1
|
García-Oneto TM, Moyano-Bellido C, Domínguez-Martín MA. Structure and function of the light-protective orange carotenoid protein families. Curr Res Struct Biol 2024; 7:100141. [PMID: 38736459 PMCID: PMC11087925 DOI: 10.1016/j.crstbi.2024.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024] Open
Abstract
Orange carotenoid proteins (OCPs) are unique photoreceptors that are critical for cyanobacterial photoprotection. Upon exposure to blue-green light, OCPs are activated from a stable orange form, OCPO, to an active red form, OCPR, which binds to phycobilisomes (PBSs) and performs photoprotective non-photochemical quenching (NPQ). OCPs can be divided into three main families: the most abundant and best studied OCP1, and two others, OCP2 and OCP3, which have different activation and quenching properties and are yet underexplored. Crystal structures have been acquired for the three OCP clades, providing a glimpse into the conformational underpinnings of their light-absorption and energy dissipation attributes. Recently, the structure of the PBS-OCPR complex has been obtained allowing for an unprecedented insight into the photoprotective action of OCPs. Here, we review the latest findings in the field that have substantially improved our understanding of how cyanobacteria protect themselves from the toxic consequences of excess light absorption. Furthermore, current research is applying the structure of OCPs to bio-inspired optogenetic tools, to function as carotenoid delivery devices, as well as engineering the NPQ mechanism of cyanobacteria to enhance their photosynthetic biomass production.
Collapse
Affiliation(s)
| | | | - M. Agustina Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
2
|
Sklyar J, Wilson A, Kirilovsky D, Adir N. Insights into energy quenching mechanisms and carotenoid uptake by orange carotenoid protein homologs: HCP4 and CTDH. Int J Biol Macromol 2024; 265:131028. [PMID: 38521321 DOI: 10.1016/j.ijbiomac.2024.131028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Photodamage to the photosynthetic apparatus by excessive light radiation has led to the evolution of a variety of energy dissipation mechanisms. A mechanism that exists in some cyanobacterial species, enables non-photochemical quenching of excitation energy within the phycobilisome (PBS) antenna complex by the Orange Carotenoid Protein (OCP). The OCP contains an active N-terminal domain (NTD) and a regulatory C-terminal domain (CTD). Some cyanobacteria also have genes encoding for homologs to both the CTD (CTDH) and the NTD (referred to as helical carotenoid proteins, HCP). The CTDH facilitates uptake of carotenoids from the thylakoid membranes to be transferred to the HCPs. Holo-HCPs exhibit diverse functionalities such as carotenoid carriers, singlet oxygen quenchers, and in the case of HCP4, constitutive OCP-like energy quenching. Here, we present the first crystal structure of the holo-HCP4 binding canthaxanthin molecule and an improved structure of the apo-CTDH from Anabaena sp. PCC 7120. We propose here models of the binding of the HCP4 to the PBS and the associated energy quenching mechanism. Our results show that the presence of the carotenoid is essential for fluorescence quenching. We also examined interactions within OCP-like species, including HCP4 and CTDH, providing the basis for mechanisms of carotenoid transfer from CTDH to HCPs.
Collapse
Affiliation(s)
- Jenia Sklyar
- Schulich Faculty of Chemistry, Technion, Haifa 3200003, Israel
| | - Adjélé Wilson
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France.
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion, Haifa 3200003, Israel.
