1
|
Chang L, Cui H, Li F, Job Zhang YHP, Zhang L. ATP regeneration by ATPases for in vitro biotransformation. Biotechnol Adv 2024; 73:108377. [PMID: 38763231 DOI: 10.1016/j.biotechadv.2024.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Adenosine triphosphate (ATP) regeneration is a significant step in both living cells and in vitro biotransformation (ivBT). Rotary motor ATP synthases (ATPases), which regenerate ATP in living cells, have been widely assembled in biomimetic structures for in vitro ATP synthesis. In this review, we present a comprehensive overview of ATPases, including the working principle, orientation and distribution density properties of ATPases, as well as the assembly strategies and applications of ATPase-based ATP regeneration modules. The original sources of ATPases for in vitro ATP regeneration include chromatophores, chloroplasts, mitochondria, and inverted Escherichia coli (E. coli) vesicles, which are readily accessible but unstable. Although significant advances have been made in the assembly methods for ATPase-artificial membranes in recent decades, it remains challenging to replicate the high density and orientation of ATPases observed in vivo using in vitro assembly methods. The use of bioproton pumps or chemicals for constructing proton motive forces (PMF) enables the versatility and potential of ATPase-based ATP regeneration modules. Additionally, overall robustness can be achieved via membrane component selection, such as polymers offering great mechanical stability, or by constructing a solid supporting matrix through layer-by-layer assembly techniques. Finally, the prospects of ATPase-based ATP regeneration modules can be expected with the technological development of ATPases and artificial membranes.
Collapse
Affiliation(s)
- Lijing Chang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Huijuan Cui
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Fei Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Voinov MA, Nunn N, Rana R, Davidsson A, Smirnov AI, Smirnova TI. Measuring local pH at interfaces from molecular tumbling: A concept for designing EPR-active pH-sensitive labels and probes. Org Biomol Chem 2024; 22:3652-3667. [PMID: 38647161 DOI: 10.1039/d4ob00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Molecular probes and indicators are broadly employed for pH measurements in bulk media and at interfaces. The underlying physical principle of pH measurements of most of these probes is based on a change in the electronic structure that, for example, results in a shift of the emission peak of the fluorescence probes, changes in NMR chemical shifts due to the affected electronic shielding, or magnetic parameters of pH-sensitive nitroxides as measured by EPR. Here we explore another concept for measuring local protonation state of molecular tags based on changes in rotational dynamics of electron spin-bearing moieties that are readily detected by conventional continuous wave X-band EPR. Such changes are especially pronounced at biological interfaces, such as lipid bilayer membranes, due to the probe interactions with adjacent charges and polarizable dipoles. The concept was demonstrated by synthesizing a series of pH-sensitive nitroxides and spin-labelled phospholipids. EPR spectra of these newly synthesized nitroxides exhibit relatively small - about 0.5 G - changes in isotropic nitrogen hyperfine coupling constant upon reversible protonation. However, spin-labelled phospholipids incorporated into lipid bilayers demonstrated almost 6-fold change in rotational correlation time upon protonation, readily allowing for pKa determination from large changes in EPR spectra. The demonstrated concept of EPR-based pH measurements leads to a broader range of potential nitroxide structures that can serve as molecular pH sensors at the desired pH range and, thus, facilitates further development of spin-labelling EPR methods to study electrostatic phenomena at chemical and biological interfaces.
Collapse
Affiliation(s)
- Maxim A Voinov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| | - Nicholas Nunn
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| | - Roshan Rana
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| | - Atli Davidsson
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| | - Tatyana I Smirnova
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Semenov AY, Tikhonov AN. Electrometric and Electron Paramagnetic Resonance Measurements of a Difference in the Transmembrane Electrochemical Potential: Photosynthetic Subcellular Structures and Isolated Pigment-Protein Complexes. MEMBRANES 2023; 13:866. [PMID: 37999352 PMCID: PMC10673362 DOI: 10.3390/membranes13110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
A transmembrane difference in the electrochemical potentials of protons (ΔμH+) serves as a free energy intermediate in energy-transducing organelles of the living cell. The contributions of two components of the ΔμH+ (electrical, Δψ, and concentrational, ΔpH) to the overall ΔμH+ value depend on the nature and lipid composition of the energy-coupling membrane. In this review, we briefly consider several of the most common instrumental (electrometric and EPR) methods for numerical estimations of Δψ and ΔpH. In particular, the kinetics of the flash-induced electrometrical measurements of Δψ in bacterial chromatophores, isolated bacterial reaction centers, and Photosystems I and II of the oxygenic photosynthesis, as well as the use of pH-sensitive molecular indicators and kinetic data regarding pH-dependent electron transport in chloroplasts, have been reviewed. Further perspectives on the application of these methods to solve some fundamental and practical problems of membrane bioenergetics are discussed.
Collapse
Affiliation(s)
- Alexey Yu. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | |
Collapse
|
4
|
Tikhonov AN. Electron Transport in Chloroplasts: Regulation and Alternative Pathways of Electron Transfer. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1438-1454. [PMID: 38105016 DOI: 10.1134/s0006297923100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 12/19/2023]
Abstract
This work represents an overview of electron transport regulation in chloroplasts as considered in the context of structure-function organization of photosynthetic apparatus in plants. Main focus of the article is on bifurcated oxidation of plastoquinol by the cytochrome b6f complex, which represents the rate-limiting step of electron transfer between photosystems II and I. Electron transport along the chains of non-cyclic, cyclic, and pseudocyclic electron flow, their relationships to generation of the trans-thylakoid difference in electrochemical potentials of protons in chloroplasts, and pH-dependent mechanisms of regulation of the cytochrome b6f complex are considered. Redox reactions with participation of molecular oxygen and ascorbate, alternative mediators of electron transport in chloroplasts, have also been discussed.
