1
|
Kinsey LJ, Beane WS, Tseng KAS. Accelerating an integrative view of quantum biology. Front Physiol 2024; 14:1349013. [PMID: 38283282 PMCID: PMC10811782 DOI: 10.3389/fphys.2023.1349013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Quantum biology studies span multiple disciplines including physics, engineering, and biology with the goal of understanding the quantum underpinnings of living systems. Recent findings have brought wide attention to the role of quantum mechanisms in the function and regulation of biological processes. Moreover, a number of activities have been integral in building a vibrant quantum biology community. Due to the inherent interdisciplinary nature of the field, it is a challenge for quantum biology researchers to integrate and advance findings across the physical and biological disciplines. Here we outline achievable approaches to developing a shared platform-including the establishment of standardized manipulation tools and sensors, and a common scientific lexicon. Building a shared community framework is also crucial for fostering robust interdisciplinary collaborations, enhancing knowledge sharing, and diversifying participation in quantum biology. A unified approach promises not only to deepen our understanding of biological systems at a quantum level but also to accelerate the frontiers of medical and technological innovations.
Collapse
Affiliation(s)
- Luke J. Kinsey
- Biology Department, Kalamazoo College, Kalamazoo, MI, United States
| | - Wendy S. Beane
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
2
|
Komatsu Y, Takizawa K. A quantum chemical study on the effects of varying the central metal in extended photosynthetic pigments. Phys Chem Chem Phys 2021; 23:14404-14414. [PMID: 34180470 DOI: 10.1039/d1cp00760b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a certain period of Earth's history, chlorophylls with Mg as their central metal would have been selected as the major photosynthetic pigments, reflecting the radiation in habitats. Assuming evolution in different light and material environments, different photosynthetic pigments would occur. This study is the first attempt to evaluate the physical and chemical properties of model photosynthetic pigments and their potential to function in a variety of light environments using quantum chemistry calculations. Specifically, bacteriochlorophyll b (Bchl b), phthalocyanine (Pht) and meso-dibenzoporphycene (mDBPc) were selected as template molecules, while Be, Mg, Ca, Ni, Zn, Sr, Pd, Cd, Ba, Pt, Hg, Pb and H2 were examined as the central metals in each molecule in various solvents. The results showed that the light absorption by each of these compounds varied over a range of 100 nm depending on the central metal and the surrounding solvent, and Pb produced the largest red shift in the absorption bands of all three photosynthetic pigments. The Pht molecules showed similar redox properties to the chlorophylls, suggesting that these derivatives could be substituted for the special pairs in reaction centers, while the mDBPc molecules appear to be more suitable as accessory pigments due to their extraordinarily broad absorption ranges of approximately 500 nm depending on the conditions.
Collapse
Affiliation(s)
- Yu Komatsu
- AstroBiology Center, Osawa 2-21-1, Mitaka, Tokyo, Japan. and National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo, Japan
| | - Kenji Takizawa
- AstroBiology Center, Osawa 2-21-1, Mitaka, Tokyo, Japan. and National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
3
|
Blomberg MRA. Activation of O 2 and NO in heme-copper oxidases - mechanistic insights from computational modelling. Chem Soc Rev 2021; 49:7301-7330. [PMID: 33006348 DOI: 10.1039/d0cs00877j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heme-copper oxidases are transmembrane enzymes involved in aerobic and anaerobic respiration. The largest subgroup contains the cytochrome c oxidases (CcO), which reduce molecular oxygen to water. A significant part of the free energy released in this exergonic process is conserved as an electrochemical gradient across the membrane, via two processes, electrogenic chemistry and proton pumping. A deviant subgroup is the cytochrome c dependent NO reductases (cNOR), which reduce nitric oxide to nitrous oxide and water. This is also an exergonic reaction, but in this case none of the released free energy is conserved. Computational studies applying hybrid density functional theory to cluster models of the bimetallic active sites in the heme-copper oxidases are reviewed. To obtain a reliable description of the reaction mechanisms, energy profiles of the entire catalytic cycles, including the reduction steps have to be constructed. This requires a careful combination of computational results with certain experimental data. Computational studies have elucidated mechanistic details of the chemical parts of the reactions, involving cleavage and formation of covalent bonds, which have not been obtainable from pure experimental