1
|
Sztachova T, Tomkova A, Cizmar E, Jancura D, Fabian M. Radical in the Peroxide-Produced F-Type Ferryl Form of Bovine Cytochrome c Oxidase. Int J Mol Sci 2022; 23:ijms232012580. [PMID: 36293434 PMCID: PMC9604133 DOI: 10.3390/ijms232012580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The reduction of O2 in respiratory cytochrome c oxidases (CcO) is associated with the generation of the transmembrane proton gradient by two mechanisms. In one of them, the proton pumping, two different types of the ferryl intermediates of the catalytic heme a3-CuB center P and F forms, participate. Equivalent ferryl states can be also formed by the reaction of the oxidized CcO (O) with H2O2. Interestingly, in acidic solutions a single molecule of H2O2 can generate from the O an additional F-type ferryl form (F•) that should contain, in contrast to the catalytic F intermediate, a free radical at the heme a3-CuB center. In this work, the formation and the endogenous decay of both the ferryl iron of heme a3 and the radical in F• intermediate were examined by the combination of four experimental approaches, isothermal titration calorimetry, electron paramagnetic resonance, and electronic absorption spectroscopy together with the reduction of this form by the defined number of electrons. The results are consistent with the generation of radicals in F• form. However, the radical at the catalytic center is more rapidly quenched than the accompanying ferryl state of heme a3, very likely by the intrinsic oxidation of the enzyme itself.
Collapse
Affiliation(s)
- Tereza Sztachova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
| | - Adriana Tomkova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
| | - Erik Cizmar
- Department of Condensed Matter Physics, Faculty of Science, University of P. J. Safarik, Park Angelinum 9, 040 01 Kosice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
- Correspondence: (D.J.); (M.F.)
| | - Marian Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
- Correspondence: (D.J.); (M.F.)
| |
Collapse
|
2
|
Ishigami I, Russi S, Cohen A, Yeh SR, Rousseau DL. Temperature-dependent structural transition following X-ray-induced metal center reduction in oxidized cytochrome c oxidase. J Biol Chem 2022; 298:101799. [PMID: 35257742 PMCID: PMC8971940 DOI: 10.1016/j.jbc.2022.101799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in the inner membrane of mitochondria. It contains four metal redox centers, two of which, CuB and heme a3, form the binuclear center (BNC), where dioxygen is reduced to water. Crystal structures of CcO in various forms have been reported, from which ligand-binding states of the BNC and conformations of the protein matrix surrounding it have been deduced to elucidate the mechanism by which the oxygen reduction chemistry is coupled to proton translocation. However, metal centers in proteins can be susceptible to X-ray-induced radiation damage, raising questions about the reliability of conclusions drawn from these studies. Here, we used microspectroscopy-coupled X-ray crystallography to interrogate how the structural integrity of bovine CcO in the fully oxidized state (O) is modulated by synchrotron radiation. Spectroscopic data showed that, upon X-ray exposure, O was converted to a hybrid O∗ state where all the four metal centers were reduced, but the protein matrix was trapped in the genuine O conformation and the ligands in the BNC remained intact. Annealing the O∗ crystal above the glass transition temperature induced relaxation of the O∗ structure to a new R∗ structure, wherein the protein matrix converted to the fully reduced R conformation with the exception of helix X, which partly remained in the O conformation because of incomplete dissociation of the ligands from the BNC. We conclude from these data that reevaluation of reported CcO structures obtained with synchrotron light sources is merited.
Collapse
Affiliation(s)
- Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Silvia Russi
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - Aina Cohen
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Denis L Rousseau
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
3
|
Du WGH, Götz AW, Noodleman L. Mössbauer Property Calculations on Fea33+∙∙∙H2O∙∙∙CuB2+ Dinuclear Center Models of the Resting Oxidized as-Isolated Cytochrome c Oxidase. Chemphyschem 2022; 23:e202100831. [PMID: 35142420 PMCID: PMC9054037 DOI: 10.1002/cphc.202100831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Mössbauer isomer shift and quadrupole splitting properties have been calculated using the OLYP‐D3(BJ) density functional method on previously obtained (W.‐G. Han Du, et al., Inorg Chem. 2020, 59, 8906–8915) geometry optimized Fea33+−H2O−CuB2+ dinuclear center (DNC) clusters of the resting oxidized (O state) “as‐isolated” cytochrome c oxidase (CcO). The calculated results are highly consistent with the available experimental observations. The calculations have also shown that the structural heterogeneities of the O state DNCs implicated by the Mössbauer experiments are likely consequences of various factors, particularly the variable positions of the central H2O molecule between the Fea33+ and CuB2+ sites in different DNCs, whether or not this central H2O molecule has H‐bonding interaction with another H2O molecule, the different spin states having similar energies for the Fea33+ sites, and whether the Fea33+ and CuB2+ sites are ferromagnetically or antiferromagnetically spin‐coupled.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- The Scripps Research Institute, Integrative Structural and Computational Biology, UNITED STATES
| | | | - Louis Noodleman
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, Hz112, 10550 North Torrey Pines Road, 92037, La Jolla, UNITED STATES
| |
Collapse
|
4
|
Shimada A, Hara F, Shinzawa-Itoh K, Kanehisa N, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. Critical roles of the Cu B site in efficient proton pumping as revealed by crystal structures of mammalian cytochrome c oxidase catalytic intermediates. J Biol Chem 2021; 297:100967. [PMID: 34274318 PMCID: PMC8390519 DOI: 10.1016/j.jbc.2021.100967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022] Open
Abstract
Mammalian cytochrome c oxidase (CcO) reduces O2 to water in a bimetallic site including Fea3 and CuB giving intermediate molecules, termed A-, P-, F-, O-, E-, and R-forms. From the P-form on, each reaction step is driven by single-electron donations from cytochrome c coupled with the pumping of a single proton through the H-pathway, a proton-conducting pathway composed of a hydrogen-bond network and a water channel. The proton-gradient formed is utilized for ATP production by F-ATPase. For elucidation of the proton pumping mechanism, crystal structural determination of these intermediate forms is necessary. Here we report X-ray crystallographic analysis at ∼1.8 Å resolution of fully reduced CcO crystals treated with O2 for three different time periods. Our disentanglement of intermediate forms from crystals that were composed of multiple forms determined that these three crystallographic data sets contained ∼45% of the O-form structure, ∼45% of the E-form structure, and ∼20% of an oxymyoglobin-type structure consistent with the A-form, respectively. The O- and E-forms exhibit an unusually long CuB2+-OH- distance and CuB1+-H2O structure keeping Fea33+-OH- state, respectively, suggesting that the O- and E-forms have high electron affinities that cause the O→E and E→R transitions to be essentially irreversible and thus enable tightly coupled proton pumping. The water channel of the H-pathway is closed in the O- and E-forms and partially open in the R-form. These structures, together with those of the recently reported P- and F-forms, indicate that closure of the H-pathway water channel avoids back-leaking of protons for facilitating the effective proton pumping.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan
| | - Fumiyoshi Hara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan
| | - Nobuko Kanehisa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kazumasa Muramoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan.