Collapse
|
5
|
Ruuge EK, Tikhonov AN. Electron Paramagnetic Resonance: Study of the Regulatory Mechanisms of Light Phases of Photosynthesis in Plants. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Trinh MDL, Masuda S. Chloroplast pH Homeostasis for the Regulation of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:919896. [PMID: 35693183 PMCID: PMC9174948 DOI: 10.3389/fpls.2022.919896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 05/16/2023]
Abstract
The pH of various chloroplast compartments, such as the thylakoid lumen and stroma, is light-dependent. Light illumination induces electron transfer in the photosynthetic apparatus, coupled with proton translocation across the thylakoid membranes, resulting in acidification and alkalization of the thylakoid lumen and stroma, respectively. Luminal acidification is crucial for inducing regulatory mechanisms that protect photosystems against photodamage caused by the overproduction of reactive oxygen species (ROS). Stromal alkalization activates enzymes involved in the Calvin-Benson-Bassham (CBB) cycle. Moreover, proton translocation across the thylakoid membranes generates a proton gradient (ΔpH) and an electric potential (ΔΨ), both of which comprise the proton motive force (pmf) that drives ATP synthase. Then, the synthesized ATP is consumed in the CBB cycle and other chloroplast metabolic pathways. In the dark, the pH of both the chloroplast stroma and thylakoid lumen becomes neutral. Despite extensive studies of the above-mentioned processes, the molecular mechanisms of how chloroplast pH can be maintained at proper levels during the light phase for efficient activation of photosynthesis and other metabolic pathways and return to neutral levels during the dark phase remain largely unclear, especially in terms of the precise control of stromal pH. The transient increase and decrease in chloroplast pH upon dark-to-light and light-to-dark transitions have been considered as signals for controlling other biological processes in plant cells. Forward and reverse genetic screening approaches recently identified new plastid proteins involved in controlling ΔpH and ΔΨ across the thylakoid membranes and chloroplast proton/ion homeostasis. These proteins have been conserved during the evolution of oxygenic phototrophs and include putative photosynthetic protein complexes, proton transporters, and/or their regulators. Herein, we summarize the recently identified protein players that control chloroplast pH and influence photosynthetic efficiency in plants.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Shinji Masuda,
| |
Collapse
|
7
|
Trubitsin BV, Milanovsky GE, Mamedov MD, Semenov AY, Tikhonov AN. The Interaction of Water-Soluble Nitroxide Radicals with Photosystem II. APPLIED MAGNETIC RESONANCE 2021; 53:1053-1067. [PMID: 34522067 PMCID: PMC8428495 DOI: 10.1007/s00723-021-01425-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
In this work, we investigated the redox transients of a number of water-soluble spin labels upon their interactions with Photosystem II (PS II) core complexes isolated from spinach leaves. We have found that the reactivity of nitroxide radicals, determined by the rate of their reduction upon illumination of PS II, depends on the chemical structure of radicals and the capability of their coming close to low-potential redox centers of photoactive PS II complexes. An enhanced capability of nitroxide radicals to accept electrons from PS II correlates with their chemical structure. Nitroxide radicals NTI (2,2,5,5-tetramethyl-4-nitromethylene-3-imidazolidine-N-oxyl) and Tacet (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl-acetate), containing polar groups, appear to be most efficient acceptors of electrons donated by PS II compared to neutral (TEMPOL, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) or positively charged (Tamine, 4-amino-2,2,6,6-tetramethylpiperidine-l-oxyl) spin labels. We assume that enhanced reactivities of polar nitroxide radicals, NTI and Tacet, are determined (1) by their relatively high redox potentials, providing the possibility to accept electrons from PS II, and (2) by their affinities to the closest binding sites on the surface of PS II in the vicinity of the primary plastoquinone acceptor PQA (12-14 Å) or/and in the intraprotein cavity for the secondary plastoquinone PQB (~ 22 Å).
Collapse
Affiliation(s)
- B. V. Trubitsin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - G. E. Milanovsky
- Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - M. D. Mamedov
- Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - A. Yu. Semenov
- Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - A. N. Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Chang W, Li C, Cui Z, Li W, Song H, Chang H, Fu W, Wang C, Huang T, Luo Y, Shan Y, Wang Y, Wang F, Xu M, Fu A. Diverged Early From CtpB and CtpC, CtpA Has Evolved to Process D1 Precursor in Oxygenic Photosynthetic Organisms. FRONTIERS IN PLANT SCIENCE 2021; 12:676036. [PMID: 34002114 PMCID: PMC8121967 DOI: 10.3389/fpls.2021.676036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
C-terminal peptidase (Ctp) cleaves the C-terminal extension of the D1 precursor (pD1) to form mature D1. Among the three homologs CtpA, CtpB, and CtpC in photosynthetic organisms only the first is capable of processing pD1 while the roles of CtpB and CtpC remain elusive. Phylogenetic analysis of Ctps from photosynthetic organisms revealed that CtpA has diverged early from CtpB and CtpC during evolution implying distinct roles for the Ctps. Analysis of Arabidopsis Ctp-deficient mutants revealed that pD1 processing was not affected in atctpb, atctpc, or atctpbatctpc mutants, demonstrating that AtCtpA, not AtCtpB or AtCtpC, is responsible for cleaving the pD1 C-terminal extension. Ectopic expression of CtpAs from Synechococcus elongatus, Chlamydomonas reinhardtii, and Physcomitrella patens in atctpa rescued the lethal phenotype of the mutant indicating that SeCtpA, CrCtpA, and PpCtpA could process pD1 in Arabidopsis. Enzyme activity assays showed that PpCtpA and CrCtpA could convert pD1 into mature D1 in vitro. In contrast, expressing CtpB or CtpC from Arabidopsis, C. reinhardtii, or P. patens in atctpa did not rescue its D1 maturation deficiency, and enzyme activity assays also showed that neither CtpB nor CtpC could process pD1 in vitro. Taken together, we conclude that the function of pD1 processing by CtpA is conserved in photosynthetic organisms. It is possible that among other factors CtpA developed this function to initiate the formation of the oxygenic D1/D2 type PSII complex during evolution whereas CtpB or CtpC have other roles that are still unclear.