investigations. Important insights regarding the mechanisms of energy conservation have also been gained. The computational studies show that the reduction potentials of the active site cofactors in the CcOs are large enough to afford electrogenic chemistry and proton pumping, i.e. efficient energy conservation. These results solve a conflict between different types of experimental data. A mechanism for the proton pumping, involving a specific and crucial role for the active site tyrosine, conserved in all CcOs, is suggested. For the cNORs, the calculations show that the low reduction potentials of the active site cofactors are optimized for fast elimination of the toxic NO molecules. At the same time, the low reduction potentials lead to endergonic reduction steps with high barriers. To prevent even higher barriers, which would lead to a too slow reaction, when the electrochemical gradient across the membrane is present, the chemistry must occur in a non-electrogenic manner. This explains why there is no energy conservation in cNOR.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
4
|
Blomberg MRA. The mechanism for oxygen reduction in the C family cbb 3 cytochrome c oxidases - Implications for the proton pumping stoichiometry. J Inorg Biochem 2019; 203:110866. [PMID: 31706225 DOI: 10.1016/j.jinorgbio.2019.110866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 11/16/2022]
Abstract
Cytochrome c oxidases (CcOs) couple the exergonic reduction of molecular oxygen to proton pumping across the membrane in which they are embedded, thereby conserving a significant part of the free energy. The A family CcOs are known to pump four protons per oxygen molecule, while there is no consensus regarding the proton pumping stoichiometry for the C family cbb3 oxidases. Hybrid density functional theory is used here to investigate the catalytic mechanism for oxygen reduction in cbb3 oxidases. A surprising result is that the barrier for O O bond cleavage at the mixed valence reduction level seems to be too high compared to the overall reaction rate of the enzyme. It is therefore suggested that the O O bond is cleaved only after the first proton coupled reduction step, and that this reduction step most likely is not coupled to proton pumping. Furthermore, since the cbb3 oxidases have only one proton channel leading to the active site, it is proposed that the activated EH intermediate, suggested to be responsible for proton pumping in one of the reduction steps in the A family, cannot be involved in the catalytic cycle for cbb3, which results in the lack of proton pumping also in the E to R reduction step. In summary, the calculations indicate that only two protons are pumped per oxygen molecule in cbb3 oxidases. However, more experimental information on this divergent enzyme is needed, e.g. whether the flow of electrons resembles that in the other more well-studied CcO families.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
|
6
|
Wei WJ, Qian HX, Wang WJ, Liao RZ. Computational Understanding of the Selectivities in Metalloenzymes. Front Chem 2018; 6:638. [PMID: 30622942 PMCID: PMC6308299 DOI: 10.3389/fchem.2018.00638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 01/26/2023] Open
Abstract
Metalloenzymes catalyze many different types of biological reactions with high efficiency and remarkable selectivity. The quantum chemical cluster approach and the combined quantum mechanics/molecular mechanics methods have proven very successful in the elucidation of the reaction mechanism and rationalization of selectivities in enzymes. In this review, recent progress in the computational understanding of various selectivities including chemoselectivity, regioselectivity, and stereoselectivity, in metalloenzymes, is discussed.
Collapse
Affiliation(s)
| | | | | | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Siegbahn PEM, Blomberg MRA. A Systematic DFT Approach for Studying Mechanisms of Redox Active Enzymes. Front Chem 2018; 6:644. [PMID: 30627530 PMCID: PMC6309562 DOI: 10.3389/fchem.2018.00644] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 02/03/2023] Open
Abstract
When DFT has been applied to study mechanisms of redox processes a common procedure has been to study the results for many different functionals. For redox reactions involving the first row transition metals, this approach has given very different results for different functionals. The conclusion has been that DFT cannot be used for these reactions. In the meantime, results with strong predictability have been generated, most noteworthy for photosystem II, where all DFT predictions have been verified by experiments performed later. In order to obtain these predictive results using DFT, an alternative, systematic approach has been used, where the key differences between the results for different functionals can be rationalized by using a single parameter, rather than using the very large number of differences in the functionals.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Margareta R A Blomberg