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan; Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, kamigori, Akoh, Hyogo, Japan.
| |
Collapse
|
5
|
Zhou XY, Xu C, Guo PP, Sun WL, Wei PJ, Liu JG. Axial Ligand Coordination Tuning of the Electrocatalytic Activity of Iron Porphyrin Electrografted onto Carbon Nanotubes for the Oxygen Reduction Reaction. Chemistry 2021; 27:9898-9904. [PMID: 33876876 DOI: 10.1002/chem.202100736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 11/12/2022]
Abstract
The oxygen reduction reaction (ORR) is essential in many life processes and energy conversion systems. It is desirable to design transition metal molecular catalysts inspired by enzymatic oxygen activation/reduction processes as an alternative to noble-metal-Pt-based ORR electrocatalysts, especially in view point of fuel cell commercialization. We have fabricated bio-inspired molecular catalysts electrografted onto multiwalled carbon nanotubes (MWCNTs) in which 5,10,15,20-tetra(pentafluorophenyl) iron porphyrin (iron porphyrin FeF20 TPP) is coordinated with covalently electrografted axial ligands varying from thiophene to imidazole on the MWCNTs' surface. The catalysts' electrocatalytic activity varied with the axial coordination environment (i. e., S-thiophene, N-imidazole, and O-carboxylate); the imidazole-coordinated catalyst MWCNTs-Im-FeF20 TPP exhibited the highest ORR activity among the prepared catalysts. When MWCNT-Im-FeF20 TPP was loaded onto the cathode of a zinc-air battery, an open-cell voltage (OCV) of 1.35 V and a maximum power density (Pmax ) of 110 mW cm-2 were achieved; this was higher than those of MWCNTs-Thi-FeF20 TPP (OCV=1.30 V, Pmax =100 mW cm-2 ) and MWCNTs-Ox-FeF20 TPP (OCV=1.28 V, Pmax =86 mW cm-2 ) and comparable with a commercial Pt/C catalyst (OCV=1.45 V, Pmax =120 mW cm-2 ) under similar experimental conditions. This study provides a time-saving method to prepare covalently immobilized molecular electrocatalysts on carbon-based materials with structure-performance correlation that is also applicable to the design of other electrografted catalysts for energy conversion.
Collapse
Affiliation(s)
- Xin-You Zhou
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chao Xu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Peng-Peng Guo
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei-Li Sun
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
6
|
Sztachova T, Pechova I, Mikulova L, Stupak M, Jancura D, Fabian M. Peroxide stimulated transition between the ferryl intermediates of bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148447. [PMID: 33971156 DOI: 10.1016/j.bbabio.2021.148447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
During catalysis of cytochrome c oxidases (CcO) several ferryl intermediates of the catalytic heme a3-CuB center are observed. In the PM ferryl state, produced by the reaction of two-electron reduced CcO with O2, the ferryl iron of heme a3 and a free radical are present at the catalytic center. The radical reduction stimulates the transition of the PM into another ferryl F state. Similar ferryl states can be also generated from the oxidized CcO (O) in the reaction with H2O2. The PM, the product of the reaction of the O with one molecule of peroxide, is transformed into the F state by the second molecule of H2O2. However, the chemical nature of this transition has not been unambiguously elucidated yet. Here, we examined the redox state of the peroxide-produced PM and F states by the one-electron reduction. The F form and interestingly also the major fraction of the PM sample, likely another P-type ferryl form (PR), were found to be the one oxidizing equivalent above the O state. However, the both P-type forms are transformed into the F state by additional molecule of H2O2. It is suggested that the PR-to-F transition is due to the binding of H2O2 to CuB triggering a structural change together with the uptake of H+ at the catalytic center. In the PM-to-F conversion, these two events are complemented with the annihilation of radical by the intrinsic oxidation of the enzyme.
Collapse
Affiliation(s)
- T Sztachova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovak Republic
| | - I Pechova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovak Republic
| | - L Mikulova
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovak Republic
| | - M Stupak
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, University of P. J. Safarik, Trieda SNP 1, 040 11 Kosice, Slovak Republic
| | - D Jancura
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovak Republic.
| | - M Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovak Republic.
| |
Collapse
|
7
|
DiPrimio DJ, Holland PL. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation. J Inorg Biochem 2021; 219:111430. [PMID: 33873051 DOI: 10.1016/j.jinorgbio.2021.111430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Artificial metalloenzymes (ArMs) consist of an unnatural metal or cofactor embedded in a protein scaffold, and are an excellent platform for applying the concepts of protein engineering to catalysis. In this Focused Review, we describe the application of ArMs as simple, tunable artificial models of the active sites of complex natural metalloenzymes for small-molecule activation. In this sense, ArMs expand the strategies of synthetic model chemistry to protein-based supporting ligands with potential for participation from the second coordination sphere. We focus specifically on ArMs that are structural, spectroscopic, and functional models of enzymes for activation of small molecules like CO, CO2, O2, N2, and NO, as well as production/consumption of H2. These ArMs give insight into the identities and roles of metalloenzyme structural features within and near the cofactor. We give examples of ArM work relevant to hydrogenases, acetyl-coenzyme A synthase, superoxide dismutase, heme oxygenases, nitric oxide reductase, methyl-coenzyme M reductase, copper-O2 enzymes, and nitrogenases.
Collapse
Affiliation(s)
- Daniel J DiPrimio
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States.
| |
Collapse
|
8
|
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021; 50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Collapse
Affiliation(s)
- Christopher J Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.
| | - Quan N Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA
| | - Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA. and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Mikulova L, Pechova I, Jancura D, Stupak M, Fabian M. Thermodynamics of the P-type Ferryl Form of Bovine Cytochrome c Oxidase. BIOCHEMISTRY (MOSCOW) 2021; 86:74-83. [DOI: 10.1134/s0006297921010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Han Du WG, McRee D, Götz AW, Noodleman L. A Water Molecule Residing in the Fe a33+···Cu B2+ Dinuclear Center of the Resting Oxidized as-Isolated Cytochrome c Oxidase: A Density Functional Study. Inorg Chem 2020; 59:8906-8915. [PMID: 32525689 PMCID: PMC8114904 DOI: 10.1021/acs.inorgchem.0c00724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 11/30/2022]
Abstract
Although the dinuclear center (DNC) of the resting oxidized "as-isolated" cytochrome c oxidase (CcO) is not a catalytically active state, its detailed structure, especially the nature of the bridging species between the Fea33+ and CuB2+ metal sites, is still both relevant and unsolved. Recent crystallographic work has shown an extended electron density for a peroxide type dioxygen species (O1-O2) bridging the Fea3 and CuB centers. In this paper, our density functional theory (DFT) calculations show that the observed peroxide type electron density between the two metal centers is most likely a mistaken analysis due to overlap of the electron density of a water molecule located at different positions between apparent O1 and O2 sites in DNCs of different CcO molecules with almost the same energy. Because the diffraction pattern and the resulting electron density map represent the effective long-range order averaged over many molecules and unit cells in the X-ray structure, this averaging can lead to an apparent observed superposition of different water positions between the Fea33+ and CuB2+ metal sites.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Duncan McRee
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Andreas W. Götz
- San
Diego Supercomputer Center, University of
California San Diego, 9500 Gilman Drive MC0505, La Jolla, California 92093, United States
| | - Louis Noodleman
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Wolf A, Dragelj J, Wonneberg J, Stellmacher J, Balke J, Woelke AL, Hodoscek M, Knapp EW, Alexiev U. The redox-coupled proton-channel opening in cytochrome c oxidase. Chem Sci 2020. [DOI: 10.1039/c9sc06463j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interplay of cytochrome c oxidase's cofactor electrostatics, long-range conformational changes, H-bond rearrangement, and water dynamics enables transient proton-channel activation.