Collapse
Affiliation(s)
- Weidong Chang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Chenggang Li
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Zheng Cui
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Wei Li
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Haifeng Song
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Han Chang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Weihan Fu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Chunyu Wang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Ting Huang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yixin Luo
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yelin Shan
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yuhua Wang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Fei Wang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Min Xu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Aigen Fu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Northwest University, Xi’an, China
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
9
|
Tikhonov AN, Vershubskii AV. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. PHOTOSYNTHESIS RESEARCH 2020; 146:299-329. [PMID: 32780309 DOI: 10.1007/s11120-020-00777-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The significance of temperature-dependent regulation of photosynthetic apparatus (PSA) is determined by the fact that plant temperature changes with environmental temperature. In this work, we present a brief overview of temperature-dependent regulation of photosynthetic processes in class B chloroplasts (thylakoids) and analyze these processes using a computer model that takes into account the key stages of electron and proton transport coupled to ATP synthesis. The rate constants of partial reactions were parametrized on the basis of experimental temperature dependences of partial photosynthetic processes: (1) photosystem II (PSII) turnover and plastoquinone (PQ) reduction, (2) the plastoquinol (PQH2) oxidation by the cytochrome (Cyt) b6f complex, (3) the ATP synthase activity, and (4) the proton leak from the thylakoid lumen. We consider that PQH2 oxidation is the rate-limiting step in the intersystem electron transport. The parametrization of the rate constants of these processes is based on earlier experimental data demonstrating strong correlations between the functional and structural properties of thylakoid membranes that were probed with the lipid-soluble spin labels embedded into the membranes. Within the framework of our model, we could adequately describe a number of experimental temperature dependences of photosynthetic reactions in thylakoids. Computer modeling of electron and proton transport coupled to ATP synthesis supports the notion that PQH2 oxidation by the Cyt b6f complex and proton pumping into the lumen are the basic temperature-dependent processes that determine the overall electron flux from PSII to molecular oxygen and the net ATP synthesis upon variations of temperature. The model describes two branches of the temperature dependence of the post-illumination reduction of [Formula: see text] characterized by different activation energies (about 60 and ≤ 3.5 kJ mol-1). The model predicts the bell-like temperature dependence of ATP formation, which arises from the balance of several factors: (1) the thermo-induced acceleration of electron transport through the Cyt b6f complex, (2) deactivation of PSII photochemistry at sufficiently high temperatures, and (3) acceleration of the passive proton outflow from the thylakoid lumen bypassing the ATP synthase complex. The model describes the temperature dependence of experimentally measured parameter P/2e, determined as the ratio between the rates of ATP synthesis and pseudocyclic electron transport (H2O → PSII → PSI → O2).
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
10
|
Possible Mechanisms of Relations between the Thermal Neutrons Field and Biosphere. ScientificWorldJournal 2020; 2020:2175296. [PMID: 32848512 PMCID: PMC7439186 DOI: 10.1155/2020/2175296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 11/18/2022] Open
Abstract
This paper proposes some results concerning the interaction of living matter of different organization levels (prokaryotes and eukaryotes) with the flux of thermal neutrons. The phenomenon of the virtual neutron trap was tested during the passage of thermalized neutrons from the Pu-Be couple through a flat layer of E. coli suspension. We have studied the metabolic characteristics of A. salina cysts before and after artificial neutron flux exposure. It has been demonstrated that the concentrations of some metals in samples of alive and dead cysts irradiated with an artificial flow of thermal neutrons are not equal. The content of Mn in alive A. salina samples has increased more than ten-fold after their interaction with neutron flux, while the amount of As decreased by a factor of two after exposure. Levels of other elements (Al, Cr, Ni, Cu, Cd, and Pb) did not show any significant difference. Trace element composition of cysts was assessed using the method of atomic absorption spectroscopy with electrothermal atomization and the Zeeman background correction.
Collapse
|
11
|
Auer AA, Tran VA, Sharma B, Stoychev GL, Marx D, Neese F. A case study of density functional theory and domain-based local pair natural orbital coupled cluster for vibrational effects on EPR hyperfine coupling constants: vibrational perturbation theory versus ab initio molecular dynamics. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1797916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Van Anh Tran
- MPI für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Bikramjit Sharma
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Frank Neese
- MPI für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
12
|
Ptushenko VV. Electric Cables of Living Cells. I. Energy Transfer along Coupling Membranes. BIOCHEMISTRY (MOSCOW) 2020; 85:820-832. [DOI: 10.1134/s000629792007010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Xingxing C, Jiuyang L, Huan Z, Fudong L, Shuya Z, Min X, Ke R, Yuhua W, Aigen F. Crystal structure of Psb27 from Arabidopsis thaliana determined at a resolution of 1.85 Å. PHOTOSYNTHESIS RESEARCH 2018; 136:139-146. [PMID: 29098572 PMCID: PMC5895690 DOI: 10.1007/s11120-017-0450-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Proper biogenesis and maintenance of photosynthetic thylakoid membrane complexes are essential for the photosynthetic light reactions. A thylakoid lumenal protein, Psb27, plays a vital role in assembly or/and maintenance of photosystem II (PSII). In cyanobacteria, it is a small lipoprotein docked to the lumenal side of PSII, and functions in the assembly of the Mn4Ca cluster and in the PSII repair cycle. However, Psb27 from Arabidopsis thaliana is not a lipoprotein, and it is involved in PSII repair and acclimation to fluctuating light stress, suggesting a functional divergence between Arabidopsis Psb27 and cyanobacterial Psb27s. To gain a better understanding of Psb27 from higher plants, we determined the crystal structure of Arabidopsis Psb27 by X-ray crystallography at a resolution of 1.85 Å. The structure of Arabidopsis Psb27 is a four-helix bundle, similar to its orthologues from cyanobacteria. However, there are several structural differences between Arabidopsis Psb27 and cyanobacterial Psb27s concerning the overall molecular shape, the N- and C-terminal structures, and the surface charge. These differences suggest that Psb27 from higher plants and cyanobacteria may function differently.
Collapse
Affiliation(s)
- Cheng Xingxing
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Liu Jiuyang
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Zhang Huan
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Li Fudong
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Zhang Shuya
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Xu Min
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Ruan Ke
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Wang Yuhua
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Fu Aigen
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| |
Collapse
|
14
|
Szabò I, Spetea C. Impact of the ion transportome of chloroplasts on the optimization of photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3115-3128. [PMID: 28338935 DOI: 10.1093/jxb/erx063] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ions play fundamental roles in all living cells, and their gradients are often essential to fuel transport, regulate enzyme activities, and transduce energy within cells. Regulation of their homeostasis is essential for cell metabolism. Recent results indicate that modulation of ion fluxes might also represent a useful strategy to regulate one of the most important physiological processes taking place in chloroplasts, photosynthesis. Photosynthesis is highly regulated, due to its unique role as a cellular engine for growth in the light. Controlling the balance between ATP and NADPH synthesis is a critical task, and availability of these molecules can limit the overall photosynthetic yield. Photosynthetic organisms optimize photosynthesis in low light, where excitation energy limits CO2 fixation, and minimize photo-oxidative damage in high light by dissipating excess photons. Despite extensive studies of these phenomena, the mechanism governing light utilization in plants is still poorly understood. In this review, we provide an update of the recently identified chloroplast-located ion channels and transporters whose function impacts photosynthetic efficiency in plants.
