the evolution of life forms. We characterized the transportomes and their substrates within four metagenome-assembled genomes (MAGs), that is, Odin-, Thor-, Heimdall- and Loki-archaeota as well as the fully sequenced genome of Candidatus Prometheoarchaeum syntrophicum strain MK-D1 that belongs to the Loki phylum. Using the Transporter Classification Database (TCDB) as reference, candidate transporters encoded within the proteomes were identified based on sequence similarity, alignment coverage, compatibility of hydropathy profiles, TMS topologies and shared domains. Identified transport systems were compared within the Asgard superphylum as well as within dissimilar eukaryotic, archaeal and bacterial organisms. From these analyses, we infer that Asgard organisms rely mostly on the transport of substrates driven by the proton motive force (pmf), the proton electrochemical gradient which then can be used for ATP production and to drive the activities of secondary carriers. The results indicate that Asgard archaea depend heavily on the uptake of organic molecules such as lipid precursors, amino acids and their derivatives, and sugars and their derivatives. Overall, the majority of the transporters identified are more similar to prokaryotic transporters than eukaryotic systems although several instances of the reverse were documented. Taken together, the results support the previous suggestions that the Asgard superphylum includes organisms that are largely mixotrophic and anaerobic but more clearly define their metabolic potential while providing evidence regarding their relatedness to eukaryotes.
Collapse
Affiliation(s)
- Steven Russum
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Katie Jing Kay Lam
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Nicholas Alan Wong
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Vasu Iddamsetty
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Kevin J. Hendargo
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Jianing Wang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Aditi Dubey
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Yichi Zhang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Arturo Medrano-Soto
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail: (MHS); (AMS)
| | - Milton H. Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail: (MHS); (AMS)
| |
Collapse
|
2
|
Fukuda M, Mieda M, Sato R, Kinoshita S, Tomoyama T, Ferjani A, Maeshima M, Segami S. Lack of Vacuolar H + -Pyrophosphatase and Cytosolic Pyrophosphatases Causes Fatal Developmental Defects in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:655. [PMID: 32528505 PMCID: PMC7266078 DOI: 10.3389/fpls.2020.00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The cytosolic level of inorganic pyrophosphate (PPi) is finely regulated, with PPi hydrolyzed primarily by the vacuolar H+-pyrophosphatase (H+-PPase, VHP1/FUGU5/AVP1) and secondarily by five cytosolic soluble pyrophosphatases (sPPases; PPa1-PPa5) in Arabidopsis thaliana. Loss-of-function mutants of H+-PPase (fugu5s) have been reported to show atrophic phenotypes in their rosette leaves when nitrate is the sole nitrogen source in the culture medium. For this phenotype, two questions remain unanswered: why does atrophy depend on physical contact between shoots and the medium, and how does ammonium prevent such atrophy. To understand the mechanism driving this phenotype, we analyzed the growth and phenotypes of mutants on ammonium-free medium in detail. fugu5-1 showed cuticle defects, cell swelling, reduced β-glucan levels, and vein malformation in the leaves, suggesting cell wall weakening and cell lethality. Based on the observation in the double mutants fugu5-1 ppa1 and fugu5-1 ppa4 of more severe atrophy compared to fugu5-1, the nitrogen-dependent phenotype might be linked to PPi metabolism. To elucidate the role of ammonium in this process, we examined the fluctuations of sPPase mRNA levels and the possibility of alternative PPi-removing factors, such as other types of pyrophosphatase. First, we found that both the protein and mRNA levels of sPPases were unaffected by the nitrogen source. Second, to assess the influence of other PPi-removing factors, we examined the phenotypes of triple knockout mutants of H+-PPase and two sPPases on ammonium-containing medium. Both fugu5 ppa1 ppa2 and fugu5 ppa1 ppa4 had nearly lethal embryonic phenotypes, with the survivors showing striking dwarfism and abnormal morphology. Moreover, fugu5 ppa1+/- ppa4 showed severe atrophy at the leaf margins. The other triple mutants, fugu5 ppa1 ppa5 and fugu5 ppa2 ppa4, exhibited death of root hairs and were nearly sterile due to deformed pistils, respectively, even when grown on standard medium. Together, these results suggest that H+-PPase and sPPases act in concert to maintain PPi homeostasis, that the existence of other PPi removers is unlikely, and that ammonium may suppress the production of PPi during nitrogen metabolism rather than stimulating PPi hydrolysis.
