1
|
Safari C, Ghosh S, Andersson R, Johannesson J, Båth P, Uwangue O, Dahl P, Zoric D, Sandelin E, Vallejos A, Nango E, Tanaka R, Bosman R, Börjesson P, Dunevall E, Hammarin G, Ortolani G, Panman M, Tanaka T, Yamashita A, Arima T, Sugahara M, Suzuki M, Masuda T, Takeda H, Yamagiwa R, Oda K, Fukuda M, Tosha T, Naitow H, Owada S, Tono K, Nureki O, Iwata S, Neutze R, Brändén G. Time-resolved serial crystallography to track the dynamics of carbon monoxide in the active site of cytochrome c oxidase. SCIENCE ADVANCES 2023; 9:eadh4179. [PMID: 38064560 PMCID: PMC10708180 DOI: 10.1126/sciadv.adh4179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.
Collapse
Affiliation(s)
- Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Jonatan Johannesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Owens Uwangue
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Doris Zoric
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Per Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Toshi Arima
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mamoru Suzuki
- Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Hanae Takeda
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Raika Yamagiwa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kazumasa Oda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masahiro Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| |
Collapse
|
2
|
Szundi I, Funatogawa C, Soulimane T, Einarsdóttir Ó. The Reactions of O 2 and NO with Mixed-Valence ba 3 Cytochrome c Oxidase from Thermus thermophilus. Biophys J 2019; 118:386-395. [PMID: 31870538 DOI: 10.1016/j.bpj.2019.11.3390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Earlier CO flow-flash experiments on the fully reduced Thermus thermophilus ba3 (Tt ba3) cytochrome oxidase revealed that O2 binding was slowed down by a factor of 10 in the presence of CO (Szundi et al., 2010, PNAS 107, 21010-21015). The goal of the current study is to explore whether the long apparent lifetime (∼50 ms) of the CuB+-CO complex generated upon photolysis of the CO-bound mixed-valence Tt ba3 (Koutsoupakis et al., 2019, Acc. Chem. Res. 52, 1380-1390) affects O2 and NO binding and the ability of CuB to act as an electron donor during O-O bond splitting. The CO recombination, NO binding, and the reaction of mixed-valence Tt ba3 with O2 were investigated by time-resolved optical absorption spectroscopy using the CO flow-flash approach and photolabile O2 and NO carriers. No electron backflow was detected after photolysis of the mixed-valence CO-bound Tt ba3. The rate of O2 and NO binding was two times slower than in the fully reduced enzyme in the presence of CO and 20 times slower than in the absence of CO. The purported long-lived CuB+-CO complex did not prevent O-O bond splitting and the resulting PM formation, which was significantly faster (5-10 times) than in the bovine heart enzyme. We propose that O2 binding to heme a3 in Tt ba3 causes CO to dissociate from CuB+ in a concerted manner through steric and/or electronic effects, thus allowing CuB+ to act as an electron donor in the mixed-valence enzyme. The significantly faster O2 binding and O-O bond cleavage in Tt ba3 compared to analogous steps in the aa3 oxidases could reflect evolutionary adaptation of the enzyme to the microaerobic conditions of the T. thermophilus HB8 species.
Collapse
Affiliation(s)
- Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California
| | - Chie Funatogawa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California
| | - Tewfik Soulimane
- Deparment of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ólőf Einarsdóttir
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California.