Collapse
Affiliation(s)
- Ildikò Szabò
- Department of Biology, University of Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
15
|
Tikhonov AN. Photosynthetic Electron and Proton Transport in Chloroplasts: EPR Study of ΔpH Generation, an Overview. Cell Biochem Biophys 2017; 75:421-432. [PMID: 28488221 DOI: 10.1007/s12013-017-0797-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/12/2017] [Indexed: 11/30/2022]
Abstract
This is a brief overview focused on the electron paramagnetic resonance applications to the study of the proton transport processes in chloroplasts. After brief description of structural and functional organization of the chloroplast electron transport chain, our attention is focused on the measurements of trans-thylakoid pH difference (ΔpH) with pH-sensitive spin-probes. The use of spin-probes is based either (i) on measuring the ΔpH-partitioning of spin-probes between the thylakoid lumen and external volume, or (ii) on monitoring changes in the electron paramagnetic resonance spectra of pH-sensitive nitroxide radicals located in the lumen. Along with the use of spin-probes, the intra-thylakoid pH (pHin) can be determined by the "kinetic" method, which relies on the fact that the rate-limiting step in the chain of photosynthetic electron transfer (plastoquinol oxidation by the cytochrome b 6 f complex) is controlled by pHin. The results of ΔpH determinations in chloroplasts based on the use of pH-sensitive spin-probes and measurements of post-illumination reduction of photoreaction centers of Photosystem I are discussed in the context of the problem of energy coupling in laterally heterogeneous lamellar system of chloroplasts.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M.V. Lomonosov, Moscow State University, Moscow, Russia.
| |
Collapse
|
16
|
Vershubskii AV, Trubitsin BV, Priklonskii VI, Tikhonov AN. Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:388-401. [DOI: 10.1016/j.bbamem.2016.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/20/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023]
|
17
|
Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C3 leaves. J Theor Biol 2017; 413:11-23. [DOI: 10.1016/j.jtbi.2016.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/07/2016] [Accepted: 10/28/2016] [Indexed: 01/18/2023]
|
18
|
Kovaleva EG, Molochnikov LS, Stepanova DP, Pestov AV, Trofimov DG, Kirilyuk IA, Smirnov AI. Interfacial Electrostatic Properties of Hydrated Mesoporous and Nanostructured Alumina Powders by Spin Labeling EPR. Cell Biochem Biophys 2016; 75:159-170. [PMID: 27815780 DOI: 10.1007/s12013-016-0767-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 10/14/2016] [Indexed: 11/24/2022]
Abstract
Acid-base equilibria and interfacial electrostatic properties of hydrated mesoporous and nanostructured alumina powders are determining factors for the use of these materials in heterogeneous catalysis and as a sorption media for filtration and chromatographic applications including life sciences. Here spin probe electron paramagnetic resonance spectroscopy of pH-sensitive nitroxides was employed to evaluate the surface charge and interfacial acid-base equilibria at the pore surface of mesoporous powders of α-Al2O3, γ-Al2O3, Al2O3 × nH2O, and basic γ-Al2O3 and nanostructured Al2O3 in the form of pristine materials and modified with aluminum-tri-sec-butoxide, hydroxyaluminum glycerate, and several phospholipids. A new pH-sensitive nitroxide probe, 4-dimethylamino-5,5-dimethyl-2-(4-(chloromethyl)phenyl)-2-ethyl-2,5-dihydro-1H-imidazol-1-oxyl hydrochloride semihydrate (nitroxide R1), has been synthesized and characterized. It was found that conditions of preparation of alumina powders exert strikingly large effects on the apparent pK a of nitroxides measured from electron paramagnetic resonance titration curves. Specifically, while the electron paramagnetic resonance titrations curves for the nitroxide R1 in mesoporous powders prepared from basic γ-Al2O3 and Al2O3 × nH2O were shifted by ΔpK a≈ +0.6 and up to ≈ +1.2 pH units respectively, the shift for γ-Al2O3 was found to be much higher: ΔpK a = +3.5. Assuming approximately the same ∆pH = 0.5-1.0 arising from a difference in the hydrogen ion activity between the bulk solution phase and that in a confined pore volume, the samples were ranked in the following order of descending magnitude of the effective surface electrostatic potential Ψ: mesoporous γ-Al2O3 > Al2O3 × nH2O > basic γ-Al2O3 > α-Al2O3. Conditions of the Al2O3 synthesis as well as the surface modification procedures were found to have profound effects on the interfacial electrostatic properties of hydrated samples that are likely related to the nature and concentration of the active sites on the alumina surfaces.
Collapse
Affiliation(s)
- Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation.
| | - Leonid S Molochnikov
- Department of Chemistry, Ural State Forest Engineering University, 37 Siberian Highway, Yekaterinburg, 620100, Russian Federation.
| | - Darya P Stepanova
- Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation
| | - Alexander V Pestov
- Laboratory of Organic Materials, I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Akademicheskaya / S. Kovalevskoi, 22/20, Ekaterinburg, 620990, Russian Federation
| | - Dmitrii G Trofimov
- Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrent'ev Av. 9, Novosibirsk, 630090, Russian Federation
| | - Igor A Kirilyuk
- Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrent'ev Av. 9, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk, 630090, Russian Federation
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA.
| |
Collapse
|
19
|
Tikhonov AN. Induction events and short-term regulation of electron transport in chloroplasts: an overview. PHOTOSYNTHESIS RESEARCH 2015; 125:65-94. [PMID: 25680580 DOI: 10.1007/s11120-015-0094-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/26/2015] [Indexed: 05/03/2023]
Abstract
Regulation of photosynthetic electron transport at different levels of structural and functional organization of photosynthetic apparatus provides efficient performance of oxygenic photosynthesis in plants. This review begins with a brief overview of the chloroplast electron transport chain. Then two noninvasive biophysical methods (measurements of slow induction of chlorophyll a fluorescence and EPR signals of oxidized P700 centers) are exemplified to illustrate the possibility of monitoring induction events in chloroplasts in vivo and in situ. Induction events in chloroplasts are considered and briefly discussed in the context of short-term mechanisms of the following regulatory processes: (i) pH-dependent control of the intersystem electron transport; (ii) the light-induced activation of the Calvin-Benson cycle; (iii) optimization of electron transport due to fitting alternative pathways of electron flow and partitioning light energy between photosystems I and II; and (iv) the light-induced remodeling of photosynthetic apparatus and thylakoid membranes.