| |
Collapse
|
3
|
Stadnichuk IN, Krasilnikov PM. Relationship between non-photochemical quenching efficiency and the energy transfer rate from phycobilisomes to photosystem II. PHOTOSYNTHESIS RESEARCH 2024; 159:177-189. [PMID: 37328680 DOI: 10.1007/s11120-023-01031-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
The chromophorylated PBLcm domain of the ApcE linker protein in the cyanobacterial phycobilisome (PBS) serves as a bottleneck for Förster resonance energy transfer (FRET) from the PBS to the antennal chlorophyll of photosystem II (PS II) and as a redirection point for energy distribution to the orange protein ketocarotenoid (OCP), which is excitonically coupled to the PBLcm chromophore in the process of non-photochemical quenching (NPQ) under high light conditions. The involvement of PBLcm in the quenching process was first directly demonstrated by measuring steady-state fluorescence spectra of cyanobacterial cells at different stages of NPQ development. The time required to transfer energy from the PBLcm to the OCP is several times shorter than the time it takes to transfer energy from the PBLcm to the PS II, ensuring quenching efficiency. The data obtained provide an explanation for the different rates of PBS quenching in vivo and in vitro according to the half ratio of OCP/PBS in the cyanobacterial cell, which is tens of times lower than that realized for an effective NPQ process in solution.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya 35, 127726, Moscow, Russia.
| | - Pavel M Krasilnikov
- Biological Faculty of M.V., Lomonosov State University, Lenin Hills 12, 119991, Moscow, Russia
| |
Collapse
|
4
|
Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 2022; 609:835-845. [PMID: 36045294 DOI: 10.1038/s41586-022-05156-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.
Collapse
|
5
|
Tseng HW, Moldenhauer M, Friedrich T, Maksimov EG, Budisa N. Probing the spectral signatures of orange carotenoid protein by orthogonal translation with aromatic non-canonical amino acids. Biochem Biophys Res Commun 2022; 607:96-102. [DOI: 10.1016/j.bbrc.2022.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
|
6
|
Wilson A, Muzzopappa F, Kirilovsky D. Elucidation of the essential amino acids involved in the binding of the cyanobacterial Orange Carotenoid Protein to the phycobilisome. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148504. [PMID: 34619092 DOI: 10.1016/j.bbabio.2021.148504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
The Orange Carotenoid Protein (OCP) is a soluble photoactive protein involved in cyanobacterial photoprotection. It is formed by the N-terminal domain (NTD) and C-terminal (CTD) domain, which establish interactions in the orange inactive form and share a ketocarotenoid molecule. Upon exposure to intense blue light, the carotenoid molecule migrates into the NTD and the domains undergo separation. The free NTD can then interact with the phycobilisome (PBS), the extramembrane cyanobacterial antenna, and induces thermal dissipation of excess absorbed excitation energy. The OCP and PBS amino acids involved in their interactions remain undetermined. To identify the OCP amino acids essential for this interaction, we constructed several OCP mutants (23) with modified amino acids located on different NTD surfaces. We demonstrated that only the NTD surface that establishes interactions with the CTD in orange OCP is involved in the binding of OCP to PBS. All amino acids surrounding the carotenoid β1 ring in the OCPR-NTD (L51, P56, G57, N104, I151, R155, N156) are important for binding OCP to PBS. Additionally, modification of the amino acids influences OCP photoactivation and/or recovery rates, indicating that they are also involved in the translocation of the carotenoid.
Collapse
Affiliation(s)
- Adjélé Wilson
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France.
| | - Fernando Muzzopappa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France.
| |
Collapse
|
7
|
Protasova EA, Antal TK, Zlenko DV, Elanskaya IV, Lukashev EP, Friedrich T, Mironov KS, Sluchanko NN, Ge B, Qin S, Maksimov EG. State of the phycobilisome determines effective absorption cross-section of Photosystem II in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148494. [PMID: 34534546 DOI: 10.1016/j.bbabio.2021.148494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
Quenching of excess excitation energy is necessary for the photoprotection of light-harvesting complexes. In cyanobacteria, quenching of phycobilisome (PBS) excitation energy is induced by the Orange Carotenoid Protein (OCP), which becomes photoactivated under high light conditions. A decrease in energy transfer efficiency from the PBSs to the reaction centers decreases photosystem II (PS II) activity. However, quantitative analysis of OCP-induced photoprotection in vivo is complicated by similar effects of both photochemical and non-photochemical quenching on the quantum yield of the PBS fluorescence overlapping with the emission of chlorophyll. In the present study, we have analyzed chlorophyll a fluorescence induction to estimate the effective cross-section of PS II and compared the effects of reversible OCP-dependent quenching of PBS fluorescence with reduction of PBS content upon nitrogen starvation or mutations of key PBS components. This approach allowed us to estimate the dependency of the rate constant of PS II primary electron acceptor reduction on the amount of PBSs in the cell. We found that OCP-dependent quenching triggered by blue light affects approximately half of PBSs coupled to PS II, indicating that under normal conditions, the concentration of OCP is not sufficient for quenching of all PBSs coupled to PS II.