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Kärkäs MD, Li YY, Siegbahn PEM, Liao RZ, Åkermark B. Metal–Ligand Cooperation in Single-Site Ruthenium Water Oxidation Catalysts: A Combined Experimental and Quantum Chemical Approach. Inorg Chem 2018; 57:10881-10895. [DOI: 10.1021/acs.inorgchem.8b01527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Markus D. Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Guo Y, Li H, He LL, Zhao DX, Gong LD, Yang ZZ. Theoretical reflections on the structural polymorphism of the oxygen-evolving complex in the S2 state and the correlations to substrate water exchange and water oxidation mechanism in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:833-846. [DOI: 10.1016/j.bbabio.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/25/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
|
11
|
Blomberg MRA, Ädelroth P. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:884-894. [PMID: 28801051 DOI: 10.1016/j.bbabio.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/29/2017] [Accepted: 08/05/2017] [Indexed: 11/30/2022]
Abstract
Bacterial NO-reductases (NOR) belong to the heme-copper oxidase (HCuO) superfamily, in which most members are O2-reducing, proton-pumping enzymes. This study is one in a series aiming to elucidate the reaction mechanisms of the HCuOs, including the mechanisms for cellular energy conservation. One approach towards this goal is to compare the mechanisms for the different types of HCuOs, cytochrome c oxidase (CcO) and NOR, reducing the two substrates O2 and NO. Specifically in this study, we describe the mechanism for oxygen reduction in cytochrome c dependent NOR (cNOR). Hybrid density functional calculations were performed on large cluster models of the cNOR binuclear active site. Our results are used, together with published experimental information, to construct a free energy profile for the entire catalytic cycle. Although the overall reaction is quite exergonic, we show that during the reduction of molecular oxygen in cNOR, two of the reduction steps are endergonic with high barriers for proton uptake, which is in contrast to oxygen reduction in CcO, where all reduction steps are exergonic. This difference between the two enzymes is suggested to be important for their differing capabilities for energy conservation. An additional result from this study is that at least three of the four reduction steps are initiated by proton transfer to the active site, which is in contrast to CcO, where electrons always arrive before the protons to the active site. The roles of the non-heme metal ion and the redox-active tyrosine in the active site are also discussed.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
12
|
Poiana F, von Ballmoos C, Gonska N, Blomberg MRA, Ädelroth P, Brzezinski P. Splitting of the O-O bond at the heme-copper catalytic site of respiratory oxidases. SCIENCE ADVANCES 2017; 3:e1700279. [PMID: 28630929 PMCID: PMC5473675 DOI: 10.1126/sciadv.1700279] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/20/2017] [Indexed: 05/30/2023]
Abstract
Heme-copper oxidases catalyze the four-electron reduction of O2 to H2O at a catalytic site that is composed of a heme group, a copper ion (CuB), and a tyrosine residue. Results from earlier experimental studies have shown that the O-O bond is cleaved simultaneously with electron transfer from a low-spin heme (heme a/b), forming a ferryl state (PR ; Fe4+=O2-, CuB2+-OH-). We show that with the Thermus thermophilus ba3 oxidase, at low temperature (10°C, pH 7), electron transfer from the low-spin heme b to the catalytic site is faster by a factor of ~10 (τ ≅ 11 μs) than the formation of the PR ferryl (τ ≅110 μs), which indicates that O2 is reduced before the splitting of the O-O bond. Application of density functional theory indicates that the electron acceptor at the catalytic site is a high-energy peroxy state [Fe3+-O--O-(H+)], which is formed before the PR ferryl. The rates of heme b oxidation and PR ferryl formation were more similar at pH 10, indicating that the formation of the high-energy peroxy state involves proton transfer within the catalytic site, consistent with theory. The combined experimental and theoretical data suggest a general mechanism for O2 reduction by heme-copper oxidases.
Collapse
Affiliation(s)
- Federica Poiana
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Nathalie Gonska
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Organic Chemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Guo Y, Li H, He LL, Zhao DX, Gong LD, Yang ZZ. The open-cubane oxo–oxyl coupling mechanism dominates photosynthetic oxygen evolution: a comprehensive DFT investigation on O–O bond formation in the S4state. Phys Chem Chem Phys 2017; 19:13909-13923. [DOI: 10.1039/c7cp01617d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How is O2created in nature? Comprehensive DFT investigations determine the dominance of the open-cubane oxo–oxyl coupling mechanism over alternative possibilities.