Collapse
|
20
|
Proteomic approaches to identify substrates of the three Deg/HtrA proteases of the cyanobacterium Synechocystis sp. PCC 6803. Biochem J 2015; 468:373-84. [PMID: 25877158 DOI: 10.1042/bj20150097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022]
Abstract
The family of Deg/HtrA proteases plays an important role in quality control of cellular proteins in a wide range of organisms. In the genome of the cyanobacterium Synechocystis sp. PCC 6803, a model organism for photosynthetic research and renewable energy products, three Deg proteases are encoded, termed HhoA, HhoB and HtrA. In the present study, we compared wild-type (WT) Synechocystis cells with the single insertion mutants ΔhhoA, ΔhhoB and ΔhtrA. Protein expression of the remaining Deg/HtrA proteases was strongly affected in the single insertion mutants. Detailed proteomic studies using DIGE (difference gel electrophoresis) and N-terminal COFRADIC (N-terminal combined fractional diagonal chromatography) revealed that inactivation of a single Deg protease has similar impact on the proteomes of the three mutants; differences to WT were observed in enzymes involved in the major metabolic pathways. Changes in the amount of phosphate permease system Pst-1 were observed only in the insertion mutant ΔhhoB. N-terminal COFRADIC analyses on cell lysates of ΔhhoB confirmed changed amounts of many cell envelope proteins, including the phosphate permease systems, compared with WT. In vitro COFRADIC studies were performed to identify the specificity profiles of the recombinant proteases rHhoA, rHhoB or rHtrA added to the Synechocystis WT proteome. The combined in vivo and in vitro N-terminal COFRADIC datasets propose RbcS as a natural substrate for HhoA, PsbO for HhoB and HtrA and Pbp8 for HtrA. We therefore suggest that each Synechocystis Deg protease protects the cell through different, but connected mechanisms.
Collapse
|
21
|
Trubitsin BV, Mamedov MD, Semenov AY, Tikhonov AN. Interaction of ascorbate with photosystem I. PHOTOSYNTHESIS RESEARCH 2014; 122:215-231. [PMID: 24965848 DOI: 10.1007/s11120-014-0023-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Ascorbate is one of the key participants of the antioxidant defense in plants. In this work, we have investigated the interaction of ascorbate with the chloroplast electron transport chain and isolated photosystem I (PSI), using the EPR method for monitoring the oxidized centers [Formula: see text] and ascorbate free radicals. Inhibitor analysis of the light-induced redox transients of P700 in spinach thylakoids has demonstrated that ascorbate efficiently donates electrons to [Formula: see text] via plastocyanin. Inhibitors (DCMU and stigmatellin), which block electron transport between photosystem II and Pc, did not disturb the ascorbate capacity for electron donation to [Formula: see text]. Otherwise, inactivation of Pc with CN(-) ions inhibited electron flow from ascorbate to [Formula: see text]. This proves that the main route of electron flow from ascorbate to [Formula: see text] runs through Pc, bypassing the plastoquinone (PQ) pool and the cytochrome b 6 f complex. In contrast to Pc-mediated pathway, direct donation of electrons from ascorbate to [Formula: see text] is a rather slow process. Oxidized ascorbate species act as alternative oxidants for PSI, which intercept electrons directly from the terminal electron acceptors of PSI, thereby stimulating photooxidation of P700. We investigated the interaction of ascorbate with PSI complexes isolated from the wild type cells and the MenB deletion strain of cyanobacterium Synechocystis sp. PCC 6803. In the MenB mutant, PSI contains PQ in the quinone-binding A1-site, which can be substituted by high-potential electron carrier 2,3-dichloro-1,4-naphthoquinone (Cl2NQ). In PSI from the MenB mutant with Cl2NQ in the A1-site, the outflow of electrons from PSI is impeded due to the uphill electron transfer from A1 to the iron-sulfur cluster FX and further to the terminal clusters FA/FB, which manifests itself as a decrease in a steady-state level of [Formula: see text]. The addition of ascorbate promoted photooxidation of P700 due to stimulation of electron outflow from PSI to oxidized ascorbate species. Thus, accepting electrons from PSI and donating them to [Formula: see text], ascorbate can mediate cyclic electron transport around PSI. The physiological significance of ascorbate-mediated electron transport is discussed.
Collapse
Affiliation(s)
- Boris V Trubitsin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
22
|
Ions channels/transporters and chloroplast regulation. Cell Calcium 2014; 58:86-97. [PMID: 25454594 DOI: 10.1016/j.ceca.2014.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 12/28/2022]
Abstract
Ions play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehensive view of the different machineries involved in ion trafficking and homeostasis in the chloroplast, and then discuss peculiar functions exerted by ions in the frame of photochemical conversion of absorbed light energy.
Collapse
|
23
|
Tikhonov AN. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:163-83. [PMID: 24485217 DOI: 10.1016/j.plaphy.2013.12.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/11/2013] [Indexed: 05/03/2023]
Abstract
Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI).
Collapse
|
24
|
Computer modeling of electron and proton transport in chloroplasts. Biosystems 2014; 121:1-21. [PMID: 24835748 DOI: 10.1016/j.biosystems.2014.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 11/21/2022]
Abstract
Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis.
Collapse
|
25
|
Koroidov S, Shevela D, Shutova T, Samuelsson G, Messinger J. Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation. Proc Natl Acad Sci U S A 2014; 111:6299-304. [PMID: 24711433 PMCID: PMC4035973 DOI: 10.1073/pnas.1323277111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria, algae, and plants oxidize water to the O2 we breathe, and consume CO2 during the synthesis of biomass. Although these vital processes are functionally and structurally well separated in photosynthetic organisms, there is a long-debated role for CO2/ in water oxidation. Using membrane-inlet mass spectrometry we demonstrate that acts as a mobile proton acceptor that helps to transport the protons produced inside of photosystem II by water oxidation out into the chloroplast's lumen, resulting in a light-driven production of O2 and CO2. Depletion of from the media leads, in the absence of added buffers, to a reversible down-regulation of O2 production by about 20%. These findings add a previously unidentified component to the regulatory network of oxygenic photosynthesis and conclude the more than 50-y-long quest for the function of CO2/ in photosynthetic water oxidation.
