1
|
Ma W, Jia J, Huang X, Xie W, Zhang X, Tang J, Lin C, Zhao L, Fang P. Stable isotope labelling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Edwardsiella tarda ATCC 15947 under prolonged cold stress. Microb Pathog 2018; 125:12-19. [PMID: 30201590 DOI: 10.1016/j.micpath.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 01/15/2023]
Abstract
Edwardsiella tarda poses a threat to human health and has resulted in enormous economic losses in aquaculture. Low temperatures are usually applied to contain the growth of this microorganism. In this study, stable isotope labelling by amino acids in cell culture (SILAC) was used to conduct comparative proteomic quantitation of E. tarda ATCC 15947 under cold stress for two weeks. We identified 1391 proteins, of which 898 were quantifiable. Of these, 72 proteins were upregulated and 164 were downregulated in response to cold stress. Even though E. tarda ATCC 15947 is not a psychrophile, several key proteins related to DNA synthesis and transcription were significantly upregulated. Additionally, proteins related to haemolytic activities and gluconeogenesis were upregulated, even though E. tarda ATCC 15497 is considered non-virulent in aquaculture. This study therefore delineated the specific proteomic response of this E. tarda ATCC 15947 to prolonged cold stress.
Collapse
Affiliation(s)
- Weixing Ma
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China; Qingdao University of Science and Technology, No. 53, Zhengzhou Road, Qingdao, 266042, China
| | - Juntao Jia
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China.
| | - Xiaohua Huang
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| | - Wancui Xie
- Qingdao University of Science and Technology, No. 53, Zhengzhou Road, Qingdao, 266042, China
| | - Xiaoliang Zhang
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| | - Jing Tang
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| | - Chao Lin
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| | - Liqing Zhao
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| | - Peipei Fang
- Shandong Entry-Exit Inspection and Quarantine Bureau, No. 70, Qutangxia Road, Qingdao, 266002, China
| |
Collapse
|
2
|
Colina-Tenorio L, Dautant A, Miranda-Astudillo H, Giraud MF, González-Halphen D. The Peripheral Stalk of Rotary ATPases. Front Physiol 2018; 9:1243. [PMID: 30233414 PMCID: PMC6131620 DOI: 10.3389/fphys.2018.01243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type) can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly conserved in both structure and function, however, the F-type peripheral stalks have divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator function, as evidenced by several biochemical and recent structural studies. This review describes the information regarding the organization of the peripheral stalk components of F, A, and V-ATPases, highlighting the key differences between the studied enzymes, as well as the different processes in which the structure is involved.
Collapse
Affiliation(s)
- Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alain Dautant
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Héctor Miranda-Astudillo
- Genetics and Physiology of Microalgae, InBios, PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Brunk E, Mih N, Monk J, Zhang Z, O’Brien EJ, Bliven SE, Chen K, Chang RL, Bourne PE, Palsson BO. Systems biology of the structural proteome. BMC SYSTEMS BIOLOGY 2016; 10:26. [PMID: 26969117 PMCID: PMC4787049 DOI: 10.1186/s12918-016-0271-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The success of genome-scale models (GEMs) can be attributed to the high-quality, bottom-up reconstructions of metabolic, protein synthesis, and transcriptional regulatory networks on an organism-specific basis. Such reconstructions are biochemically, genetically, and genomically structured knowledge bases that can be converted into a mathematical format to enable a myriad of computational biological studies. In recent years, genome-scale reconstructions have been extended to include protein structural information, which has opened up new vistas in systems biology research and empowered applications in structural systems biology and systems pharmacology. RESULTS Here, we present the generation, application, and dissemination of genome-scale models with protein structures (GEM-PRO) for Escherichia coli and Thermotoga maritima. We show the utility of integrating molecular scale analyses with systems biology approaches by discussing several comparative analyses on the temperature dependence of growth, the distribution of protein fold families, substrate specificity, and characteristic features of whole cell proteomes. Finally, to aid in the grand challenge of big data to knowledge, we provide several explicit tutorials of how protein-related information can be linked to genome-scale models in a public GitHub repository ( https://github.com/SBRG/GEMPro/tree/master/GEMPro_recon/). CONCLUSIONS Translating genome-scale, protein-related information to structured data in the format of a GEM provides a direct mapping of gene to gene-product to protein structure to biochemical reaction to network states to phenotypic function. Integration of molecular-level details of individual proteins, such as their physical, chemical, and structural properties, further expands the description of biochemical network-level properties, and can ultimately influence how to model and predict whole cell phenotypes as well as perform comparative systems biology approaches to study differences between organisms. GEM-PRO offers insight into the physical embodiment of an organism's genotype, and its use in this comparative framework enables exploration of adaptive strategies for these organisms, opening the door to many new lines of research. With these provided tools, tutorials, and background, the reader will be in a position to run GEM-PRO for their own purposes.