Collapse
Affiliation(s)
- Yu Guo
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Hui Li
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Lan-Lan He
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Li-Dong Gong
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| |
Collapse
|
14
|
Abstract
![]()
Although QM/MM calculations
are the primary current tool for modeling enzymatic reactions, the
reliability of such calculations can be limited by the size of the
QM region. Thus, we examine in this work the dependence of QM/MM calculations
on the size of the QM region, using the reaction of catechol-O-methyl transferase (COMT) as a test case. Our study focuses
on the effect of adding residues to the QM region on the activation
free energy, obtained with extensive QM/MM sampling. It is found that
the sensitivity of the activation barrier to the size of the QM is
rather limited, while the dependence of the reaction free energy is
somewhat larger. Of course, the results depend on the inclusion of
the first solvation shell in the QM regions. For example, the inclusion
of the Mg2+ ion can change the activation barrier due to
charge transfer effects. However, such effects can easily be included
in semiempirical approaches by proper parametrization. Overall, we
establish that QM/MM calculations of activation barriers of enzymatic
reactions are not highly sensitive to the size of the QM region, beyond
the immediate region that describes the reacting atoms.
Collapse
|
15
|
Hessel V, Shahbazali E, Noël T, Zelentsov S. The Claisen Rearrangement - Part 2: Impact Factor Analysis of the Claisen Rearrangement, in Batch and in Flow. CHEMBIOENG REVIEWS 2014. [DOI: 10.1002/cben.201400022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Hessel V, Shahbazali E, Noël T, Zelentsov S. Claisen-Umlagerung im Rühr- und Durchflussbetrieb: Verständnis des Mechanismus und Steuerung der Einflussgrößen. CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201400125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Liao RZ, Siegbahn PEM. Which Oxidation State Leads to O–O Bond Formation in Cp*Ir(bpy)Cl-Catalyzed Water Oxidation, Ir(V), Ir(VI), or Ir(VII)? ACS Catal 2014. [DOI: 10.1021/cs501160x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rong-Zhen Liao
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Per E. M. Siegbahn
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
18
|
Zelentsov S, Hessel V, Shahbazali E, Noël T. The Claisen Rearrangement - Part 1: Mechanisms and Transition States, Revisited with Quantum Mechanical Calculations and Ultrashort Pulse Spectroscopy. CHEMBIOENG REVIEWS 2014. [DOI: 10.1002/cben.201400021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Sheng X, Liu Y, Zhang R. A theoretical study of the catalytic mechanism of oxalyl-CoA decarboxylase, an enzyme for treating urolithiasis. RSC Adv 2014. [DOI: 10.1039/c4ra03611e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Manta B, Raushel FM, Himo F. Reaction Mechanism of Zinc-Dependent Cytosine Deaminase from Escherichia coli: A Quantum-Chemical Study. J Phys Chem B 2014; 118:5644-52. [DOI: 10.1021/jp501228s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bianca Manta
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Frank M. Raushel
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Fahmi Himo
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| |
Collapse
|
21
|
Computer modeling of electron and proton transport in chloroplasts. Biosystems 2014; 121:1-21. [PMID: 24835748 DOI: 10.1016/j.biosystems.2014.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 11/21/2022]
Abstract
Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis.
Collapse
|
22
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 441] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
23
|
Blomberg MRA, Siegbahn PEM. Proton pumping in cytochrome c oxidase: energetic requirements and the role of two proton channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1165-77. [PMID: 24418352 DOI: 10.1016/j.bbabio.2014.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 12/15/2022]
Abstract
Cytochrome c oxidase is a superfamily of membrane bound enzymes catalyzing the exergonic reduction of molecular oxygen to water, producing an electrochemical gradient across the membrane. The gradient is formed both by the electrogenic chemistry, taking electrons and protons from opposite sides of the membrane, and by proton pumping across the entire membrane. In the most efficient subfamily, the A-family of oxidases, one proton is pumped in each reduction step, which is surprising considering the fact that two of the reduction steps most likely are only weakly exergonic. Based on a combination of quantum chemical calculations and experimental information, it is here shown that from both a thermodynamic and a kinetic point of view, it should be possible to pump one proton per electron also with such an uneven distribution of the free energy release over the reduction steps, at least up to half the maximum gradient. A previously suggested pumping mechanism is developed further to suggest a reason for the use of two proton transfer channels in the A-family. Since the rate of proton transfer to the binuclear center through the D-channel is redox dependent, it might become too slow for the steps with low exergonicity. Therefore, a second channel, the K-channel, where the rate is redox-independent is needed. A redox-dependent leakage possibility is also suggested, which might be important for efficient energy conservation at a high gradient. A mechanism for the variation in proton pumping stoichiometry over the different subfamilies of cytochrome oxidase is also suggested. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
24
|
Linke K, Ho FM. Water in Photosystem II: Structural, functional and mechanistic considerations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:14-32. [DOI: 10.1016/j.bbabio.2013.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/30/2022]
|
25
|
Angeles-Boza AM, Ertem MZ, Sarma R, Ibañez CH, Maji S, Llobet A, Cramer CJ, Roth JP. Competitive oxygen-18 kinetic isotope effects expose O–O bond formation in water oxidation catalysis by monomeric and dimeric ruthenium complexes. Chem Sci 2014. [DOI: 10.1039/c3sc51919h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Competitive 18O KIEs on water oxidation catalysis provide a probe of transition states for O–O bond formation.