Collapse
Affiliation(s)
- Alexander Wolf
- Physics Department
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Jovan Dragelj
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | | | | | - Jens Balke
- Physics Department
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Anna Lena Woelke
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Department of Chemistry
| | - Milan Hodoscek
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- National Institute of Chemistry
| | - Ernst Walter Knapp
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Ulrike Alexiev
- Physics Department
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
12
|
Szundi I, Funatogawa C, Soulimane T, Einarsdóttir Ó. The Reactions of O 2 and NO with Mixed-Valence ba 3 Cytochrome c Oxidase from Thermus thermophilus. Biophys J 2019; 118:386-395. [PMID: 31870538 DOI: 10.1016/j.bpj.2019.11.3390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Earlier CO flow-flash experiments on the fully reduced Thermus thermophilus ba3 (Tt ba3) cytochrome oxidase revealed that O2 binding was slowed down by a factor of 10 in the presence of CO (Szundi et al., 2010, PNAS 107, 21010-21015). The goal of the current study is to explore whether the long apparent lifetime (∼50 ms) of the CuB+-CO complex generated upon photolysis of the CO-bound mixed-valence Tt ba3 (Koutsoupakis et al., 2019, Acc. Chem. Res. 52, 1380-1390) affects O2 and NO binding and the ability of CuB to act as an electron donor during O-O bond splitting. The CO recombination, NO binding, and the reaction of mixed-valence Tt ba3 with O2 were investigated by time-resolved optical absorption spectroscopy using the CO flow-flash approach and photolabile O2 and NO carriers. No electron backflow was detected after photolysis of the mixed-valence CO-bound Tt ba3. The rate of O2 and NO binding was two times slower than in the fully reduced enzyme in the presence of CO and 20 times slower than in the absence of CO. The purported long-lived CuB+-CO complex did not prevent O-O bond splitting and the resulting PM formation, which was significantly faster (5-10 times) than in the bovine heart enzyme. We propose that O2 binding to heme a3 in Tt ba3 causes CO to dissociate from CuB+ in a concerted manner through steric and/or electronic effects, thus allowing CuB+ to act as an electron donor in the mixed-valence enzyme. The significantly faster O2 binding and O-O bond cleavage in Tt ba3 compared to analogous steps in the aa3 oxidases could reflect evolutionary adaptation of the enzyme to the microaerobic conditions of the T. thermophilus HB8 species.
Collapse
Affiliation(s)
- Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California
| | - Chie Funatogawa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California
| | - Tewfik Soulimane
- Deparment of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ólőf Einarsdóttir
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California.
| |
Collapse
|
13
|
Han Du WG, Götz AW, Noodleman L. DFT Fe a3-O/O-O Vibrational Frequency Calculations over Catalytic Reaction Cycle States in the Dinuclear Center of Cytochrome c Oxidase. Inorg Chem 2019; 58:13933-13944. [PMID: 31566371 PMCID: PMC6839913 DOI: 10.1021/acs.inorgchem.9b01840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional vibrational frequency calculations have been performed on eight geometry optimized cytochrome c oxidase (CcO) dinuclear center (DNC) reaction cycle intermediates and on the oxymyoglobin (oxyMb) active site. The calculated Fe-O and O-O stretching modes and their frequency shifts along the reaction cycle have been compared with the available resonance Raman (rR) measurements. The calculations support the proposal that in state A[Fea33+-O2-•···CuB+] of CcO, O2 binds with Fea32+ in a similar bent end-on geometry to that in oxyMb. The calculations show that the observed 20 cm-1 shift of the Fea3-O stretching mode from the PR to F state is caused by the protonation of the OH- ligand on CuB2+ (PR[Fea34+═O2-···HO--CuB2+] → F[Fea34+═O2-···H2O-CuB2+]), and that the H2O ligand is still on the CuB2+ site in the rR identified F[Fea34+═O2-···H2O-CuB2+] state. Further, the observed rR band at 356 cm-1 between states PR and F is likely an O-Fea3-porphyrin bending mode. The observed 450 cm-1 low Fea3-O frequency mode for the OH active oxidized state has been reproduced by our calculations on a nearly symmetrically bridged Fea33+-OH-CuB2+ structure with a relatively long Fea3-O distance near 2 Å. Based on Badger's rule, the calculated Fea3-O distances correlate well with the calculated νFe-O-2/3 (νFe-O is the Fea3-O stretching frequency) with correlation coefficient R = 0.973.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Andreas W. Götz
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
14
|
Puchkova LV, Broggini M, Polishchuk EV, Ilyechova EY, Polishchuk RS. Silver Ions as a Tool for Understanding Different Aspects of Copper Metabolism. Nutrients 2019; 11:E1364. [PMID: 31213024 PMCID: PMC6627586 DOI: 10.3390/nu11061364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
In humans, copper is an important micronutrient because it is a cofactor of ubiquitous and brain-specific cuproenzymes, as well as a secondary messenger. Failure of the mechanisms supporting copper balance leads to the development of neurodegenerative, oncological, and other severe disorders, whose treatment requires a detailed understanding of copper metabolism. In the body, bioavailable copper exists in two stable oxidation states, Cu(I) and Cu(II), both of which are highly toxic. The toxicity of copper ions is usually overcome by coordinating them with a wide range of ligands. These include the active cuproenzyme centers, copper-binding protein motifs to ensure the safe delivery of copper to its physiological location, and participants in the Cu(I) ↔ Cu(II) redox cycle, in which cellular copper is stored. The use of modern experimental approaches has allowed the overall picture of copper turnover in the cells and the organism to be clarified. However, many aspects of this process remain poorly understood. Some of them can be found out using abiogenic silver ions (Ag(I)), which are isoelectronic to Cu(I). This review covers the physicochemical principles of the ability of Ag(I) to substitute for copper ions in transport proteins and cuproenzyme active sites, the effectiveness of using Ag(I) to study copper routes in the cells and the body, and the limitations associated with Ag(I) remaining stable in only one oxidation state. The use of Ag(I) to restrict copper transport to tumors and the consequences of large-scale use of silver nanoparticles for human health are also discussed.
Collapse
Affiliation(s)
- Ludmila V Puchkova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Department of Molecular Genetics, Research Institute of Experimental Medicine, Acad. Pavlov str., 12, St.-Petersburg 197376, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
| | - Massimo Broggini
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Laboratory of molecular pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via La Masa, 19, Milan 20156, Italy.
| | - Elena V Polishchuk
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| | - Ekaterina Y Ilyechova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| |
Collapse
|
15
|
|
16
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
17
|
Mahinthichaichan P, Gennis RB, Tajkhorshid E. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:712-724. [PMID: 29883591 DOI: 10.1016/j.bbabio.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/05/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
The superfamily of heme‑copper oxidoreductases (HCOs) include both NO and O2 reductases. Nitric oxide reductases (NORs) are bacterial membrane enzymes that catalyze an intermediate step of denitrification by reducing nitric oxide (NO) to nitrous oxide (N2O). They are structurally similar to heme‑copper oxygen reductases (HCOs), which reduce O2 to water. The experimentally observed apparent bimolecular rate constant of NO delivery to the deeply buried catalytic site of NORs was previously reported to approach the diffusion-controlled limit (108-109 M-1 s-1). Using the crystal structure of cytochrome-c dependent NOR (cNOR) from Pseudomonas aeruginosa, we employed several protocols of molecular dynamics (MD) simulation, which include flooding simulations of NO molecules, implicit ligand sampling and umbrella sampling simulations, to elucidate how NO in solution accesses the catalytic site of this cNOR. The results show that NO partitions into the membrane, enters the enzyme from the lipid bilayer and diffuses to the catalytic site via a hydrophobic tunnel that is resolved in the crystal structures. This is similar to what has been found for O2 diffusion through the closely related O2 reductases. The apparent second order rate constant approximated using the simulation data is ~5 × 108 M-1 s-1, which is optimized by the dynamics of the amino acid side chains lining in the tunnel. It is concluded that both NO and O2 reductases utilize well defined hydrophobic tunnels to assure that substrate diffusion to the buried catalytic sites is not rate limiting under physiological conditions.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, 405 North Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, 179 Looomis, MC-704, 1110 Green Street, Urbana, IL 61801, USA.