Collapse
Affiliation(s)
- Elizabeth Brunk
- />Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093 USA
- />Joint BioEnergy Institute, Emeryville, CA 94608 USA
| | - Nathan Mih
- />Bioinformatics and Systems Biology Program, University of California, La Jolla, San Diego, CA 92093 USA
| | - Jonathan Monk
- />Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093 USA
| | - Zhen Zhang
- />Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093 USA
| | - Edward J. O’Brien
- />Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093 USA
| | - Spencer E. Bliven
- />Bioinformatics and Systems Biology Program, University of California, La Jolla, San Diego, CA 92093 USA
- />National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Ke Chen
- />Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093 USA
| | - Roger L. Chang
- />Department of Systems Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Philip E. Bourne
- />Office of the Director, National Institutes of Health, Bethesda, MD 20894 USA
| | - Bernhard O. Palsson
- />Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093 USA
| |
Collapse
|
4
|
Abstract
Molecular bioenergetics deals with the construction, function and regulation of the powerhouses of life. The present overview sketches scenes and actors, farsighted goals and daring hypotheses, meticulous tool-making, painstaking benchwork, lucky discovery, serious scepticism, emphatic believing and strong characters with weak and others with hard arguments, told from a personal, admittedly limited, perspective. Bioenergetics will blossom further with the search focused on both where there is bright light for ever-finer detail and the obvious dark spots for surprise and discovery.
Collapse
|
5
|
Miranda-Astudillo H, Cano-Estrada A, Vázquez-Acevedo M, Colina-Tenorio L, Downie-Velasco A, Cardol P, Remacle C, Domínguez-Ramírez L, González-Halphen D. Interactions of subunits Asa2, Asa4 and Asa7 in the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1-13. [PMID: 23933283 DOI: 10.1016/j.bbabio.2013.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/24/2013] [Accepted: 08/02/2013] [Indexed: 12/29/2022]
Abstract
Mitochondrial F1FO-ATP synthase of chlorophycean algae is a complex partially embedded in the inner mitochondrial membrane that is isolated as a highly stable dimer of 1600kDa. It comprises 17 polypeptides, nine of which (subunits Asa1 to 9) are not present in classical mitochondrial ATP synthases and appear to be exclusive of the chlorophycean lineage. In particular, subunits Asa2, Asa4 and Asa7 seem to constitute a section of the peripheral stalk of the enzyme. Here, we over-expressed and purified subunits Asa2, Asa4 and Asa7 and the corresponding amino-terminal and carboxy-terminal halves of Asa4 and Asa7 in order to explore their interactions in vitro, using immunochemical techniques, blue native electrophoresis and affinity chromatography. Asa4 and Asa7 interact strongly, mainly through their carboxy-terminal halves. Asa2 interacts with both Asa7 and Asa4, and also with subunit α in the F1 sector. The three Asa proteins form an Asa2/Asa4/Asa7 subcomplex. The entire Asa7 and the carboxy-terminal half of Asa4 seem to be instrumental in the interaction with Asa2. Based on these results and on computer-generated structural models of the three subunits, we propose a model for the Asa2/Asa4/Asa7 subcomplex and for its disposition in the peripheral stalk of the algal ATP synthase.
Collapse
|
6
|
Welch AK, Bostwick CJ, Cain BD. Manipulations in the peripheral stalk of the Saccharomyces cerevisiae F1F0-ATP synthase. J Biol Chem 2011; 286:10155-62. [PMID: 21257750 PMCID: PMC3060467 DOI: 10.1074/jbc.m110.213447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/19/2011] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae F(1)F(0)-ATP synthase peripheral stalk is composed of the OSCP, h, d, and b subunits. The b subunit has two membrane-spanning domains and a large hydrophilic domain that extends along one side of the enzyme to the top of F(1). In contrast, the Escherichia coli peripheral stalk has two identical b subunits, and subunits with substantially altered lengths can be incorporated into a functional F(1)F(0)-ATP synthase. The differences in subunit structure between the eukaryotic and prokaryotic peripheral stalks raised a question about whether the two stalks have similar physical and functional properties. In the present work, the length of the S. cerevisiae b subunit has been manipulated to determine whether the F(1)F(0)-ATP synthase exhibited the same tolerances as in the bacterial enzyme. Plasmid shuffling was used for ectopic expression of altered b subunits in a strain carrying a chromosomal disruption of the ATP4 gene. Wild type growth phenotypes were observed for insertions of up to 11 and a deletion of four amino acids on a nonfermentable carbon source. In mitochondria-enriched fractions, abundant ATP hydrolysis activity was seen for the insertion mutants. ATPase activity was largely oligomycin-insensitive in these mitochondrial fractions. In addition, very poor complementation was seen in a mutant with an insertion of 14 amino acids. Lengthier deletions yielded a defective enzyme. The results suggest that although the eukaryotic peripheral stalk is near its minimum length, the b subunit can be extended a considerable distance.