Collapse
Affiliation(s)
| | - Mehmed Z. Ertem
- Department of Chemistry and Supercomputing Center
- University of Minnesota
- Minneapolis, USA
| | - Rupam Sarma
- Department of Chemistry
- Johns Hopkins University
- Baltimore, USA
| | | | - Somnath Maji
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona, Spain
| | - Christopher J. Cramer
- Department of Chemistry and Supercomputing Center
- University of Minnesota
- Minneapolis, USA
| | - Justine P. Roth
- Department of Chemistry
- Johns Hopkins University
- Baltimore, USA
| |
Collapse
|
26
|
Mutations in the D-channel of cytochrome c oxidase causes leakage of the proton pump. FEBS Lett 2013; 588:545-8. [PMID: 24389245 DOI: 10.1016/j.febslet.2013.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/21/2022]
Abstract
It has experimentally been found that certain mutations close to the entry point of the proton transfer channel in cytochrome c oxidase stop proton translocation but not the oxygen reduction chemistry. This effect is termed uncoupling. Since the mutations are 20Å away from the catalytic center, this is very surprising. A new explanation for this phenomenon is suggested here, involving a local effect at the entry point of the proton channel, rather than the long range effects suggested earlier.
Collapse
|
27
|
Liao RZ, Li XC, Siegbahn PEM. Reaction Mechanism of Water Oxidation Catalyzed by Iron Tetraamido Macrocyclic Ligand Complexes - A DFT Study. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300710] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Blomberg MR, Siegbahn PE. Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:826-33. [DOI: 10.1016/j.bbabio.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/27/2013] [Accepted: 04/13/2013] [Indexed: 11/29/2022]
|
29
|
Ichino T, Yoshioka Y. Theoretical Study on the Mechanism of Dioxygen Evolution in Photosystem II. I. Molecular and Electronic Structures at the S0, S1, and S2States of Oxygen-Evolving Complex. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20120223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tomoya Ichino
- Chemistry Department for Materials, Graduate School of Engineering, Mie University
| | - Yasunori Yoshioka
- Chemistry Department for Materials, Graduate School of Engineering, Mie University
| |
Collapse
|
30
|
Recent Progress in Density Functional Methodology for Biomolecular Modeling. STRUCTURE AND BONDING 2013. [DOI: 10.1007/978-3-642-32750-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Sarma R, Angeles-Boza AM, Brinkley DW, Roth JP. Studies of the Di-iron(VI) Intermediate in Ferrate-Dependent Oxygen Evolution from Water. J Am Chem Soc 2012; 134:15371-86. [DOI: 10.1021/ja304786s] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rupam Sarma
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| | - David W. Brinkley
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| |
Collapse
|
32
|
The mechanism for proton pumping in cytochrome c oxidase from an electrostatic and quantum chemical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:495-505. [PMID: 21978537 DOI: 10.1016/j.bbabio.2011.09.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 11/21/2022]
Abstract
The mechanism for proton pumping in cytochrome c oxidase in the respiratory chain, has for decades been one of the main unsolved problems in biochemistry. However, even though several different suggested mechanisms exist, many of the steps in these mechanisms are quite similar and constitute a general consensus framework for discussing proton pumping. When these steps are analyzed, at least three critical gating situations are found, and these points are where the suggested mechanisms in general differ. The requirements for gating are reviewed and analyzed in detail, and a mechanism is suggested, where solutions for all the gating situations are formulated. This mechanism is based on an electrostatic analysis of a kinetic experiment fior the O to E transition. The key component of the mechanism is a positively charged transition state. An electron on heme a opens the gate for proton transfer from the N-side to a pump loading site (PLS). When the negative charge of the electron is compensated by a chemical proton, the positive transition state prevents backflow from the PLS to the N-side at the most critical stage of the pumping process. The mechanism has now been tested by large model DFT calculations, and these calculations give strong support for the suggested mechanism.