| |
Collapse
|
3
|
Koutsoupakis C, Soulimane T, Varotsis C. Discrete Ligand Binding and Electron Transfer Properties of ba 3-Cytochrome c Oxidase from Thermus thermophilus: Evolutionary Adaption to Low Oxygen and High Temperature Environments. Acc Chem Res 2019; 52:1380-1390. [PMID: 31021078 DOI: 10.1021/acs.accounts.9b00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase (C cO) couples the oxidation of cytochrome c to the reduction of molecular oxygen to water and links these electron transfers to proton translocation. The redox-driven C cO conserves part of the released free energy generating a proton motive force that leads to the synthesis of the main biological energy source ATP. Cytochrome ba3 oxidase is a B-type oxidase from the extremely thermophilic eubacterium Thermus thermophilus with high O2 affinity, expressed under elevated temperatures and limited oxygen supply and possessing discrete structural, ligand binding, and electron transfer properties. The origin and the cause of the peculiar, as compared to other C cOs, thermodynamic and kinetic properties remain unknown. Fourier transform infrared (FTIR) and time-resolved step-scan FTIR (TRS2-FTIR) spectroscopies have been employed to investigate the origin of the binding and electron transfer properties of cytochrome ba3 oxidase in both the fully reduced (FR) and mixed valence (MV) forms. Several independent and not easily separated factors leading to increased thermostability and high O2 affinity have been determined. These include (i) the increased hydrophobicity of the active center, (ii) the existence of a ligand input channel, (iii) the high affinity of CuB for exogenous ligands, (iv) the optimized electron transfer (ET) pathways, (v) the effective proton-input channel and water-exit pathway as well the proton-loading/exit sites, (vi) the specifically engineered protein structure, and (vii) the subtle thermodynamic and kinetic regulation. We correlate the unique ligand binding and electron transfer properties of cytochrome ba3 oxidase with the existence of an adaption mechanism which is necessary for efficient function. These results suggest that a cascade of structural factors have been optimized by evolution, through protein architecture, to ensure the conversion of cytochrome ba3 oxidase into a high O2-affinity enzyme that functions effectively in its extreme native environment. The present results show that ba3-cytochrome c oxidase uses a unique structural pattern of energy conversion that has taken into account all the extreme environmental factors that affect the function of the enzyme and is assembled in such a way that its exclusive functions are secured. Based on the available data of CcOs, we propose possible factors including the rigidity and nonpolar hydrophobic interactions that contribute to the behavior observed in cytochrome ba3 oxidase.
Collapse
Affiliation(s)
- Constantinos Koutsoupakis
- Department of Environmental Science and Technology, Cyprus University of Technology, P.O. Box 50329, 3603 Lemesos, Cyprus
| | - Tewfik Soulimane
- Chemical and Environmental Science Department and Materials & Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland
| | - Constantinos Varotsis
- Department of Environmental Science and Technology, Cyprus University of Technology, P.O. Box 50329, 3603 Lemesos, Cyprus
| |
Collapse
|
4
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Schuth N, Mebs S, Huwald D, Wrzolek P, Schwalbe M, Hemschemeier A, Haumann M. Effective intermediate-spin iron in O 2-transporting heme proteins. Proc Natl Acad Sci U S A 2017; 114:8556-8561. [PMID: 28739893 PMCID: PMC5559043 DOI: 10.1073/pnas.1706527114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteins carrying an iron-porphyrin (heme) cofactor are essential for biological O2 management. The nature of Fe-O2 bonding in hemoproteins is debated for decades. We used energy-sampling and rapid-scan X-ray Kβ emission and K-edge absorption spectroscopy as well as quantum chemistry to determine molecular and electronic structures of unligated (deoxy), CO-inhibited (carboxy), and O2-bound (oxy) hemes in myoglobin (MB) and hemoglobin (HB) solutions and in porphyrin compounds at 20-260 K. Similar metrical and spectral features revealed analogous heme sites in MB and HB and the absence of low-spin (LS) to high-spin (HS) conversion. Amplitudes of Kβ main-line emission spectra were directly related to the formal unpaired Fe(d) spin count, indicating HS Fe(II) in deoxy and LS Fe(II) in carboxy. For oxy, two unpaired Fe(d) spins and, thus by definition, an intermediate-spin iron center, were revealed by our static and kinetic X-ray data, as supported by (time-dependent) density functional theory and complete-active-space self-consistent-field calculations. The emerging Fe-O2 bonding situation includes in essence a ferrous iron center, minor superoxide character of the noninnocent ligand, significant double-bond properties of the interaction, and three-center electron delocalization as in ozone. It resolves the apparently contradictory classical models of Pauling, Weiss, and McClure/Goddard into a unifying view of O2 bonding, tuned toward reversible oxygen transport.