Collapse
Affiliation(s)
| | | | - Tatiana Shutova
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Göran Samuelsson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | | |
Collapse
|
26
|
Johnson MP, Ruban AV. Rethinking the existence of a steady-state Δψ component of the proton motive force across plant thylakoid membranes. PHOTOSYNTHESIS RESEARCH 2014; 119:233-242. [PMID: 23539362 DOI: 10.1007/s11120-013-9817-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Light-driven photosynthetic electron transport is coupled to the movement of protons from the chloroplast stroma to the thylakoid lumen. The resulting proton motive force that is generated is used to drive the conformational rotation of the transmembrane thylakoid ATPase enzyme which converts ADP (adenosine diphosphate) and Pi (inorganic phosphate) into ATP (adenosine triphosphate), the energy currency of the plant cell required for carbon fixation and other metabolic processes. According to Mitchell's chemiosmotic hypothesis, the proton motive force can be parsed into the transmembrane proton gradient (ΔpH) and the electric field gradient (Δψ), which are thermodynamically equivalent. In chloroplasts, the proton motive force has been suggested to be split almost equally between Δψ and ΔpH (Kramer et al., Photosynth Res 60:151-163, 1999). One of the central pieces of evidence for this theory is the existence of a steady-state electrochromic shift (ECS) absorption signal detected ~515 nm in plant leaves during illumination. The interpretation of this signal is complicated, however, by a heavily overlapping absorption change ~535 nm associated with the formation of photoprotective energy dissipation (qE) during illumination. In this study, we present new evidence that dissects the overlapping contributions of the ECS and qE-related absorption changes in wild-type Arabidopsis leaves using specific inhibitors of the ΔpH (nigericin) and Δψ (valinomycin) and separately using leaves of the Arabidopsis lut2npq1 mutant that lacks qE. In both cases, our data show that no steady-state ECS signal persists in the light longer than ~60 s. The consequences of our observations for the suggesting parsing of steady-state thylakoid proton motive force between (ΔpH) and the electric field gradient (Δψ) are discussed.
Collapse
Affiliation(s)
- Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK,
| | | |
Collapse
|
27
|
Tikhonov AN. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. PHOTOSYNTHESIS RESEARCH 2013; 116:511-34. [PMID: 23695653 DOI: 10.1007/s11120-013-9845-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/25/2013] [Indexed: 05/02/2023]
Abstract
This review is focused on pH-dependent mechanisms of regulation of photosynthetic electron transport and ATP synthesis in chloroplasts. The light-induced acidification of the thylakoid lumen is known to decelerate the plastoquinol oxidation by the cytochrome b 6 f complex, thus impeding the electron flow between photosystem II and photosystem I. Acidification of the lumen also triggers the dissipation of excess energy in the light-harvesting antenna of photosystem II, thereby protecting the photosynthetic apparatus against a solar stress. After brief description of structural and functional organization of the chloroplast electron transport chain, our attention is focused on the nature of the rate-limiting step of electron transfer between photosystem II and photosystem I. In the context of pH-dependent mechanism of photosynthetic control in chloroplasts, the mechanisms of plastoquinol oxidation by the cytochrome b 6 f complex have been considered. The light-induced alkalization of stroma is another factor of pH-dependent regulation of electron transport in chloroplasts. Alkalization of stroma induces activation of the Bassham-Benson-Calvin cycle reactions, thereby promoting efflux of electrons from photosystem I to NADP(+). The mechanisms of the light-induced activation of ATP synthase are briefly considered.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M. V. Lomonosov, Moscow State University, Moscow, Russia,
| |
Collapse
|
28
|
Tikhonov AN. Energetic and regulatory role of proton potential in chloroplasts. BIOCHEMISTRY (MOSCOW) 2012; 77:956-74. [DOI: 10.1134/s0006297912090027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Kuhlgert S, Drepper F, Fufezan C, Sommer F, Hippler M. Residues PsaB Asp612 and PsaB Glu613 of photosystem I confer pH-dependent binding of plastocyanin and cytochrome c(6). Biochemistry 2012; 51:7297-303. [PMID: 22920401 DOI: 10.1021/bi300898j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding and electron transfer between plastocyanin (pc) or cytochrome c(6) (cyt c(6)) and photosystem I (PSI) can be described by hydrophobic as well as electrostatic interactions. The two α helices, l and l' in PsaB and PsaA, respectively, are involved in forming the hydrophobic interaction site at the oxidizing site of PSI. To obtain mechanistic insights into the function of the two negatively charged residues D612 and E613, present in α helix l of PsaB, we exchanged both residues by site-directed mutagenesis with His and transformed a PsaB deficient mutant of Chlamydomonas reinhardtii. Flash-induced absorption spectroscopy revealed that PSI harboring the changes D612H and E613H had a high affinity toward binding of the electron donors and possessed an altered pH dependence of electron transfer with pc and cyt c(6). Despite optimized binding and electron transfer between the altered PSI and its electron donors, the mutant strain PsaB-D612H/E613H exhibited a strong light sensitive growth phenotype, indicating that decelerated turnover between pc/cyt c(6) and PSI with respect to electron transfer is deleterious to the cells.