Collapse
|
33
|
Light induced oxidative water splitting in photosynthesis: Energetics, kinetics and mechanism. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:35-43. [DOI: 10.1016/j.jphotobiol.2011.01.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/20/2022]
|
34
|
Liao RZ, Yu JG, Himo F. Tungsten-dependent formaldehyde ferredoxin oxidoreductase: Reaction mechanism from quantum chemical calculations. J Inorg Biochem 2011; 105:927-36. [DOI: 10.1016/j.jinorgbio.2011.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 11/30/2022]
|
35
|
Ho FM. Structural and mechanistic investigations of photosystem II through computational methods. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:106-20. [PMID: 21565158 DOI: 10.1016/j.bbabio.2011.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/22/2011] [Accepted: 04/02/2011] [Indexed: 11/17/2022]
Abstract
The advent of oxygenic photosynthesis through water oxidation by photosystem II (PSII) transformed the planet, ultimately allowing the evolution of aerobic respiration and an explosion of ecological diversity. The importance of this enzyme to life on Earth has ironically been paralleled by the elusiveness of a detailed understanding of its precise catalytic mechanism. Computational investigations have in recent years provided more and more insights into the structural and mechanistic details that underlie the workings of PSII. This review will present an overview of some of these studies, focusing on those that have aimed at elucidating the mechanism of water oxidation at the CaMn₄ cluster in PSII, and those exploring the features of the structure and dynamics of this enzyme that enable it to catalyse this energetically demanding reaction. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Felix M Ho
- Deparment of Photochemistry and Molecular Sciences, Angström Laboratory, Uppsala University, Sweden.
| |
Collapse
|
36
|
Liao RZ, Yu JG, Himo F. Quantum Chemical Modeling of Enzymatic Reactions: The Case of Decarboxylation. J Chem Theory Comput 2011; 7:1494-501. [PMID: 26610140 DOI: 10.1021/ct200031t] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present a systematic study of the decarboxylation step of the enzyme aspartate decarboxylase with the purpose of assessing the quantum chemical cluster approach for modeling this important class of decarboxylase enzymes. Active site models ranging in size from 27 to 220 atoms are designed, and the barrier and reaction energy of this step are evaluated. To model the enzyme surrounding, homogeneous polarizable medium techniques are used with several dielectric constants. The main conclusion is that when the active site model reaches a certain size, the solvation effects from the surroundings saturate. Similar results have previously been obtained from systematic studies of other classes of enzymes, suggesting that they are of a quite general nature.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.,College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Jian-Guo Yu
- College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
37
|
Ai YJ, Liao RZ, Chen SF, Luo Y, Fang WH. Theoretical studies on photoisomerizations of (6-4) and Dewar photolesions in DNA. J Phys Chem B 2011; 114:14096-102. [PMID: 20961081 DOI: 10.1021/jp107873w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The (6-4) photoproduct ((6-4) PP) is one of the main lesions in UV-induced DNA damage. The (6-4) PP and its valence isomer Dewar photoproduct (Dewar PP) can have a great threat of mutation and cancer but gained much less attention to date. In this study, with density functional theory (DFT) and the complete active space self-consistent field (CASSCF) methods, the photoisomerization processes between the (6-4) PP and the Dewar PP in the gas phase, the aqueous solution, and the photolyase have been carefully examined. Noticeably, the solvent effect is treated with the CASPT2//CASSCF/Amber (QM/MM) method. Our calculations show that the conical intersection (CI) points play a crucial role in the photoisomerization reaction between the (6-4) PP and the Dewar PP in the gas and the aqueous solution. The ultrafast internal conversion between the S(2) ((1)ππ*) and the S(0) states via a distorted intersection point is found to be responsible for the formation of the Dewar PP lesion at 313 nm, as observed experimentally. For the reversed isomeric process, two channels involving the "dark" excited states have been identified. In addition to the above passages, in the photolyase, a new electron-injection isomerization process as an efficient way for the photorepair of the Dewar PP is revealed.