Collapse
Affiliation(s)
- Nils Schuth
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Dennis Huwald
- Department of Plant Biochemistry, Section of Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Pierre Wrzolek
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Matthias Schwalbe
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Section of Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
6
|
Andersson R, Safari C, Dods R, Nango E, Tanaka R, Yamashita A, Nakane T, Tono K, Joti Y, Båth P, Dunevall E, Bosman R, Nureki O, Iwata S, Neutze R, Brändén G. Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature. Sci Rep 2017; 7:4518. [PMID: 28674417 PMCID: PMC5495810 DOI: 10.1038/s41598-017-04817-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 11/11/2022] Open
Abstract
Cytochrome c oxidase catalyses the reduction of molecular oxygen to water while the energy released in this process is used to pump protons across a biological membrane. Although an extremely well-studied biological system, the molecular mechanism of proton pumping by cytochrome c oxidase is still not understood. Here we report a method to produce large quantities of highly diffracting microcrystals of ba3-type cytochrome c oxidase from Thermus thermophilus suitable for serial femtosecond crystallography. The room-temperature structure of cytochrome c oxidase is solved to 2.3 Å resolution from data collected at an X-ray Free Electron Laser. We find overall agreement with earlier X-ray structures solved from diffraction data collected at cryogenic temperature. Previous structures solved from synchrotron radiation data, however, have shown conflicting results regarding the identity of the active-site ligand. Our room-temperature structure, which is free from the effects of radiation damage, reveals that a single-oxygen species in the form of a water molecule or hydroxide ion is bound in the active site. Structural differences between the ba3-type and aa3-type cytochrome c oxidases around the proton-loading site are also described.
Collapse
Affiliation(s)
- Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Eriko Nango
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Rie Tanaka
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - So Iwata
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
7
|
Tan TH, Scott J, Ng YH, Taylor RA, Aguey-Zinsou KF, Amal R. C–C Cleavage by Au/TiO2 during Ethanol Oxidation: Understanding Bandgap Photoexcitation and Plasmonically Mediated Charge Transfer via Quantitative in Situ DRIFTS. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01833] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tze Hao Tan
- School of Chemical
Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Jason Scott
- School of Chemical
Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Yun Hau Ng
- School of Chemical
Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Robert A. Taylor
- School of Mechanical and Manufacturing
Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Kondo-Francois Aguey-Zinsou
- School of Chemical
Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Rose Amal
- School of Chemical
Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| |
Collapse
|
8
|
Cassano JA, Choi SK, McDonald W, Szundi I, Villa Gawboy TR, Gennis RB, Einarsdóttir Ó. The CO Photodissociation and Recombination Dynamics of the W172Y/F282T Ligand Channel Mutant of Rhodobacter sphaeroides aa3 Cytochrome c Oxidase. Photochem Photobiol 2016; 92:410-9. [PMID: 27029379 DOI: 10.1111/php.12587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/25/2016] [Indexed: 12/26/2022]
Abstract
In the ligand channel of the cytochrome c oxidase from Rhodobacter sphaeroides (Rs aa3 ) W172 and F282 have been proposed to generate a constriction that may slow ligand access to and from the active site. To explore this issue, the tryptophan and phenylalanine residues in Rs aa3 were mutated to the less bulky tyrosine and threonine residues, respectively, which occupy these sites in Thermus thermophilus (Tt) ba3 cytochrome oxidase. The CO photolysis and recombination dynamics of the reduced wild-type Rs aa3 and the W172Y/F282T mutant were investigated using time-resolved optical absorption spectroscopy. The spectral changes associated with the multiple processes are attributed to different conformers. The major CO recombination process (44 μs) in the W172Y/F282T mutant is ~500 times faster than the predominant CO recombination process in the wild-type enzyme (~23 ms). Classical dynamic simulations of the wild-type enzyme and double mutant showed significant structural changes at the active site in the mutant, including movement of the heme a3 ring-D propionate toward CuB and reduced binuclear center cavity volume. These structural changes effectively close the ligand exit pathway from the binuclear center, providing a basis for the faster CO recombination in the double mutant.