Collapse
Affiliation(s)
- Elena A Protasova
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Taras K Antal
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry V Zlenko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina V Elanskaya
- Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny P Lukashev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry, D-10623 Berlin, Germany
| | - Kirill S Mironov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, PR China
| | - Song Qin
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, PR China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
8
|
Zheng L, Zheng Z, Li X, Wang G, Zhang K, Wei P, Zhao J, Gao N. Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. Nat Commun 2021; 12:5497. [PMID: 34535665 PMCID: PMC8448738 DOI: 10.1038/s41467-021-25813-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Phycobilisomes (PBS) are the major light-harvesting machineries for photosynthesis in cyanobacteria and red algae and they have a hierarchical structure of a core and peripheral rods, with both consisting of phycobiliproteins and linker proteins. Here we report the cryo-EM structures of PBS from two cyanobacterial species, Anabaena 7120 and Synechococcus 7002. Both PBS are hemidiscoidal in shape and share a common triangular core structure. While the Anabaena PBS has two additional hexamers in the core linked by the 4th linker domain of ApcE (LCM). The PBS structures predict that, compared with the PBS from red algae, the cyanobacterial PBS could have more direct routes for energy transfer to ApcD. Structure-based systematic mutagenesis analysis of the chromophore environment of ApcD and ApcF subunits reveals that aromatic residues are critical to excitation energy transfer (EET). The structures also suggest that the linker protein could actively participate in the process of EET in both rods and the cores. These results provide insights into the organization of chromophores and the mechanisms of EET within cyanobacterial PBS.
Collapse
Affiliation(s)
- Lvqin Zheng
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Zhenggao Zheng
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China ,grid.410645.20000 0001 0455 0905College of Life Science, Qingdao University, 266071 Qingdao, China
| | - Xiying Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Guopeng Wang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Kun Zhang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Peijun Wei
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Jindong Zhao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China ,grid.429211.d0000 0004 1792 6029Key Laboratory of Phycology of CAS, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, Hubei China
| | - Ning Gao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| |
Collapse
|
9
|
Liu H, Zhang MM, Weisz DA, Cheng M, Pakrasi HB, Blankenship RE. Structure of cyanobacterial phycobilisome core revealed by structural modeling and chemical cross-linking. SCIENCE ADVANCES 2021; 7:7/2/eaba5743. [PMID: 33523959 PMCID: PMC7787483 DOI: 10.1126/sciadv.aba5743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 11/16/2020] [Indexed: 05/28/2023]
Abstract
In cyanobacteria and red algae, the structural basis dictating efficient excitation energy transfer from the phycobilisome (PBS) antenna complex to the reaction centers remains unclear. The PBS has several peripheral rods and a central core that binds to the thylakoid membrane, allowing energy coupling with photosystem II (PSII) and PSI. Here, we have combined chemical cross-linking mass spectrometry with homology modeling to propose a tricylindrical cyanobacterial PBS core structure. Our model reveals a side-view crossover configuration of the two basal cylinders, consolidating the essential roles of the anchoring domains composed of the ApcE PB loop and ApcD, which facilitate the energy transfer to PSII and PSI, respectively. The uneven bottom surface of the PBS core contrasts with the flat reducing side of PSII. The extra space between two basal cylinders and PSII provides increased accessibility for regulatory elements, e.g., orange carotenoid protein, which are required for modulating photochemical activity.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mengru M Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Daniel A Weisz
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ming Cheng
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
10
|
Lou W, Niedzwiedzki DM, Jiang RJ, Blankenship RE, Liu H. Binding of red form of Orange Carotenoid Protein (OCP) to phycobilisome is not sufficient for quenching. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148155. [PMID: 31935359 DOI: 10.1016/j.bbabio.2020.148155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