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, 405 North Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, 179 Looomis, MC-704, 1110 Green Street, Urbana, IL 61801, USA.
| |
Collapse
|
18
|
|
19
|
Vilhjálmsdóttir J, Gennis RB, Brzezinski P. The electron distribution in the "activated" state of cytochrome c oxidase. Sci Rep 2018; 8:7502. [PMID: 29760451 PMCID: PMC5951807 DOI: 10.1038/s41598-018-25779-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/26/2018] [Indexed: 11/09/2022] Open
Abstract
Cytochrome c oxidase catalyzes reduction of O2 to H2O at a catalytic site that is composed of a copper ion and heme group. The reaction is linked to translocation of four protons across the membrane for each O2 reduced to water. The free energy associated with electron transfer to the catalytic site is unequal for the four electron-transfer events. Most notably, the free energy associated with reduction of the catalytic site in the oxidized cytochrome c oxidase (state O) is not sufficient for proton pumping across the energized membrane. Yet, this electron transfer is mechanistically linked to proton pumping. To resolve this apparent discrepancy, a high-energy oxidized state (denoted OH) was postulated and suggested to be populated only during catalytic turnover. The difference between states O and OH was suggested to be manifested in an elevated midpoint potential of CuB in the latter. This proposal predicts that one-electron reduction of cytochrome c oxidase after its oxidation would yield re-reduction of essentially only CuB. Here, we investigated this process and found ~5% and ~6% reduction of heme a3 and CuB, respectively, i.e. the apparent redox potentials for heme a3 and CuB are lower than that of heme a.
Collapse
Affiliation(s)
- Jóhanna Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801, United States
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
20
|
Yu Y, Hu C, Xia L, Wang J. Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03754] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Yu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Cheng Hu
- Laboratory
of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Lin Xia
- Center
for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiangyun Wang
- Laboratory
of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
21
|
Han Du WG, Götz AW, Noodleman L. A Water Dimer Shift Activates a Proton Pumping Pathway in the P R → F Transition of ba 3 Cytochrome c Oxidase. Inorg Chem 2018; 57:1048-1059. [PMID: 29308889 DOI: 10.1021/acs.inorgchem.7b02461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Broken-symmetry density functional calculations have been performed on the [Fea34+,CuB2+] state of the dinuclear center (DNC) for the PR → F part of the catalytic cycle of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus (Tt), using the OLYP-D3-BJ functional. The calculations show that the movement of the H2O molecules in the DNC affects the pKa values of the residue side chains of Tyr237 and His376+, which are crucial for proton transfer/pumping in ba3 CcO from Tt. The calculated lowest energy structure of the DNC in the [Fea34+,CuB2+] state (state F) is of the form Fea34+═O2-···CuB2+, in which the H2O ligand that resulted from protonation of the OH- ligand in the PR state is dissociated from the CuB2+ site. The calculated Fea34+═O2- distance in F (1.68 Å) is 0.03 Å longer than that in PR (1.65 Å), which can explain the different Fea34+═O2- stretching modes in P (804 cm-1) and F (785 cm-1) identified by resonance Raman experiments. In this F state, the CuB2+···O2- (ferryl-oxygen) distance is only around 2.4 Å. Hence, the subsequent OH state [Fea33+-OH--CuB2+] with a μ-hydroxo bridge can be easily formed, as shown by our calculations.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego , 9500 Gilman Drive MC0505, La Jolla, California 92093, United States
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Papanikolaou MG, Hadjithoma S, Chatzikypraiou DS, Papaioannou D, Drouza C, Tsipis AC, Miras HN, Keramidas AD, Kabanos TA. Investigation of dioxygen activation by copper(ii)–iminate/aminate complexes. Dalton Trans 2018; 47:16242-16254. [DOI: 10.1039/c8dt03137a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CuII amidate/iminate complexes activate dioxygen by a ligated to CuII, –HCN– moiety.
Collapse
Affiliation(s)
- Michael G. Papanikolaou
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| | | | - Dimitra S. Chatzikypraiou
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| | - Dionysios Papaioannou
- Laboratory of Synthetic Organic Chemistry
- Department of Chemistry
- University of Patras
- GR-26504 Patras
- Greece
| | - Chryssoula Drouza
- Department of Agricultural Sciences
- Biotechnology and Food Science
- Cyprus University of Technology
- Limassol 3036
- Cyprus
| | - Athanassios C. Tsipis
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| | | | | | - Themistoklis A. Kabanos
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| |
Collapse
|
23
|
Fukuzumi S, Lee YM, Nam W. Mechanisms of Two-Electron versus Four-Electron Reduction of Dioxygen Catalyzed by Earth-Abundant Metal Complexes. ChemCatChem 2017. [DOI: 10.1002/cctc.201701064] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
- Faculty of Science and Engineering; Meijo University; SENTAN, Japan, Science and Technology Agency, JST; Nagoya Aichi 468-8502 Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
24
|
Mohrmann H, Dragelj J, Baserga F, Knapp EW, Stripp ST, Heberle J. The reductive phase of Rhodobacter sphaeroides cytochrome c oxidase disentangled by CO ligation. Phys Chem Chem Phys 2017. [PMID: 29067359 DOI: 10.1039/c7cp06480b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome c oxidase (CcO) is a membrane protein of the respiratory chain that catalytically reduces molecular oxygen (O2) to water while translocating protons across the membrane. The enzyme hosts two copper and two heme iron moieties (heme a/heme a3). The atomic details of the sequential steps that go along with this redox-driven proton translocation are a matter of debate. Particularly for the reductive phase of CcO that precedes oxygen binding experimental data are scarce. Here, we use CcO under anaerobic conditions where carbon monoxide (CO) is bound to heme a3 which in tandem with CuB forms the binuclear center (BNC). Fourier-transform infrared (FTIR) absorption spectroscopy is combined with electro-chemistry to probe different redox and protonation states populated by variation of the external electrostatic potential. With this approach, the redox behavior of heme a and the BNC could be separated and the corresponding redox potentials were determined. We also infer the protonation of one of the propionate side chains of heme a3 to correlate with the oxidation of heme a. Experimental changes in the local electric field surrounding CO bound to heme a3 are determined by their vibrational Stark effect and agree well with electrostatic computations. The comparison of experimental and computational results indicates that changes of the heme a3/CuB redox state are coupled to proton transfer towards heme a3. The latter supports the role of the heme a3 propionate D as proton loading site.