Collapse
Affiliation(s)
- Jennifer A Cassano
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA
| | - Sylvia K Choi
- Center for Biophysics and Computational Biology, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - William McDonald
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA
| | - Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA
| | - Terra R Villa Gawboy
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA
| | - Robert B Gennis
- Center for Biophysics and Computational Biology, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Ólöf Einarsdóttir
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA
| |
Collapse
|
9
|
Soloviov M, Meuwly M. CO-dynamics in the active site of cytochrome c oxidase. J Chem Phys 2015; 140:145101. [PMID: 24735320 DOI: 10.1063/1.4870264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transfer of CO from heme a3 to the Cu(B) site in Cytochrome c oxidase (CcO) after photolysis is studied using molecular dynamics simulations using an explicitly reactive, parametrized potential energy surface based on density functional theory calculations. After photodissociation from the heme-Fe, the CO ligand rebinds to the Cu(B) site on the sub-picosecond time scale. Depending on the simulation protocol the characteristic time ranges from 260 fs to 380 fs which compares with an estimated 450 fs from experiment based on the analysis of the spectral changes as a function of time delay after the photodissociating pulse. Following photoexcitation ≈90% of the ligands are found to rebind to either the Cu(B) (major component, 85%) or the heme-Fe (minor component, 2%) whereas about 10% remain in an unbound state. The infrared spectra of unbound CO in the active site is broad and featureless and no appreciable shift relative to gas-phase CO is found, which is in contrast to the situation in myoglobin. These observations explain why experimentally, unbound CO in the binuclear site of CcO has not been found as yet.
Collapse
Affiliation(s)
- Maksym Soloviov
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Einarsdóttir O, McDonald W, Funatogawa C, Szundi I, Woodruff WH, Dyer RB. The pathway of O₂to the active site in heme-copper oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:109-18. [PMID: 24998308 DOI: 10.1016/j.bbabio.2014.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022]
Abstract
The route of O₂to and from the high-spin heme in heme-copper oxidases has generally been believed to emulate that of carbon monoxide (CO). Time-resolved and stationary infrared experiments in our laboratories of the fully reduced CO-bound enzymes, as well as transient optical absorption saturation kinetics studies as a function of CO pressure, have provided strong support for CO binding to CuB⁺ on the pathway to and from the high-spin heme. The presence of CO on CuB⁺ suggests that O₂binding may be compromised in CO flow-flash experiments. Time-resolved optical absorption studies show that the rate of O₂and NO binding in the bovine enzyme (1 × 10⁸M⁻¹s⁻¹) is unaffected by the presence of CO, which is consistent with the rapid dissociation (t½ = 1.5μs) of CO from CuB⁺. In contrast, in Thermus thermophilus (Tt) cytochrome ba3 the O₂and NO binding to heme a3 slows by an order of magnitude in the presence of CO (from 1 × 10⁹ to 1 × 10⁸M⁻¹s⁻¹), but is still considerably faster (~10μs at 1atm O₂) than the CO off-rate from CuB in the absence of O₂(milliseconds). These results show that traditional CO flow-flash experiments do not give accurate results for the physiological binding of O₂and NO in Tt ba3, namely, in the absence of CO. They also raise the question whether in CO flow-flash experiments on Tt ba3 the presence of CO on CuB⁺ impedes the binding of O₂to CuB⁺ or, if O₂does not bind to CuB⁺ prior to heme a3, whether the CuB⁺-CO complex sterically restricts access of O₂to the heme. Both possibilities are discussed, and we argue that O₂binds directly to heme a3 in Tt ba3, causing CO to dissociate from CuB⁺ in a concerted manner through steric and/or electronic effects. This would allow CuB⁺ to function as an electron donor during the fast (5μs) breaking of the OO bond. These results suggest that the binding of CO to CuB⁺ on the path to and from heme a3 may not be applicable to O₂and NO in all heme-copper oxidases. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Olöf Einarsdóttir
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | - William McDonald
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Chie Funatogawa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | | | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Sato N, Ishii S, Sugimoto H, Hino T, Fukumori Y, Sako Y, Shiro Y, Tosha T. Structures of reduced and ligand-bound nitric oxide reductase provide insights into functional differences in respiratory enzymes. Proteins 2014; 82:1258-71. [PMID: 24338896 DOI: 10.1002/prot.24492] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 11/07/2022]
Abstract
Nitric oxide reductase (NOR) catalyzes the generation of nitrous oxide (N2O) via the reductive coupling of two nitric oxide (NO) molecules at a heme/non-heme Fe center. We report herein on the structures of the reduced and ligand-bound forms of cytochrome c-dependent NOR (cNOR) from Pseudomonas aeruginosa at a resolution of 2.3-2.7 Å, to elucidate structure-function relationships in NOR, and compare them to those of cytochrome c oxidase (CCO) that is evolutionarily related to NOR. Comprehensive crystallographic refinement of the CO-bound form of cNOR suggested that a total of four atoms can be accommodated at the binuclear center. Consistent with this, binding of bulky acetaldoxime (CH3-CH=N-OH) to the binuclear center of cNOR was confirmed by the structural analysis. Active site reduction and ligand binding in cNOR induced only ∼0.5 Å increase in the heme/non-heme Fe distance, but no significant structural change in the protein. The highly localized structural change is consistent with the lack of proton-pumping activity in cNOR, because redox-coupled conformational changes are thought to be crucial for proton pumping in CCO. It also permits the rapid decomposition of cytotoxic NO in denitrification. In addition, the shorter heme/non-heme Fe distance even in the bulky ligand-bound form of cNOR (∼4.5 Å) than the heme/Cu distance in CCO (∼5 Å) suggests the ability of NOR to maintain two NO molecules within a short distance in the confined space of the active site, thereby facilitating N-N coupling to produce a hyponitrite intermediate for the generation of N2O.