Collapse
Affiliation(s)
- Amanda K. Welch
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Caleb J. Bostwick
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Brian D. Cain
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
7
|
Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk. Proc Natl Acad Sci U S A 2011; 108:3924-9. [PMID: 21368147 DOI: 10.1073/pnas.1011581108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP is synthesized by ATP synthase (F(O)F(1)-ATPase). Its rotary electromotor (F(O)) translocates protons (in some organisms sodium cations) and generates torque to drive the rotary chemical generator (F(1)). Elastic power transmission between F(O) and F(1) is essential for smoothing the cooperation of these stepping motors, thereby increasing their kinetic efficiency. A particularly compliant elastic domain is located on the central rotor (c(10-15)/ε/γ), right between the two sites of torque generation and consumption. The hinge on the active lever on subunit β adds further compliance. It is under contention whether or not the peripheral stalk (and the "stator" as a whole) also serves as elastic buffer. In the enzyme from Escherichia coli, the most extended component of the stalk is the homodimer b(2), a right-handed α-helical coiled coil. By fluctuation analysis we determined the spring constant of the stator in response to twisting and bending, and compared wild-type with b-mutant enzymes. In both deformation modes, the stator was very stiff in the wild type. It was more compliant if b was elongated by 11 amino acid residues. Substitution of three consecutive residues in b by glycine, expected to destabilize its α-helical structure, further reduced the stiffness against bending deformation. In any case, the stator was at least 10-fold stiffer than the rotor, and the enzyme retained its proton-coupled activity.
Collapse
|
8
|
Walshaw J, Gillespie MD, Kelemen GH. A novel coiled-coil repeat variant in a class of bacterial cytoskeletal proteins. J Struct Biol 2010; 170:202-15. [DOI: 10.1016/j.jsb.2010.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 02/06/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
|
9
|
Wise JG, Vogel PD. Accommodating discontinuities in dimeric left-handed coiled coils in ATP synthase external stalks. Biophys J 2009; 96:2823-31. [PMID: 19348765 DOI: 10.1016/j.bpj.2008.12.3938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 11/19/2008] [Accepted: 12/17/2008] [Indexed: 11/16/2022] Open
Abstract
ATP synthases from coupling membranes are complex rotary motors that convert the energy of proton gradients across coupling membranes into the chemical potential of the beta-gamma anhydride bond of ATP. Proton movement within the ring of c subunits localized in the F(0)-sector drives gamma and epsilon rotation within the F(1)alpha(3)beta(3) catalytic core where substrates are bound and products are released. An external stalk composed of homodimeric subunits b(2) in Escherichia coli or heterodimeric bb' in photosynthetic synthases connects F(0) subunit a with F(1) subunits delta and most likely alpha. The external stalk resists rotation, and is of interest both functionally and structurally. Hypotheses that the external stalk contributes to the overall efficiency of the reaction through elastic coupling of rotational substeps, and that stalks form staggered, right-handed coiled coils, are investigated here. We report on different structures that accommodate heptad discontinuities with either local or global underwinding. Analyses of the knob-and-hole packing of the E. coli b(2) and Synechocystis bb' stalks strongly support the possibility that these proteins can adopt conventional left-handed coiled coils.
Collapse
Affiliation(s)
- John G Wise
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA.
| | | |
Collapse
|
10
|
De-novo modeling and ESR validation of a cyanobacterial FoF1–ATP synthase subunit bb′ left-handed coiled coil. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:183-90. [DOI: 10.1016/j.bbabio.2008.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/12/2008] [Accepted: 12/15/2008] [Indexed: 11/19/2022]
|
11
|
Zaida TM, Hornung T, Volkov OA, Hoffman AD, Pandey SJ, Wise JG, Vogel PD. Conformational changes in the Escherichia coli ATP synthase b-dimer upon binding to F(1)-ATPase. J Bioenerg Biomembr 2009; 40:551-9. [PMID: 19142720 DOI: 10.1007/s10863-008-9189-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/24/2008] [Indexed: 11/28/2022]
Abstract
Conformational changes within the subunit b-dimer of the E. coli ATP synthase occur upon binding to the F(1) sector. ESR spectra of spin-labeled b at room temperature indicated a pivotal point in the b-structure at residue 62. Spectra of frozen b +/- F(1) and calculated interspin distances suggested that where contact between b (2) and F(1) occurs (above about residue 80), the structure of the dimer changes minimally. Between b-residues 33 and 64 inter-subunit distances in the F(1)-bound b-dimer were found to be too large to accommodate tightly coiled coil packing and therefore suggest a dissociation and disengagement of the dimer upon F(1)-binding. Mechanistic implications of this "bubble" formation in the tether domain of ATP synthase b ( 2 ) are discussed.
Collapse
Affiliation(s)
- Tarek M Zaida
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, TX 75275, USA
| | | | | | | | | | | | | |
Collapse
|