Collapse
Affiliation(s)
- Hendrik Mohrmann
- Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Jovan Dragelj
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 36A, 14195 Berlin, Germany
| | - Federico Baserga
- Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Ernst-Walter Knapp
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 36A, 14195 Berlin, Germany
| | - Sven T Stripp
- Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
25
|
Mitochondrial cytochrome c oxidase: catalysis, coupling and controversies. Biochem Soc Trans 2017; 45:813-829. [PMID: 28620043 DOI: 10.1042/bst20160139] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/04/2023]
Abstract
Mitochondrial cytochrome c oxidase is a member of a diverse superfamily of haem-copper oxidases. Its mechanism of oxygen reduction is reviewed in terms of the cycle of catalytic intermediates and their likely chemical structures. This reaction cycle is coupled to the translocation of protons across the inner mitochondrial membrane in which it is located. The likely mechanism by which this occurs, derived in significant part from studies of bacterial homologues, is presented. These mechanisms of catalysis and coupling, together with current alternative proposals of underlying mechanisms, are critically reviewed.
Collapse
|
26
|
Chatterjee S, Sengupta K, Mondal B, Dey S, Dey A. Factors Determining the Rate and Selectivity of 4e -/4H + Electrocatalytic Reduction of Dioxygen by Iron Porphyrin Complexes. Acc Chem Res 2017; 50:1744-1753. [PMID: 28686419 DOI: 10.1021/acs.accounts.7b00192] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reactivity as well as selectivity are crucial in the activation and electrocatalytic reduction of molecular oxygen. Recent developments in the understanding of the mechanism of electrocatalytic O2 reduction by iron porphyrin complexes in situ using surface enhanced resonance Raman spectroscopy coupled to rotating disc electrochemistry (SERRS-RDE) in conjunction with H/D isotope effects on electrocatalytic current reveals that the rate of O2 reduction, ∼104 to 105 M-1 s-1 for simple iron porphyrins, is limited by the rate of O-O bond cleavage of an intermediate ferric peroxide species (FeIII-OOH). SERRS-RDE probes the system in operando when it is under steady state such that any intermediate species that has a greater rate of formation relative to its rate of decay, including the rate determining species, would accumulate and can be identified. This technique is particularly well suited to investigate iron porphyrin electrocatalysts as the intense symmetric ligand vibrations allow determination of the oxidation and spin states of the bound iron with high fidelity. The rate of O2 reduction could be tuned up by 3 orders of magnitude by incorporating residues in the catalyst design that can exert "push" or "pull" effects, that is, axial phenolate and thiolate ligands and distal arginine residues. Similarly the rate of O-O bond cleavage can be enhanced by several orders of magnitude upon incorporating a distal Cu site and installing the active site in a hydrophobic protein environment in synthetic models and biosynthetic protein scaffolds. The selectivity, however, is solely determined by the site of protonation of a ferric peroxide (FeIII-OOH) intermediate and can be governed by installing preorganized second sphere residues in the distal pocket. The 4e-/4H+ reduction of O2 entails protonation of the distal oxygen of the FeIII-OOH species, while 2e-/2H+ reduction requires the proximal oxygen to be protonated. Mechanistic investigations of CO2 reduction by iron porphyrins reveal that the rate-determining step is the C-O bond cleavage of a FeII-COOH species analogous to the O-O bond cleavage step of a FeIII-OOH species in O2 reduction. The selectivity, resulting in either CO or HCOOH, is determined by the site of protonation of this species. These similarities suggests that the chemical principles governing the rate and selectivity of reduction of small molecules like O2, CO2, NOx, and SOx may be quite similar in nature.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kushal Sengupta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Biswajit Mondal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Subal Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
27
|
Alleyne T, Ignacio DN, Sampson VB, Ashe D, Wilson M. Simulating the slow to fast switch in cytochrome c oxidase catalysis by introducing a loop flip near the enzyme's cytochrome c (substrate) binding site. Biotechnol Appl Biochem 2017; 64:677-685. [PMID: 27489224 DOI: 10.1002/bab.1526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/30/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Trevor Alleyne
- Biochemistry Unit, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | - Diane N Ignacio
- Biochemistry Unit, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | - Valerie B Sampson
- Nemours Center for Cancer and Blood Disorders, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Damian Ashe
- Biochemistry Unit, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | - Michael Wilson
- School of Biological Sciences, University of Essex, Colchester, Essex, UK
| |
Collapse
|
28
|
Yu GQ, Wei PJ, Wang FF, Liu JG. Doping Copper Ions into an Fe/N/C Composite Promotes Catalyst Performance for the Oxygen Reduction Reaction. ChemElectroChem 2017. [DOI: 10.1002/celc.201600904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guo-Qiang Yu
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Fei-Fei Wang
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
29
|
Biosynthetic approach to modeling and understanding metalloproteins using unnatural amino acids. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0343-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage? Q Rev Biophys 2016; 48:411-20. [PMID: 26537399 DOI: 10.1017/s0033583515000062] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Biological electron transfers often occur between metal-containing cofactors that are separated by very large molecular distances. Employing photosensitizer-modified iron and copper proteins, we have shown that single-step electron tunneling can occur on nanosecond to microsecond timescales at distances between 15 and 20 Å. We also have shown that charge transport can occur over even longer distances by hole hopping (multistep tunneling) through intervening tyrosines and tryptophans. In this perspective, we advance the hypothesis that such hole hopping through Tyr/Trp chains could protect oxygenase, dioxygenase, and peroxidase enzymes from oxidative damage. In support of this view, by examining the structures of P450 (CYP102A) and 2OG-Fe (TauD) enzymes, we have identified candidate Tyr/Trp chains that could transfer holes from uncoupled high-potential intermediates to reductants in contact with protein surface sites.
Collapse
|
31
|
Kinetics of cytochrome c oxidase from R. sphaeroides initiated by direct electron transfer followed by tr-SEIRAS. Bioelectrochemistry 2016; 112:1-8. [PMID: 27398977 DOI: 10.1016/j.bioelechem.2016.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/18/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022]
Abstract
Time-resolved surface-enhanced IR-absorption spectroscopy (tr-SEIRAS) has been performed on cytochrome c oxidase from Rhodobacter sphaeroides. The enzyme was converted electrochemically into the fully reduced state. Thereafter, in the presence of oxygen, the potential was switched to open circuit potential (OCP). Under these conditions, the enzyme is free to undergo enzymatic oxidation in the absence of an external electric field. Tr-SEIRAS was performed using the step-scan technique, triggered by periodic potential pulses switching between - 800mV and OCP. Single bands were resolved in a broad band in the amide I region using phase sensitive detection. Amplitudes of these bands were analyzed as a function of time. Time constants in the ms time scale were considered in terms of conformational changes of the protein secondary structures associated with the enzymatic turnover of the protein.