Collapse
Affiliation(s)
- Nozomi Sato
- Biometal Science Laboratory, RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan; Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nienhaus K, Olson JS, Nienhaus GU. An engineered heme-copper center in myoglobin: CO migration and binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1824-31. [PMID: 23459127 DOI: 10.1016/j.bbapap.2013.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/19/2022]
Abstract
We have investigated CO migration and binding in CuBMb, a copper-binding myoglobin double mutant (L29H-F43H), by using Fourier transform infrared spectroscopy and flash photolysis over a wide temperature range. This mutant was originally engineered with the aim to mimic the catalytic site of heme-copper oxidases. Comparison of the wild-type protein Mb and CuBMb shows that the copper ion in the distal pocket gives rise to significant effects on ligand binding to the heme iron. In Mb and copper-free CuBMb, primary and secondary ligand docking sites are accessible upon photodissociation. In copper-bound CuBMb, ligands do not migrate to secondary docking sites but rather coordinate to the copper ion. Ligands entering the heme pocket from the outside normally would not be captured efficiently by the tight distal pocket housing the two additional large imidazole rings. Binding at the Cu ion, however, ensures efficient trapping in CuBMb. The Cu ion also restricts the motions of the His64 side chain, which is the entry/exit door for ligand movement into the active site, and this restriction results in enhanced geminate and slow bimolecular CO rebinding. These results support current mechanistic views of ligand binding in hemoglobins and the role of the CuB in the active of heme-copper oxidases. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
13
|
Heylen K, Keltjens J. Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in Bacillus. Front Microbiol 2012; 3:371. [PMID: 23087684 PMCID: PMC3475470 DOI: 10.3389/fmicb.2012.00371] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 09/28/2012] [Indexed: 11/13/2022] Open
Abstract
The genomes of two phenotypically denitrifying type strains of the genus Bacillus were sequenced and the pathways for dissimilatory nitrate reduction were reconstructed. Results suggest that denitrification proceeds in the periplasmic space and in an analogous fashion as in Gram-negative organisms, yet with the participation of proteins that tend to be membrane-bound or membrane-associated. A considerable degree of functional redundancy was observed with marked differences between B. azotoformans LMG 9581(T) and B. bataviensis LMG 21833(T). In addition to the already characterized menaquinol/cyt c-dependent nitric oxide reductase (Suharti et al., 2001, 2004) of which the encoding genes could be identified now, evidence for another novel nitric oxide reductase (NOR) was found. Also, our analyses confirm earlier findings on branched electron transfer with both menaquinol and cytochrome c as reductants. Quite unexpectedly, both bacilli have the disposal of two parallel pathways for nitrite reduction enabling a life style as a denitrifier and as an ammonifying bacterium.
Collapse
Affiliation(s)
- Kim Heylen
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, University of Ghent Gent, Belgium
| | | |
Collapse
|
14
|
von Ballmoos C, Lachmann P, Gennis RB, Ädelroth P, Brzezinski P. Timing of Electron and Proton Transfer in the ba3 Cytochrome c Oxidase from Thermus thermophilus. Biochemistry 2012; 51:4507-17. [DOI: 10.1021/bi300132t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christoph von Ballmoos
- Department of Biochemistry and
Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Lachmann
- Department of Biochemistry and
Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, United
States
| | - Pia Ädelroth
- Department of Biochemistry and
Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and
Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|