Collapse
Affiliation(s)
- Mayu Fukuda
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Marika Mieda
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryosuke Sato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Satoru Kinoshita
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takaaki Tomoyama
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
3
|
Guo H, Wang Y, Zhang B, Li D, Chen J, Zong J, Li J, Liu J, Jiang Y. Association of candidate genes with drought tolerance traits in zoysiagrass germplasm. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:61-71. [PMID: 31026777 DOI: 10.1016/j.jplph.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Drought stress negatively influences the growth and physiology of perennial grasses. The objective of this study was to identify associations of candidate genes with drought tolerance traits in 96 zoysiagrass (Zoysia Willd.) accessions. Germplasm varied largely in leaf wilting, canopy and air temperature difference (CAD), leaf water content (LWC), chlorophyll fluorescence (Fv/Fm), leaf dry weight (LDW), stolon dry weight (SDW), rhizome dry weight (RZW), and root dry weight (RDW) under drought stress across the two experiments in 2014 and 2015 in a greenhouse. The population exhibited three subgroups based on molecular marker analysis and had minimum relative kinship. Associations between single nucleotide polymorphisms (SNPs) in BADH encoding betaine aldehyde dehydrogenase, DREB1 encoding DREB-like protein 1, Ndhf encoding NADH dehydrogenase subunit F, CAT encoding catalase, and VP1 encoding H+-pyrophosphatase were analyzed with trait under drought stress (D) and relative values compared to the control (R). Twenty-seven mark and trait associations were detected in year 2014, 2015, and a two-year combination across four genes, including 13 associations in 7 SNP loci in BADH, 9 associations in 5 SNP loci in DREB1, 3 associations in one SNP locus in Ndhf, and 2 associations in one SNP locus in CAT. Of them, one SNP in BADH was associated with D-RDW or D-SDW, three SNPs in DREB1 were associated with D-RZW, D-RDW, R-LWC, and D-CAD, and one SNP in CAT was associated with D-SDW. Nucleotide changes in these SNP loci caused non-synonymous amino acid substitutions. The results indicated that allelic diversity in genes involved in antioxidant metabolism, osmotic homeostasis, and dehydration responsive transcription factor could contribute to growth and physiological variations in zoysiagrass under drought stress.
Collapse
Affiliation(s)
- Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yi Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bing Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Dandan Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Junqing Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jianjian Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Role of the potassium/lysine cationic center in catalysis and functional asymmetry in membrane-bound pyrophosphatases. Biochem J 2018. [PMID: 29519958 DOI: 10.1042/bcj20180071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Membrane-bound pyrophosphatases (mPPases), which couple pyrophosphate hydrolysis to transmembrane transport of H+ and/or Na+ ions, are divided into K+,Na+-independent, Na+-regulated, and K+-dependent families. The first two families include H+-transporting mPPases (H+-PPases), whereas the last family comprises one Na+-transporting, two Na+- and H+-transporting subfamilies (Na+-PPases and Na+,H+-PPases, respectively), and three H+-transporting subfamilies. Earlier studies of the few available model mPPases suggested that K+ binds to a site located adjacent to the pyrophosphate-binding site, but is substituted by the ε-amino group of an evolutionarily acquired lysine residue in the K+-independent mPPases. Here, we performed a systematic analysis of the K+/Lys cationic center across all mPPase subfamilies. An Ala → Lys replacement in K+-dependent mPPases abolished the K+ dependence of hydrolysis and transport activities and decreased these activities close to the level (4-7%) observed for wild-type enzymes in the absence of monovalent cations. In contrast, a Lys → Ala replacement in K+,Na+-independent mPPases conferred partial K+ dependence on the enzyme by unmasking an otherwise conserved K+-binding site. Na+ could partially replace K+ as an activator of K+-dependent mPPases and the Lys → Ala variants of K+,Na+-independent mPPases. Finally, we found that all mPPases were inhibited by excess substrate, suggesting strong negative co-operativity of active site functioning in these homodimeric enzymes; moreover, the K+/Lys center was identified as part of the mechanism underlying this effect. These findings suggest that the mPPase homodimer possesses an asymmetry of active site performance that may be an ancient prototype of the rotational binding-change mechanism of F-type ATPases.