Collapse
|
32
|
Han Du WG, Götz AW, Yang L, Walker RC, Noodleman L. A broken-symmetry density functional study of structures, energies, and protonation states along the catalytic O-O bond cleavage pathway in ba3 cytochrome c oxidase from Thermus thermophilus. Phys Chem Chem Phys 2016; 18:21162-71. [PMID: 27094074 DOI: 10.1039/c6cp00349d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Broken-symmetry density functional calculations have been performed on the [Fea3, CuB] dinuclear center (DNC) of ba3 cytochrome c oxidase from Thermus thermophilus in the states of [Fea3(3+)-(HO2)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], using both PW91-D3 and OLYP-D3 functionals. Tyr237 is a special tyrosine cross-linked to His233, a ligand of CuB. The calculations have shown that the DNC in these states strongly favors the protonation of His376, which is above propionate-A, but not of the carboxylate group of propionate-A. The energies of the structures obtained by constrained geometry optimizations along the O-O bond cleavage pathway between [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] have also been calculated. The transition of [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] → [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] shows a very small barrier, which is less than 3.0/2.0 kcal mol(-1) in PW91-D3/OLYP-D3 calculations. The protonation state of His376 does not affect this O-O cleavage barrier. The rate limiting step of the transition from state A (in which O2 binds to Fea3(2+)) to state PM ([Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], where the O-O bond is cleaved) in the catalytic cycle is, therefore, the proton transfer originating from Tyr237 to O-O to form the hydroperoxo [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] state. The importance of His376 in proton uptake and the function of propionate-A/neutral-Asp372 as a gate to prevent the proton from back-flowing to the DNC are also shown.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, GAC1118, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
33
|
Mahinthichaichan P, Gennis RB, Tajkhorshid E. All the O2 Consumed by Thermus thermophilus Cytochrome ba3 Is Delivered to the Active Site through a Long, Open Hydrophobic Tunnel with Entrances within the Lipid Bilayer. Biochemistry 2016; 55:1265-78. [PMID: 26845082 DOI: 10.1021/acs.biochem.5b01255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytochrome ba3 is a proton-pumping heme-copper oxygen reductase from the extreme thermophile Thermus thermophilus. Despite the fact that the enzyme's active site is buried deep within the protein, the apparent second order rate constant for the initial binding of O2 to the active-site heme has been experimentally found to be 10(9) M(-1) s(-1) at 298 K, at or near the diffusion limit, and 2 orders of magnitude faster than for O2 binding to myoglobin. To provide quantitative and microscopic descriptions of the O2 delivery pathway and mechanism in cytochrome ba3, extensive molecular dynamics simulations of the enzyme in its membrane-embedded form have been performed, including different protocols of explicit ligand sampling (flooding) simulations with O2, implicit ligand sampling analysis, and in silico mutagenesis. The results show that O2 diffuses to the active site exclusively via a Y-shaped hydrophobic tunnel with two 25-Å long membrane-accessible branches that coincide with the pathway previously suggested by the crystallographically identified xenon binding sites. The two entrances of the bifurcated tunnel of cytochrome ba3 are located within the lipid bilayer, where O2 is preferentially partitioned from the aqueous phase. The largest barrier to O2 migration within the tunnel is estimated to be only 1.5 kcal/mol, allowing O2 to reach the enzyme active site virtually impeded by one-dimensional diffusion once it reaches a tunnel entrance at the protein surface. Unlike other O2-utilizing proteins, the tunnel is "open" with no transient barriers observed due to protein dynamics. This unique low-barrier passage through the protein ensures that O2 transit through the protein is never rate-limiting.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Robert B Gennis
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Sharma V, Wikström M. The role of the K-channel and the active-site tyrosine in the catalytic mechanism of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1111-1115. [PMID: 26898520 DOI: 10.1016/j.bbabio.2016.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 02/08/2023]
Abstract
The active site of cytochrome c oxidase (CcO) comprises an oxygen-binding heme, a nearby copper ion (CuB), and a tyrosine residue that is covalently linked to one of the histidine ligands of CuB. Two proton-conducting pathways are observed in CcO, namely the D- and the K-channels, which are used to transfer protons either to the active site of oxygen reduction (substrate protons) or for pumping. Proton transfer through the D-channel is very fast, and its role in efficient transfer of both substrate and pumped protons is well established. However, it has not been fully clear why a separate K-channel is required, apparently for the supply of substrate protons only. In this work, we have analysed the available experimental and computational data, based on which we provide new perspectives on the role of the K-channel. Our analysis suggests that proton transfer in the K-channel may be gated by the protonation state of the active-site tyrosine (Tyr244) and that the neutral radical form of this residue has a more general role in the CcO mechanism than thought previously. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Physics, Tampere University of Technology, Tampere FI-33101, Finland; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland.
| |
Collapse
|
35
|
Yu Y, Cui C, Liu X, Petrik ID, Wang J, Lu Y. A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme. J Am Chem Soc 2015; 137:11570-3. [PMID: 26318313 PMCID: PMC4676421 DOI: 10.1021/jacs.5b07119] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Terminal
oxidases catalyze four-electron reduction of oxygen to
water, and the energy harvested is utilized to drive the synthesis
of adenosine triphosphate. While much effort has been made to design
a catalyst mimicking the function of terminal oxidases, most biomimetic
catalysts have much lower activity than native oxidases. Herein we
report a designed oxidase in myoglobin with an O2 reduction
rate (52 s–1) comparable to that of a native cytochrome
(cyt) cbb3 oxidase (50 s–1) under identical conditions. We achieved this goal by engineering
more favorable electrostatic interactions between a functional oxidase
model designed in sperm whale myoglobin and its native redox partner,
cyt b5, resulting in a 400-fold electron
transfer (ET) rate enhancement. Achieving high activity equivalent
to that of native enzymes in a designed metalloenzyme offers deeper
insight into the roles of tunable processes such as ET in oxidase
activity and enzymatic function and may extend into applications such
as more efficient oxygen reduction reaction catalysts for biofuel
cells.
Collapse
Affiliation(s)
| | | | - Xiaohong Liu
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, P. R. China
| | | | - Jiangyun Wang
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, P. R. China
| | | |
Collapse
|
36
|
Han Du WG, Noodleman L. Broken Symmetry DFT Calculations/Analysis for Oxidized and Reduced Dinuclear Center in Cytochrome c Oxidase: Relating Structures, Protonation States, Energies, and Mössbauer Properties in ba3 Thermus thermophilus. Inorg Chem 2015; 54:7272-90. [PMID: 26192749 PMCID: PMC4525772 DOI: 10.1021/acs.inorgchem.5b00700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 12/22/2022]
Abstract
The Fea3(3+)···CuB(2+) dinuclear center (DNC) structure of the as-isolated oxidized ba3 cytochrome c oxidase (CcO) from Thermus thermophilus (Tt) is still not fully understood. When the proteins are initially crystallized in the oxidized state, they typically become radiolyticly reduced through X-ray irradiation. Several X-ray crystal structures of reduced ba3 CcO from Tt are available. However, depending on whether the crystals were prepared in a lipidic cubic phase environment or in detergent micelles, and whether the CcO's were chemically or radiolyticly reduced, the X-ray diffraction analysis of the crystals showed different Fea3(2+)···CuB(+) DNC structures. On the other hand, Mössbauer spectroscopic experiments on reduced and oxidized ba3 CcOs from Tt (Zimmermann et al., Proc. Natl. Acad. Sci. USA 1988, 85, 5779-5783) revealed multiple (57)Fea3(2+) and (57)Fea3(3+) components. Moreover, one of the (57)Fea3(3+) components observed at 4.2 K transformed from a proposed "low-spin" state to a different high-spin species when the temperature was increased above 190 K, whereas the other high-spin (57)Fea3(3+) component remained unchanged. In the current Article, in order to understand the heterogeneities of the DNC in both Mössbauer spectra and X-ray crystal structures, the spin crossover of one of the (57)Fea3(3+) components, and how the coordination and spin states of the Fea3(3+/2+) and Cu(2+/1+) sites relate to the heterogeneity of the DNC structures, we have applied density functional OLYP calculations to the DNC clusters established based on the different X-ray crystal structures of ba3 CcO from Tt. As a result, specific oxidized and reduced DNC structures related to the observed Mössbauer spectra and to spectral changes with temperature have been proposed. Our calculations also show that, in certain intermediate states, the His233 and His283 ligand side chains may dissociate from the CuB(+) site, and they may become potential proton loading sites during the catalytic cycle.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational
Biology, CB213, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Louis Noodleman
- Department of Integrative Structural and Computational
Biology, CB213, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
37
|
Sharma V, Ala-Vannesluoma P, Vattulainen I, Wikström M, Róg T. Role of subunit III and its lipids in the molecular mechanism of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:690-7. [PMID: 25896562 DOI: 10.1016/j.bbabio.2015.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 12/31/2022]
Abstract
The terminal respiratory enzyme cytochrome c oxidase (CcO) reduces molecular oxygen to water, and pumps protons across the inner mitochondrial membrane, or the plasma membrane of bacteria. A two-subunit CcO harbors all the elements necessary for oxygen reduction and proton pumping. However, it rapidly undergoes turnover-induced irreversible damage, which is effectively prevented by the presence of subunit III and its tightly bound lipids. We have performed classical atomistic molecular dynamics (MD) simulations on a three-subunit CcO, which show the formation of water wires between the polar head groups of lipid molecules bound to subunit III and the proton uptake site Asp91 (Bos taurus enzyme numbering). Continuum electrostatic calculations suggest that these lipids directly influence the proton affinity of Asp91 by 1-2pK units. We surmise that lipids bound to subunit III influence the rate of proton uptake through the D-pathway, and therefore play a key role in preventing turnover-induced inactivation. Atomistic MD simulations show that subunit III is rapidly hydrated in the absence of internally bound lipids, which is likely to affect the rate of O2 diffusion into the active-site. The role of subunit III with its indigenous lipids in the molecular mechanism of CcO is discussed.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland.
| | | | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland; MEMPHYS, Center for Biomembrane Physics, Department of Physics, University of Southern Denmark, Odense, Denmark
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Programme for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
| |
Collapse
|
38
|
Yu Y, Lv X, Li J, Zhou Q, Cui C, Hosseinzadeh P, Mukherjee A, Nilges MJ, Wang J, Lu Y. Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs. J Am Chem Soc 2015; 137:4594-7. [PMID: 25672571 PMCID: PMC4676419 DOI: 10.1021/ja5109936] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Indexed: 12/31/2022]
Abstract
While a conserved tyrosine (Tyr) is found in oxidases, the roles of phenol ring pKa and reduction potential in O2 reduction have not been defined despite many years of research on numerous oxidases and their models. These issues represent major challenges in our understanding of O2 reduction mechanism in bioenergetics. Through genetic incorporation of unnatural amino acid analogs of Tyr, with progressively decreasing pKa of the phenol ring and increasing reduction potential, in the active site of a functional model of oxidase in myoglobin, a linear dependence of both the O2 reduction activity and the fraction of H2O formation with the pKa of the phenol ring has been established. By using these unnatural amino acids as spectroscopic probe, we have provided conclusive evidence for the location of a Tyr radical generated during reaction with H2O2, by the distinctive hyperfine splitting patterns of the halogenated tyrosines and one of its deuterated derivatives incorporated at the 33 position of the protein. These results demonstrate for the first time that enhancing the proton donation ability of the Tyr enhances the oxidase activity, allowing the Tyr analogs to augment enzymatic activity beyond that of natural Tyr.
Collapse
Affiliation(s)
- Yang Yu
- Center of Biophysics and Computational Biology, Department of Chemistry, Department of Biochemistry, Illinois EPR Research
Center, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Xiaoxuan Lv
- Laboratory
of Non-Coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Jiasong Li
- Laboratory
of Non-Coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Qing Zhou
- Laboratory
of Non-Coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Chang Cui
- Center of Biophysics and Computational Biology, Department of Chemistry, Department of Biochemistry, Illinois EPR Research
Center, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Center of Biophysics and Computational Biology, Department of Chemistry, Department of Biochemistry, Illinois EPR Research
Center, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Arnab Mukherjee
- Center of Biophysics and Computational Biology, Department of Chemistry, Department of Biochemistry, Illinois EPR Research
Center, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Mark J. Nilges
- Center of Biophysics and Computational Biology, Department of Chemistry, Department of Biochemistry, Illinois EPR Research
Center, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jiangyun Wang
- Laboratory
of Non-Coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Lu
- Center of Biophysics and Computational Biology, Department of Chemistry, Department of Biochemistry, Illinois EPR Research
Center, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Yang Y, Zhou Q, Wang L, Liu X, Zhang W, Hu M, Dong J, Li J, Xiaoxuan L, Ouyang H, Li H, Gao F, Gong W, Lu Y, Wang J. Significant Improvement of Oxidase Activity through the Genetic Incorporation of a Redox-active Unnatural Amino Acid. Chem Sci 2015; 6:3881-3885. [PMID: 26417427 PMCID: PMC4583198 DOI: 10.1039/c5sc01126d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
Incorporation of 3-methoxytyrosine boosts the oxidase activity of the myoglobin model of oxidase, stressing the importance of the redox potential tuning of tyrosine.
While nature employs various covalent and non-covalent strategies to modulate tyrosine (Y) redox potential and pKa in order to optimize enzyme activities, such approaches have not been systematically applied for the design of functional metalloproteins. Through the genetic incorporation of 3-methoxytyrosine (OMeY) into myoglobin, we replicated important features of cytochrome c oxidase (CcO) in this small soluble protein, which exhibits selective O2 reduction activity while generating a small amount of reactive oxygen species (ROS). These results demonstrate that the electron donating ability of a tyrosine residue in the active site is important for CcO function. Moreover, we elucidated the structural basis for the genetic incorporation of OMeY into proteins by solving the X-ray structure of OMeY specific aminoacyl-tRNA synthetase complexed with OMeY.
Collapse
Affiliation(s)
- Yu Yang
- Center of Biophysics and Computational Biology and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Qing Zhou
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Li Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China ; Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Wei Zhang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Meirong Hu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Jianshu Dong
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Jiasong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China ; Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lv Xiaoxuan
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Hanlin Ouyang
- Center of Biophysics and Computational Biology and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Han Li
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Feng Gao
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Weimin Gong
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yi Lu
- Center of Biophysics and Computational Biology and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
40
|
High-valent metal-oxo intermediates in energy demanding processes: from dioxygen reduction to water splitting. Curr Opin Chem Biol 2015; 25:159-71. [DOI: 10.1016/j.cbpa.2015.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/15/2022]
|
41
|
Schadauer F, Geiss AF, Srajer J, Siebenhofer B, Frank P, Reiner-Rozman C, Ludwig B, Richter OMH, Nowak C, Naumann RLC. Silica nanoparticles for the oriented encapsulation of membrane proteins into artificial bilayer lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2511-2516. [PMID: 25670233 DOI: 10.1021/la504417j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An artificial bilayer lipid membrane system is presented, featuring the oriented encapsulation of membrane proteins in a functionally active form. Nickel nitrilo-triacetic acid-functionalized silica nanoparticles, of a diameter of around 25 nm, are used to attach the proteins via a genetically engineered histidine tag in a uniform orientation. Subsequently, the proteins are reconstituted within a phospholipid bilayer, formed around the particles by in situ dialysis to form so-called proteo-lipobeads (PLBs). With a final size of about 50 nm, the PLBs can be employed for UV/vis spectroscopy studies, particularly of multiredox center proteins, because the effects of light scattering are negligible. As a proof of concept, we use cytochrome c oxidase (CcO) from P. denitrificans with the his tag genetically engineered to subunit I. In this orientation, the P side of CcO is directed to the outside and hence electron transfer can be initiated by reduced cytochrome c (cc). UV/vis measurements are used in order to determine the occupancy by CcO molecules encapsulated in the lipid bilayer as well as the kinetics of electron transfer between CcO and cc. The kinetic data are analyzed in terms of the Michaelis-Menten kinetics showing that the turnover rate of CcO is significantly decreased compared to that of solubilized protein, whereas the binding characteristics are improved. The data demonstrate the suitability of PLBs for functional cell-free bioassays of membrane proteins.