The Orange Carotenoid Protein (OCP) is responsible for photoprotection in many cyanobacteria. Absorption of blue light drives the conversion of the orange, inactive form (OCPO) to the red, active form (OCPR). Concomitantly, the N-terminal domain (NTD) and the C-terminal domain (CTD) of OCP separate, which ultimately leads to the formation of a quenched OCPR-PBS complex. The details of the photoactivation of OCP have been intensely researched. Binding site(s) of OCPR on the PBS core have also been proposed. However, the post-binding events of the OCPR-PBS complex remain unclear. Here, we demonstrate that PBS-bound OCPR is not sufficient as a PBS excitation energy quencher. Using site-directed mutagenesis, we generated a suite of single point mutations at OCP Leucine 51 (L51) of Synechocystis 6803. Steady-state and time-resolved fluorescence analyses demonstrated that all mutant proteins are unable to quench the PBS fluorescence, owing to either failed OCP binding to PBS, or, if bound, an OCP-PBS quenching state failed to form. The SDS-PAGE and Western blot analysis support that the L51A (Alanine) mutant binds to the PBS and therefore belongs to the second category. We hypothesize that upon binding to PBS, OCPR likely reorganizes and adopts a new conformational state (OCP3rd) different than either OCPO or OCPR to allow energy quenching, depending on the cross-talk between OCPR and its PBS core-binding counterpart.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ruidong J Jiang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
11
|
Slonimskiy YB, Maksimov EG, Lukashev EP, Moldenhauer M, Friedrich T, Sluchanko NN. Engineering the photoactive orange carotenoid protein with redox-controllable structural dynamics and photoprotective function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148174. [PMID: 32059843 DOI: 10.1016/j.bbabio.2020.148174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Photosynthesis requires various photoprotective mechanisms for survival of organisms in high light. In cyanobacteria exposed to high light, the Orange Carotenoid Protein (OCP) is reversibly photoswitched from the orange (OCPO) to the red (OCPR) form, the latter binds to the antenna (phycobilisomes, PBs) and quenches its overexcitation. OCPR accumulation implicates restructuring of a compact dark-adapted OCPO state including detachment of the N-terminal extension (NTE) and separation of protein domains, which is reversed by interaction with the Fluorescence Recovery Protein (FRP). OCP phototransformation supposedly occurs via an intermediate characterized by an OCPR-like absorption spectrum and an OCPO-like protein structure, but the hierarchy of steps remains debatable. Here, we devise and analyze an OCP variant with the NTE trapped on the C-terminal domain (CTD) via an engineered disulfide bridge (OCPCC). NTE trapping preserves OCP photocycling within the compact protein structure but precludes functional interaction with PBs and especially FRP, which is completely restored upon reduction of the disulfide bridge. Non-interacting with the dark-adapted oxidized OCPCC, FRP binds reduced OCPCC nearly as efficiently as OCPO devoid of the NTE, suggesting that the low-affinity FRP binding to OCPO is realized via NTE displacement. The low efficiency of excitation energy transfer in complexes between PBs and oxidized OCPCC indicates that OCPCC binds to PBs in an orientation suboptimal for quenching PBs fluorescence. Our approach supports the presence of the OCPR-like intermediate in the OCP photocycle and shows effective uncoupling of spectral changes from functional OCP photoactivation, enabling redox control of its structural dynamics and function.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biochemistry, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Eugene G Maksimov
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Evgeny P Lukashev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Nikolai N Sluchanko
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| |
Collapse
|
12
|
Kirilovsky D. Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Krasilnikov PM, Zlenko DV, Stadnichuk IN. Rates and pathways of energy migration from the phycobilisome to the photosystem II and to the orange carotenoid protein in cyanobacteria. FEBS Lett 2019; 594:1145-1154. [PMID: 31799708 DOI: 10.1002/1873-3468.13709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 02/01/2023]
Abstract
The phycobilisome (PBS) is the cyanobacterial antenna complex which transfers absorbed light energy to the photosystem II (PSII), while the excess energy is nonphotochemically quenched by interaction of the PBS with the orange carotenoid protein (OCP). Here, the molecular model of the PBS-PSII-OCP supercomplex was utilized to assess the resonance energy transfer from PBS to PSII and, using the excitonic theory, the transfer from PBS to OCP. Our estimates show that the effective energy migration from PBS to PSII is realized due to the existence of several transfer pathways from phycobilin chromophores of the PBS to the neighboring antennal chlorophyll molecules of the PSII. At the same time, the single binding site of photoactivated OCP and the PBS is sufficient to realize the quenching.