Collapse
|
5
|
Gutiérrez-Luna FM, Hernández-Domínguez EE, Valencia-Turcotte LG, Rodríguez-Sotres R. Review: "Pyrophosphate and pyrophosphatases in plants, their involvement in stress responses and their possible relationship to secondary metabolism". PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:11-19. [PMID: 29362089 DOI: 10.1016/j.plantsci.2017.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 05/14/2023]
Abstract
Pyrophosphate (PPi) is produced as byproduct of biosynthesis in the cytoplasm, nucleus, mitochondria and chloroplast, or in the tonoplast and Golgi by membrane-bound H+-pumping pyrophosphatases (PPv). Inorganic pyrophosphatases (E.C. 3.6.1.1; GO:0004427) impulse various biosynthetic reactions by recycling PPi and are essential to living cells. Soluble and membrane-bound enzymes of high specificity have evolved in different protein families and multiple pyrophosphatases are encoded in all plant genomes known to date. The soluble proteins are present in cytoplasm, extracellular space, inside chloroplasts, and perhaps inside mitochondria, nucleus or vacuoles. The cytoplasmic isoforms may compete for PPi with the PPv enzymes and how PPv and soluble activities are controlled is currently unknown, yet the cytoplasmic PPi concentration is high and fairly constant. Manipulation of the PPi metabolism impacts primary metabolism and vice versa, indicating a tight link between PPi levels and carbohydrate metabolism. These enzymes appear to play a role in germination, development and stress adaptive responses. In addition, the transgenic overexpression of PPv has been used to enhance plant tolerance to abiotic stress, but the reasons behind this tolerance are not completely understood. Finally, the relationship of PPi to stress suggest a currently unexplored link between PPi and secondary metabolism.
Collapse
Affiliation(s)
- Francisca Morayna Gutiérrez-Luna
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| | | | - Lilián Gabriela Valencia-Turcotte
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| | - Rogelio Rodríguez-Sotres
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Asaoka M, Segami S, Ferjani A, Maeshima M. Contribution of PPi-Hydrolyzing Function of Vacuolar H(+)-Pyrophosphatase in Vegetative Growth of Arabidopsis: Evidenced by Expression of Uncoupling Mutated Enzymes. FRONTIERS IN PLANT SCIENCE 2016; 7:415. [PMID: 27066051 PMCID: PMC4814480 DOI: 10.3389/fpls.2016.00415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/17/2016] [Indexed: 05/06/2023]
Abstract
The vacuolar-type H(+)-pyrophosphatase (H(+)-PPase) catalyzes a coupled reaction of pyrophosphate (PPi) hydrolysis and active proton translocation across the tonoplast. Overexpression of H(+)-PPase improves growth in various plant species, and loss-of-function mutants (fugu5s) of H(+)-PPase in Arabidopsis thaliana have post-germinative developmental defects. Here, to further clarify the physiological significance of this important enzyme, we newly generated three varieties of H(+)-PPase overexpressing lines with different levels of activity that we analyzed together with the loss-of-function mutant fugu5-3. The H(+)-PPase overexpressors exhibited enhanced activity of H(+)-PPase during vegetative growth, but no change in the activity of vacuolar H(+)-ATPase. Overexpressors with high enzymatic activity grew more vigorously with fresh weight increased by more than 24 and 44%, compared to the wild type and fugu5-3, respectively. Consistently, the overexpressors had larger rosette leaves and nearly 30% more cells in leaves than the wild type. When uncoupling mutated variants of H(+)-PPase, that could hydrolyze PPi but could not translocate protons, were introduced into the fugu5-3 mutant background, shoot growth defects recovered to the same levels as when a normal H(+)-PPase was introduced. Taken together, our findings clearly demonstrate that additional expression of H(+)-PPase improves plant growth by increasing cell number, predominantly as a consequence of the PPi-hydrolyzing activity of the enzyme.