Collapse
Affiliation(s)
- Yue-Jie Ai
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
38
|
Stabilization of the peroxy intermediate in the oxygen splitting reaction of cytochrome cbb(3). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:813-8. [PMID: 21315685 DOI: 10.1016/j.bbabio.2011.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 11/21/2022]
Abstract
The proton-pumping cbb(3)-type cytochrome c oxidases catalyze cell respiration in many pathogenic bacteria. For reasons not yet understood, the apparent dioxygen (O(2)) affinity in these enzymes is very high relative to other members of the heme-copper oxidase (HCO) superfamily. Based on density functional theory (DFT) calculations on intermediates of the oxygen scission reaction in active-site models of cbb(3)- and aa(3)-type oxidases, we find that a transient peroxy intermediate (I(P), Fe[III]-OOH(-)) is ~6kcal/mol more stable in the former case, resulting in more efficient kinetic trapping of dioxygen and hence in a higher apparent oxygen affinity. The major molecular basis for this stabilization is a glutamate residue, polarizing the proximal histidine ligand of heme b(3) in the active site.
Collapse
|
39
|
Liao RZ, Georgieva P, Yu JG, Himo F. Mechanism of mycolic acid cyclopropane synthase: a theoretical study. Biochemistry 2011; 50:1505-13. [PMID: 21241051 DOI: 10.1021/bi101493p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction mechanism of mycolic acid cyclopropane synthase is investigated using hybrid density functional theory. The direct methylation mechanism is examined with a large model of the active site constructed on the basis of the crystal structure of the native enzyme. The important active site residue Glu140 is modeled in both ionized and neutral forms. We demonstrate that the reaction starts via the transfer of a methyl to the substrate double bond, followed by the transfer of a proton from the methyl cation to the bicarbonate present in the active site. The first step is calculated to be rate-limiting, in agreement with experimental kinetic results. The protonation state of Glu140 has a rather weak influence on the reaction energetics. In addition to the natural reaction, a possible side reaction, namely a carbocation rearrangement, is also considered and is shown to have a low barrier. Finally, the energetics for the sulfur ylide proposal, which has already been ruled out, is also estimated, showing a large energetic penalty for ylide formation.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
40
|
Oxygen cleavage with manganese and iron in ribonucleotide reductase from Chlamydia trachomatis. J Biol Inorg Chem 2011; 16:553-65. [PMID: 21258828 DOI: 10.1007/s00775-011-0755-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
The oxygen cleavage in Chlamydia trachomatis ribonucleotide reductase (RNR) has been studied using B3LYP* hybrid density functional theory. Class Ic C. trachomatis RNR lacks the radical-bearing tyrosine, crucial for activity in conventional class I (subclass a and b) RNR. Instead of the Fe(III)Fe(III)-Tyr(rad) active state, C. trachomatis RNR has a mixed Mn(IV)Fe(III) metal center in subunit II (R2). A mixed MnFe metal center has never been observed as a radical cofactor before. The active state is generated by reductive oxygen cleavage at the metal site. On the basis of calculated barriers for oxygen cleavage in C. trachomatis R2 and R2 from Escherichia coli with a diiron, a mixed manganese-iron, and a dimanganese center, conclusions can be drawn about the effect of changing metals in R2. The oxygen cleavage is found to be governed by two factors: the redox potentials of the metals and the relative stability of the different peroxides. Mn(IV) has higher stability than Fe(IV), and the barrier is therefore lower with a mixed metal center than with a diiron center. With a dimanganese center, an asymmetric peroxide is more stable than the symmetric peroxide, and the barrier therefore becomes too high. Calculated proton-coupled redox potentials are compared to identify three possible R2 active states, the Fe(III)Fe(III)-Tyr(rad) state, the Mn(IV)Fe(III) state, and the Mn(IV)Mn(IV) state. A tentative energy profile of the thermodynamics of the radical transfer from R2 to subunit I is constructed to illustrate how the stability of the active states can be understood from a thermodynamical point of view.