Collapse
Affiliation(s)
- Sebastian Kuhlgert
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | | | | | | | | |
Collapse
|
30
|
Shevela D, Eaton-Rye JJ, Shen JR, Govindjee. Photosystem II and the unique role of bicarbonate: a historical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1134-51. [PMID: 22521596 DOI: 10.1016/j.bbabio.2012.04.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022]
Abstract
In photosynthesis, cyanobacteria, algae and plants fix carbon dioxide (CO(2)) into carbohydrates; this is necessary to support life on Earth. Over 50 years ago, Otto Heinrich Warburg discovered a unique stimulatory role of CO(2) in the Hill reaction (i.e., O(2) evolution accompanied by reduction of an artificial electron acceptor), which, obviously, does not include any carbon fixation pathway; Warburg used this discovery to support his idea that O(2) in photosynthesis originates in CO(2). During the 1960s, a large number of researchers attempted to decipher this unique phenomenon, with limited success. In the 1970s, Alan Stemler, in Govindjee's lab, perfected methods to get highly reproducible results, and observed, among other things, that the turnover of Photosystem II (PSII) was stimulated by bicarbonate ions (hydrogen carbonate): the effect would be on the donor or the acceptor, or both sides of PSII. In 1975, Thomas Wydrzynski, also in Govindjee's lab, discovered that there was a definite bicarbonate effect on the electron acceptor (the plastoquinone) side of PSII. The most recent 1.9Å crystal structure of PSII, unequivocally shows HCO(3)(-) bound to the non-heme iron that sits in-between the bound primary quinone electron acceptor, Q(A), and the secondary quinone electron acceptor Q(B). In this review, we focus on the historical development of our understanding of this unique bicarbonate effect on the electron acceptor side of PSII, and its mechanism as obtained by biochemical, biophysical and molecular biological approaches in many laboratories around the World. We suggest an atomic level model in which HCO(3)(-)/CO(3)(2-) plays a key role in the protonation of the reduced Q(B). In addition, we make comments on the role of bicarbonate on the donor side of PSII, as has been extensively studied in the labs of Alan Stemler (USA) and Vyacheslav Klimov (Russia). We end this review by discussing the uniqueness of bicarbonate's role in oxygenic photosynthesis and its role in the evolutionary development of O(2)-evolving PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| | | | | | | |
Collapse
|
31
|
Abstract
Stable nitroxyl radicals are important tools in chemistry, biophysics, biology, and materials science. Their stability and the sensitivity of their EPR spectra to the local environment make them valuable molecular probes. This review seeks to give an overview of the developments in the field of nitroxide spin probes and their various applications, with the main focus on the pH-sensitive imidazoline nitroxide family.
Collapse
Affiliation(s)
- Evelyn Zottler
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
32
|
Kuvykin IV, Ptushenko VV, Vershubskii AV, Tikhonov AN. Regulation of electron transport in C3 plant chloroplasts in situ and in silico: Short-term effects of atmospheric CO2 and O2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:336-47. [DOI: 10.1016/j.bbabio.2010.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/08/2010] [Accepted: 12/22/2010] [Indexed: 11/30/2022]
|
33
|
Bobko AA, Kirilyuk IA, Gritsan NP, Polovyanenko DN, Grigor’ev IA, Khramtsov VV, Bagryanskaya EG. EPR and Quantum Chemical Studies of the pH-sensitive Imidazoline and Imidazolidine Nitroxides with Bulky Substituents. APPLIED MAGNETIC RESONANCE 2010; 39:437-451. [PMID: 22162912 PMCID: PMC3234120 DOI: 10.1007/s00723-010-0179-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The X- and W-band electron paramagnetic resonance (EPR) spectroscopies were employed to investigate a series of imidazolidine nitroxide radicals with different number of ethyl and methyl substituents at positions 2 and 5 of a heterocycle in liquid and frozen solutions. The influence of the substituents on the line shape and width was studied experimentally and analyzed using quantum chemical calculations. Each pair of the geminal ethyl groups in the positions 2 or 5 of the imidazolidine ring was found to produce an additional hyperfine splitting (hfs) of about 0.2 mT in the EPR spectra of the nitroxides. The effect was attributed to the hfs constant of only one of four methylene hydrogen atoms of two geminal ethyl substituents not fully averaged by ethyl group rotation and ring puckering. In accordance with this assumption, the substitution of hydrogen atoms of CH(2) groups in 2,2,5,5-tetraethyl-substituted imidazolidine nitroxides by deuterium leads to the substantial narrowing of EPR lines which could be useful for many biochemical and biomedical applications, including pH-monitoring. W-band EPR spectra of 2,2,5,5-tetraethyl-substituted imidazolidine nitroxide and its 2,2,5,5-tetraethyl-d(8) deuterium-substituted analog measured at low temperatures demonstrated high sensitivity of their g-factors to pH, which indicates their applicability as spin labels possessing high stability.
Collapse
Affiliation(s)
- A. A. Bobko
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - I. A. Kirilyuk
- Novosibirsk Institute of Organic Chemistry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N. P. Gritsan
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - D. N. Polovyanenko
- International Tomography Center, Russian Academy of Sciences, Institutskaya 3A, Novosibirsk 630090, Russia
| | - I. A. Grigor’ev
- Novosibirsk Institute of Organic Chemistry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - V. V. Khramtsov
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - E. G. Bagryanskaya
- International Tomography Center, Russian Academy of Sciences, Institutskaya 3A, Novosibirsk 630090, Russia
| |
Collapse
|
34
|
Interference Microscopy in Cell Biophysics. 2. Visualization of Individual Cells and Energy-Transducing Organelles. Cell Biochem Biophys 2010; 58:117-28. [DOI: 10.1007/s12013-010-9115-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Functional and topological aspects of pH-dependent regulation of electron and proton transport in chloroplasts in silico. Biosystems 2010; 103:164-79. [PMID: 20736046 DOI: 10.1016/j.biosystems.2010.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 11/21/2022]
Abstract
In this work, we summarize results of computer simulation of electron and proton transport processes coupled to ATP synthesis in chloroplasts performed within the frames of a mathematical model developed as a system of differential equations for concentrations of electron carriers and hydrogen ion inside and outside the granal and stromal thylakoids. The model takes into account topological peculiarities and lateral heterogeneity of the chloroplast lamellar system. This allowed us to analyze the influence of restricted diffusion of protons inside small compartments of a chloroplast (e.g., in the narrow inter-thylakoid gap) on electron transport processes. The model adequately describes two modes of pH-dependent feedback control of electron transport associated with: (i) the acidification of the thylakoid lumen, which causes the slowing down of plastoquinol oxidation and stimulates an increase in dissipation of excess energy in PS2, and (ii) the alkalization of stroma, inducing the activation of the BBC (Bassham-Benson-Calvin) cycle and intensified consumption of ATP and NADPH. The influence of ATP on electron transport is mediated by modulation of the thylakoid membrane conductivity to protons through the ATP synthase complexes. We also analyze the contribution of alternative electron transport pathways to the maintenance of optimal balance between the energy donating and energy consuming stages of the light-induced photosynthetic processes.