Collapse
Affiliation(s)
- Florian Schadauer
- Austrian Institute of Technology GmbH , AIT, Donau-City Str. 1, 1220 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Guillet GL, Gordon JB, Di Francesco GN, Calkins MW, Čižmár E, Abboud KA, Meisel MW, García-Serres R, Murray LJ. A Family of Tri- and Dimetallic Pyridine Dicarboxamide Cryptates: Unusual O,N,O-Coordination and Facile Access to Secondary Coordination Sphere Hydrogen Bonding Interactions. Inorg Chem 2015; 54:2691-704. [DOI: 10.1021/ic502873d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gary L. Guillet
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Jesse B. Gordon
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Gianna N. Di Francesco
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Matthew W. Calkins
- Department
of Physics and the National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611-8440, United States
| | - Erik Čižmár
- Institute
of Physics, Faculty of Science, P.J. Šafárik University, 04154 Košice, Slovakia
| | - Khalil A. Abboud
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Mark W. Meisel
- Department
of Physics and the National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611-8440, United States
| | - Ricardo García-Serres
- Laboratoire
de Chimie de Biologie des Métaux, UMR 5249, Université Joseph Fourier, Grenoble-1, CNRS-CEA, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Leslie J. Murray
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
43
|
Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome c oxidase. Proc Natl Acad Sci U S A 2015; 112:2040-5. [PMID: 25646428 DOI: 10.1073/pnas.1409543112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradient, which drives the synthesis of ATP. Based on kinetic experiments on the O-O bond splitting transition of the catalytic cycle (A → P(R)), it has been proposed that the electron transfer to the binuclear iron-copper center of O2 reduction initiates the proton pump mechanism. This key electron transfer event is coupled to an internal proton transfer from a conserved glutamic acid to the proton-loading site of the pump. However, the proton may instead be transferred to the binuclear center to complete the oxygen reduction chemistry, which would constitute a short-circuit. Based on atomistic molecular dynamics simulations of cytochrome c oxidase in an explicit membrane-solvent environment, complemented by related free-energy calculations, we propose that this short-circuit is effectively prevented by a redox-state-dependent organization of water molecules within the protein structure that gates the proton transfer pathway.
Collapse
|
44
|
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| |
Collapse
|
45
|
|
46
|
Prediction of high- and low-affinity quinol-analogue-binding sites in the aa3 and bo3 terminal oxidases from Bacillus subtilis and Escherichia coli1. Biochem J 2014; 461:305-14. [PMID: 24779955 DOI: 10.1042/bj20140082] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Haem-copper oxidases are the terminal enzymes in both prokaryotic and eukaryotic respiratory chains. They catalyse the reduction of dioxygen to water and convert redox energy into a transmembrane electrochemical proton gradient during their catalytic activity. Haem-copper oxidases show substantial structure similarity, but spectroscopic and biochemical analyses indicate that these enzymes contain diverse prosthetic groups and use different substrates (i.e. cytochrome c or quinol). Owing to difficulties in membrane protein crystallization, there are no definitive structural data about the quinol oxidase physiological substrate-binding site(s). In the present paper, we propose an atomic structure model for the menaquinol:O2 oxidoreductase of Bacillus subtilis (QOx.aa3). Furthermore, a multistep computational approach is used to predict residues involved in the menaquinol/menaquinone binding within B. subtilis QOx.aa3 as well as those involved in quinol/quinone binding within Escherichia coli QOx.bo3. Two specific sequence motifs, R70GGXDX4RXQX3PX3FX[D/N/E/Q]X2HYNE97 and G159GSPX2GWX2Y169 (B. subtilis numbering), were highlighted within QOx from Bacillales. Specific residues within the first and the second sequence motif participate in the high- and low-affinity substrate-binding sites respectively. Using comparative analysis, two analogous motifs, R71GFXDX4RXQX8[Y/F]XPPHHYDQ101 and G163EFX3GWX2Y173 (E. coli numbering) were proposed to be involved in Enterobacteriales/Rhodobacterales/Rhodospirillales QOx high- and low-affinity quinol-derivative-binding sites. Results and models are discussed in the context of the literature.
Collapse
|
47
|
Time-resolved surface-enhanced IR-absorption spectroscopy of direct electron transfer to cytochrome c oxidase from R. sphaeroides. Biophys J 2014; 105:2706-13. [PMID: 24359742 DOI: 10.1016/j.bpj.2013.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 11/20/2022] Open
Abstract
Time-resolved surface-enhanced IR-absorption spectroscopy triggered by electrochemical modulation has been performed on cytochrome c oxidase from Rhodobacter sphaeroides. Single bands isolated from a broad band in the amide I region using phase-sensitive detection were attributed to different redox centers. Their absorbances changing on the millisecond timescale could be fitted to a model based on protonation-dependent chemical reaction kinetics established previously. Substantial conformational changes of secondary structures coupled to redox transitions were revealed.
Collapse
|
48
|
Jancura D, Stanicova J, Palmer G, Fabian M. How hydrogen peroxide is metabolized by oxidized cytochrome c oxidase. Biochemistry 2014; 53:3564-75. [PMID: 24840065 PMCID: PMC4059527 DOI: 10.1021/bi401078b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the absence of external electron donors, oxidized bovine cytochrome c oxidase (CcO) exhibits the ability to decompose excess H2O2. Depending on the concentration of peroxide, two mechanisms of degradation were identified. At submillimolar peroxide concentrations, decomposition proceeds with virtually no production of superoxide and oxygen. In contrast, in the millimolar H2O2 concentration range, CcO generates superoxide from peroxide. At submillimolar concentrations, the decomposition of H2O2 occurs at least at two sites. One is the catalytic heme a3-CuB center where H2O2 is reduced to water. During the interaction of the enzyme with H2O2, this center cycles back to oxidized CcO via the intermediate presence of two oxoferryl states. We show that at pH 8.0 two molecules of H2O2 react with the catalytic center accomplishing one cycle. In addition, the reactions at the heme a3-CuB center generate the surface-exposed lipid-based radical(s) that participates in the decomposition of peroxide. It is also found that the irreversible decline of the catalytic activity of the enzyme treated with submillimolar H2O2 concentrations results specifically from the decrease in the rate of electron transfer from heme a to the heme a3-CuB center during the reductive phase of the catalytic cycle. The rates of electron transfer from ferrocytochrome c to heme a and the kinetics of the oxidation of the fully reduced CcO with O2 were not affected in the peroxide-modified CcO.
Collapse
Affiliation(s)
- Daniel Jancura
- Department of Biophysics, University of P. J. Safarik , Kosice, Slovak Republic
| | | | | | | |
Collapse
|
49
|
Wei PJ, Yu GQ, Naruta Y, Liu JG. Covalent Grafting of Carbon Nanotubes with a Biomimetic Heme Model Compound To Enhance Oxygen Reduction Reactions. Angew Chem Int Ed Engl 2014; 53:6659-63. [DOI: 10.1002/anie.201403133] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/15/2014] [Indexed: 12/28/2022]
|
50
|
Wei PJ, Yu GQ, Naruta Y, Liu JG. Covalent Grafting of Carbon Nanotubes with a Biomimetic Heme Model Compound To Enhance Oxygen Reduction Reactions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|