Collapse
|
41
|
Kaila VRI, Oksanen E, Goldman A, Bloch DA, Verkhovsky MI, Sundholm D, Wikström M. A combined quantum chemical and crystallographic study on the oxidized binuclear center of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:769-78. [PMID: 21211513 DOI: 10.1016/j.bbabio.2010.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 12/20/2010] [Accepted: 12/26/2010] [Indexed: 01/12/2023]
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain. By reducing oxygen to water, it generates a proton gradient across the mitochondrial or bacterial membrane. Recently, two independent X-ray crystallographic studies ((Aoyama et al. Proc. Natl. Acad. Sci. USA 106 (2009) 2165-2169) and (Koepke et al. Biochim. Biophys. Acta 1787 (2009) 635-645)), suggested that a peroxide dianion might be bound to the active site of oxidized CcO. We have investigated this hypothesis by combining quantum chemical calculations with a re-refinement of the X-ray crystallographic data and optical spectroscopic measurements. Our data suggest that dianionic peroxide, superoxide, and dioxygen all form a similar superoxide species when inserted into a fully oxidized ferric/cupric binuclear site (BNC). We argue that stable peroxides are unlikely to be confined within the oxidized BNC since that would be expected to lead to bond splitting and formation of the catalytic P intermediate. Somewhat surprisingly, we find that binding of dioxygen to the oxidized binuclear site is weakly exergonic, and hence, the observed structure might have resulted from dioxygen itself or from superoxide generated from O(2) by the X-ray beam. We show that the presence of O(2) is consistent with the X-ray data. We also discuss how other structures, such as a mixture of the aqueous species (H(2)O+OH(-) and H(2)O) and chloride fit the experimental data.
Collapse
Affiliation(s)
- Ville R I Kaila
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
42
|
Li X, Chen G, Schinzel S, Siegbahn PEM. A comparison between artificial and natural water oxidation. Dalton Trans 2011; 40:11296-307. [DOI: 10.1039/c1dt11323b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Liao RZ, Yu JG, Himo F. Phosphate mono- and diesterase activities of the trinuclear zinc enzyme nuclease P1--insights from quantum chemical calculations. Inorg Chem 2010; 49:6883-8. [PMID: 20604512 DOI: 10.1021/ic100266n] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclease P1 is a trinuclear zinc enzyme that catalyzes the hydrolysis of single-stranded DNA and RNA. Density functional calculations are used to elucidate the reaction mechanism of this enzyme with a model of the active site designed on the basis of the X-ray crystal structure. 2-Tetrahydrofuranyl phosphate and methyl 2-tetrahydrofuranyl phosphate substrates are used to explore the phosphomonoesterase and phosphodiesterase activities of this enzyme, respectively. The calculations reveal that for both activities, a bridging hydroxide performs an in-line attack on the phosphorus center, resulting in inversion of the configuration. Simultaneously, the P-O bond is cleaved, and Zn2 stabilizes the negative charge of the leaving alkoxide anion and assists its departure. All three zinc ions, together with Arg48, provide electrostatic stabilization to the penta-coordinated transition state, thereby lowering the reaction barrier.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | |
Collapse
|
44
|
Kaila VRI, Verkhovsky MI, Wikström M. Proton-coupled electron transfer in cytochrome oxidase. Chem Rev 2010; 110:7062-81. [PMID: 21053971 DOI: 10.1021/cr1002003] [Citation(s) in RCA: 402] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ville R I Kaila
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Program, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
45
|
Blomberg MR, Siegbahn PE. A quantum chemical study of the mechanism for proton-coupled electron transfer leading to proton pumping in cytochrome c oxidase. Mol Phys 2010. [DOI: 10.1080/00268976.2010.523017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Per E.M. Siegbahn
- b Department of Biochemistry and Biophysics , Arrhenius Laboratory , Stockholm University, SE-106 91 Stockholm , Sweden
| |
Collapse
|
46
|
Rangelov MA, Petrova GP, Yomtova VM, Vayssilov GN. Hierarchical approach to conformational search and selection of computational method in modeling the mechanism of ester ammonolysis. J Mol Graph Model 2010; 29:246-55. [DOI: 10.1016/j.jmgm.2010.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 02/02/2023]
|
47
|
Siegbahn PEM, Blomberg MRA. Quantum Chemical Studies of Proton-Coupled Electron Transfer in Metalloenzymes. Chem Rev 2010; 110:7040-61. [DOI: 10.1021/cr100070p] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Per E. M. Siegbahn
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
48
|
Guskov A, Gabdulkhakov A, Broser M, Glöckner C, Hellmich J, Kern J, Frank J, Müh F, Saenger W, Zouni A. Recent Progress in the Crystallographic Studies of Photosystem II. Chemphyschem 2010; 11:1160-71. [DOI: 10.1002/cphc.200900901] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|