Collapse
Affiliation(s)
- Mariko Asaoka
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei UniversityTokyo, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
- *Correspondence: Masayoshi Maeshima,
| |
Collapse
|
7
|
Asaoka M, Segami S, Maeshima M. Identification of the critical residues for the function of vacuolar H+-pyrophosphatase by mutational analysis based on the 3D structure. ACTA ACUST UNITED AC 2014; 156:333-44. [DOI: 10.1093/jb/mvu046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Getsin I, Nalbandian GH, Yee DC, Vastermark A, Paparoditis PCG, Reddy VS, Saier MH. Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor. BMC Microbiol 2013; 13:279. [PMID: 24304716 PMCID: PMC3924187 DOI: 10.1186/1471-2180-13-279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/20/2013] [Indexed: 01/11/2023] Open
Abstract
Background Two of the largest fully sequenced prokaryotic genomes are those of the actinobacterium, Streptomyces coelicolor (Sco), and the δ-proteobacterium, Myxococcus xanthus (Mxa), both differentiating, sporulating, antibiotic producing, soil microbes. Although the genomes of Sco and Mxa are the same size (~9 Mbp), Sco has 10% more genes that are on average 10% smaller than those in Mxa. Results Surprisingly, Sco has 93% more identifiable transport proteins than Mxa. This is because Sco has amplified several specific types of its transport protein genes, while Mxa has done so to a much lesser extent. Amplification is substrate- and family-specific. For example, Sco but not Mxa has amplified its voltage-gated ion channels but not its aquaporins and mechano-sensitive channels. Sco but not Mxa has also amplified drug efflux pumps of the DHA2 Family of the Major Facilitator Superfamily (MFS) (49 versus 6), amino acid transporters of the APC Family (17 versus 2), ABC-type sugar transport proteins (85 versus 6), and organic anion transporters of several families. Sco has not amplified most other types of transporters. Mxa has selectively amplified one family of macrolid exporters relative to Sco (16 versus 1), consistent with the observation that Mxa makes more macrolids than does Sco. Conclusions Except for electron transport carriers, there is a poor correlation between the types of transporters found in these two organisms, suggesting that their solutions to differentiative and metabolic needs evolved independently. A number of unexpected and surprising observations are presented, and predictions are made regarding the physiological functions of recognizable transporters as well as the existence of yet to be discovered transport systems in these two important model organisms and their relatives. The results provide insight into the evolutionary processes by which two dissimilar prokaryotes evolved complexity, particularly through selective chromosomal gene amplification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
9
|
Baykov AA, Malinen AM, Luoto HH, Lahti R. Pyrophosphate-fueled Na+ and H+ transport in prokaryotes. Microbiol Mol Biol Rev 2013; 77:267-76. [PMID: 23699258 PMCID: PMC3668671 DOI: 10.1128/mmbr.00003-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H(+) transport across biological membranes (H(+)-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na(+) (Na(+)-pyrophosphatase) or both Na(+) and H(+) (Na(+),H(+)-pyrophosphatase). Both these transporters require Na(+) for pyrophosphate hydrolysis and are further activated by K(+). The determination of the three-dimensional structures of H(+)- and Na(+)-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms.
Collapse
Affiliation(s)
- Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anssi M. Malinen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Heidi H. Luoto
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Reijo Lahti
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Kellosalo J, Kajander T, Kogan K, Pokharel K, Goldman A. The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 2012; 337:473-6. [PMID: 22837527 DOI: 10.1126/science.1222505] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Membrane-integral pyrophosphatases (M-PPases) are crucial for the survival of plants, bacteria, and protozoan parasites. They couple pyrophosphate hydrolysis or synthesis to Na(+) or H(+) pumping. The 2.6-angstrom structure of Thermotoga maritima M-PPase in the resting state reveals a previously unknown solution for ion pumping. The hydrolytic center, 20 angstroms above the membrane, is coupled to the gate formed by the conserved Asp(243), Glu(246), and Lys(707) by an unusual "coupling funnel" of six α helices. Comparison with our 4.0-angstrom resolution structure of the product complex suggests that helix 12 slides down upon substrate binding to open the gate by a simple binding-change mechanism. Below the gate, four helices form the exit channel. Superimposing helices 3 to 6, 9 to 12, and 13 to 16 suggests that M-PPases arose through gene triplication.