Collapse
|
36
|
Hall M, Mata-Cabana A, Akerlund HE, Florencio FJ, Schröder WP, Lindahl M, Kieselbach T. Thioredoxin targets of the plant chloroplast lumen and their implications for plastid function. Proteomics 2010; 10:987-1001. [PMID: 20049866 DOI: 10.1002/pmic.200900654] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The light-dependent regulation of stromal enzymes by thioredoxin (Trx)-catalysed disulphide/dithiol exchange is known as a classical mechanism for control of chloroplast metabolism. Recent proteome studies show that Trx targets are present not only in the stroma but in all chloroplast compartments, from the envelope to the thylakoid lumen. Trx-mediated redox control appears to be a common feature of important pathways, such as the Calvin cycle, starch synthesis and tetrapyrrole biosynthesis. However, the extent of thiol-dependent redox regulation in the thylakoid lumen has not been previously systematically explored. In this study, we addressed Trx-linked redox control in the chloroplast lumen of Arabidopsis thaliana. Using complementary proteomics approaches, we identified 19 Trx target proteins, thus covering more than 40% of the currently known lumenal chloroplast proteome. We show that the redox state of thiols is decisive for degradation of the extrinsic PsbO1 and PsbO2 subunits of photosystem II. Moreover, disulphide reduction inhibits activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase, which participates in thermal dissipation of excess absorbed light. Our results indicate that redox-controlled reactions in the chloroplast lumen play essential roles in the function of photosystem II and the regulation of adaptation to light intensity.
Collapse
Affiliation(s)
- Michael Hall
- Department of Chemistry, Umea3 University, Umea3, Sweden
| | | | | | | | | | | | | |
Collapse
|
37
|
Opanasenko VK, Vasyukhina LA, Naydov IA. Two types of ammonium uncoupling in pea chloroplasts. BIOCHEMISTRY. BIOKHIMIIA 2010; 75:784-91. [PMID: 20636271 DOI: 10.1134/s0006297910060143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of ammonium on ATP synthesis, electron transfer, and light-induced uptake of hydrogen ions in pea chloroplasts was studied. It is shown that the dependence of these reactions on ammonium concentration could be due to effects of two different uncoupling processes. The first process is induced by low ammonium concentrations (<0.2 mM); the second one is observed in the NH(4)Cl concentration interval of 0.5-5.0 mM. The first type of uncoupling is stimulated by palmitic acid or by N,N'-dicyclohexylcarbodiimide, while the second is stimulated by chloroplast thylakoid swelling caused by energy-dependent osmotic gradients. In the presence of the fluorescent dye sulforhodamine B, which does not penetrate through the cell membrane, this swelling causes the dye to enter the lumens. It is supposed that ammonium activates two different routes of cation leakage from the lumen. The first route involves channel proteins, while the second is a mechanosensitive pore that opens in response to osmotic gradients.
Collapse
Affiliation(s)
- V K Opanasenko
- Institute of Fundamental Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
38
|
Ikryannikova LN, Ustynyuk LY, Tikhonov AN. DFT study of nitroxide radicals: explicit modeling of solvent effects on the structural and electronic characteristics of 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:337-349. [PMID: 20225189 DOI: 10.1002/mrc.2585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An explicit DFT modeling of water surroundings on the electron paramagnetic resonance properties of 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (TA) has been performed. A stepwise hydration of TA is accompanied with certain changes in geometrical parameters (bond lengths and angles) and redistribution of partial electric charges in TA. An aqueous cluster of 45 water molecules can be considered as an appropriate model for a complete aqueous shell around TA, although most of the structural and electronic characteristics of TA already converge at about 10 water molecules. Water surroundings induce an increase in electron spin density on the nitrogen atom of the nitroxide fragment due to stabilization of the polar resonance structure > N(+*)-O(-) at the expense of less polar structure > N-O*. The water-induced rise of the isotropic splitting constant a(iso), calculated from the contact term of the hyperfine interaction, comprises Deltaa(iso)(rho(N2)) = 2.2-2.5 G, which is typical of experimental value for TA. There are two contributions to the solvent effect on the a(iso)(rho(N2)) value: the redistribution of spin density in the nitroxide fragment (polarity effect) and water-induced distortions of TA geometry. Microscopic variations in a hydrogen-bonded water network cause noticeable fluctuations of the splitting constant a(iso)(rho(N2)). Calculations of the atomic spin density (sigma(N2)) allowed us to compute the splitting constant from the relationship a(iso)(sigma(N2)) = Qsigma(N2), where Q = 36.2 G. A practical advantage of using this relationship is that it gives 'smoothed' values of the splitting constant, which are sensitive to the environment polarity but remain tolerant to microscopic fluctuations of the hydrogen-bonded water network around a spin-label molecule.
Collapse
|
39
|
Romanovsky Y, Tikhonov AN. Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor. ACTA ACUST UNITED AC 2010. [DOI: 10.3367/ufnr.0180.201009b.0931] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
40
|
Kuvykin IV, Vershubskii AV, Priklonskii VI, Tikhonov AN. Computer simulation study of pH-dependent regulation of electron transport in chloroplasts. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909040101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Clausen J, Junge W. The inhibitory effects of acidification and augmented oxygen pressure on water oxidation. PHOTOSYNTHESIS RESEARCH 2008; 98:229-233. [PMID: 18712490 DOI: 10.1007/s11120-008-9321-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/11/2008] [Indexed: 05/26/2023]
Abstract
Cyanobacteria, algae, and plants produce dioxygen from water. Driven and clocked by light quanta, the catalytic Mn(4)Ca Tyrosine centre accumulates four oxidizing equivalents before it abstracts four electrons from water and liberates dioxygen and protons. Intermediates of this reaction cascade are short-lived (<100 micros) and difficult to detect. By application of high oxygen pressure to cyanobacterial PSII-core-complexes, we have previously suppressed the transition from the highest oxidation state of the centre to the lowest by stabilizing a (peroxy) intermediate. Here, we investigated the inhibitory interplay of acidification and augmented oxygen pressure. Starting from pH 6.5, acidification increasingly inhibited the reduction of the highest oxidized state and resulted in a lower oxygen partial pressure for half inhibition. Oxygen and proton interfere with different steps of the reaction cascade.
Collapse
|