Collapse
Affiliation(s)
- Juho Kellosalo
- Structural Biology and Biophysics Program, Institute of Biotechnology, Post Office Box 65, University of Helsinki, FIN-00014, Finland
| | | | | | | | | |
Collapse
|
11
|
Heterologous expression and purification of membrane-bound pyrophosphatases. Protein Expr Purif 2011; 79:25-34. [DOI: 10.1016/j.pep.2011.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 12/18/2022]
|
12
|
Pan YJ, Lee CH, Hsu SH, Huang YT, Lee CH, Liu TH, Chen YW, Lin SM, Pan RL. The transmembrane domain 6 of vacuolar H(+)-pyrophosphatase mediates protein targeting and proton transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:59-67. [PMID: 20937245 DOI: 10.1016/j.bbabio.2010.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 11/28/2022]
Abstract
Vacuolar H(+)-pyrophosphatase (V-PPase; EC 3.6.1.1) plays a significant role in the maintenance of the pH in cytoplasm and vacuoles via proton translocation from the cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. The topology of V-PPase as predicted by TopPred II suggests that the catalytic site is putatively located in loop e and exposed to the cytosol. The adjacent transmembrane domain 6 (TM6) is highly conserved and believed to participate in the catalytic function and conformational stability of V-PPase. In this study, alanine-scanning mutagenesis along TM6 of the mung bean V-PPase was carried out to identify its structural and functional role. Mutants Y299A, A306S and L317A exhibited gross impairment in both PP(i) hydrolysis and proton translocation. Meanwhile, mutations at L307 and N318 completely abolished the targeting of the enzyme, causing broad cytosolic localization and implicating a possible role of these residues in protein translocation. The location of these amino acid residues was on the same side of the helix wheel, suggesting their involvement in maintaining the stability of enzyme conformation. G297A, E301A and A305S mutants showed declines in proton translocation but not in PP(i) hydrolysis, consequently resulting in decreases in the coupling efficiency. These amino acid residues cluster at one face of the helix wheel, indicating their direct/indirect participation in proton translocation. Taken together, these data indicate that TM6 is crucial to vacuolar H(+)-pyrophosphatase, probably mediating protein targeting, proton transport, and the maintenance of enzyme structure.
Collapse
Affiliation(s)
- Yih-Jiuan Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu 30043, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hirono M, Maeshima M. Functional enhancement by single-residue substitution of Streptomyces coelicolor A3(2) H+-translocating pyrophosphatase. J Biochem 2009; 146:617-21. [PMID: 19628678 DOI: 10.1093/jb/mvp114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
H(+)-translocating pyrophosphatase converts energy from hydrolysis of pyrophosphate to active H(+) transport across biomembranes. Mutational analysis of Streptomyces coelicolor A3(2) enzyme revealed that amino acid substitution of Phe-388 and Ala-514 altered the enzyme activity. Both residues are located at the interface between the transmembrane domains and cytosolic loops, in which the catalytic domain exists. Systematic amino acid substitution was carried out using the Escherichia coli heterologous expression system. Two of the 38 mutant enzymes, F388Y and A514S, showed a high ratio of H(+)-pump to substrate hydrolysis without decrease in the substrate hydrolysis activity, indicating high energy-coupling efficiency.
Collapse
Affiliation(s)
- Megumi Hirono
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | | |
Collapse
|
14
|
Malinen AM, Baykov AA, Lahti R. Mutual effects of cationic ligands and substrate on activity of the Na+-transporting pyrophosphatase of Methanosarcina mazei. Biochemistry 2009; 47:13447-54. [PMID: 19053266 DOI: 10.1021/bi801803b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The PP(i)-driven sodium pump (membrane pyrophosphatase) of Methanosarcina mazei (Mm-PPase) absolutely requires Na(+) and Mg(2+) for activity and additionally employs K(+) as a modulating cation. Here we explore relationships among Na(+), K(+), Mg(2+), and PP(i) binding sites by analyzing the dependency of the Mm-PPase PP(i)-hydrolyzing function on these ligands and protection offered by the ligands against Mm-PPase inactivation by trypsin and the SH-reagent mersalyl. Steady-state kinetic analysis of PP(i) hydrolysis indicated that catalysis involves random order binding of two Mg(2+) ions and two Na(+) ions, and the binding was almost independent of substrate (Mg(2)PP(i) complex) attachment. Each pair of metal ions, however, binds in a positively cooperative (or ordered) manner. The apparent cooperativity is lost only when Na(+) binds to preformed enzyme-Mg(2+)-substrate complex. The binding of K(+) increases, by a factor of 2.5, the catalytic constant, the Michaelis constant, and the Mg(2+) binding affinity, and these effects may result from K(+) binding to either one of the Na(+) sites or to a separate site. The effects of ligands on Mm-PPase inactivation by mersalyl and trypsin are highly correlated and are strongly indicative of ligand-induced enzyme conformational changes. Importantly, Na(+) binding induces a conformational change only when completing formation of the catalytically competent enzyme-substrate complex or a similar complex with a diphosphonate substrate analog. These data indicate considerable flexibility in Mm-PPase structure and provide evidence for its cyclic change in the course of catalytic turnover.
Collapse
Affiliation(s)
- Anssi M Malinen
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | |
Collapse
|