Collapse
Affiliation(s)
| | - Dmitry V Zlenko
- Faculty of Biology, M.V. Lomonosov State University, Moscow, Russia
| | | |
Collapse
|
14
|
Adir N, Bar-Zvi S, Harris D. The amazing phycobilisome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148047. [PMID: 31306623 DOI: 10.1016/j.bbabio.2019.07.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Cyanobacteria and red-algae share a common light-harvesting complex which is different than all other complexes that serve as photosynthetic antennas - the Phycobilisome (PBS). The PBS is found attached to the stromal side of thylakoid membranes, filling up most of the gap between individual thylakoids. The PBS self assembles from similar homologous protein units that are soluble and contain conserved cysteine residues that covalently bind the light absorbing chromophores, linear tetra-pyrroles. Using similar construction principles, the PBS can be as large as 16.8 MDa (68×45×39nm), as small as 1.2 MDa (24 × 11.5 × 11.5 nm), and in some unique cases smaller still. The PBS can absorb light between 450 nm to 650 nm and in some cases beyond 700 nm, depending on the species, its composition and assembly. In this review, we will present new observations and structures that expand our understanding of the distinctive properties that make the PBS an amazing light harvesting system. At the end we will suggest why the PBS, for all of its excellent properties, was discarded by photosynthetic organisms that arose later in evolution such as green algae and higher plants.
Collapse
Affiliation(s)
- Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Shira Bar-Zvi
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dvir Harris
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
15
|
Lou W, Wolf BM, Blankenship RE, Liu H. Cu+ Contributes to the Orange Carotenoid Protein-Related Phycobilisome Fluorescence Quenching and Photoprotection in Cyanobacteria. Biochemistry 2019; 58:3109-3115. [DOI: 10.1021/acs.biochem.9b00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenjing Lou
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Benjamin M. Wolf
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Robert E. Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
16
|
Chen Q, Arents J, Schuurmans JM, Ganapathy S, de Grip WJ, Cheregi O, Funk C, Branco Dos Santos F, Hellingwerf KJ. Functional Expression of Gloeobacter Rhodopsin in PSI-Less Synechocystis sp. PCC6803. Front Bioeng Biotechnol 2019; 7:67. [PMID: 30984754 PMCID: PMC6450040 DOI: 10.3389/fbioe.2019.00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 01/30/2023] Open
Abstract
The approach of providing an oxygenic photosynthetic organism with a cyclic electron transfer system, i.e., a far-red light-driven proton pump, is widely proposed to maximize photosynthetic efficiency via expanding the absorption spectrum of photosynthetically active radiation. As a first step in this approach, Gloeobacter rhodopsin was expressed in a PSI-deletion strain of Synechocystis sp. PCC6803. Functional expression of Gloeobacter rhodopsin, in contrast to Proteorhodopsin, did not stimulate the rate of photoheterotrophic growth of this Synechocystis strain, analyzed with growth rate measurements and competition experiments. Nevertheless, analysis of oxygen uptake and—production rates of the Gloeobacter rhodopsin-expressing strains, relative to the ΔPSI control strain, confirm that the proton-pumping Gloeobacter rhodopsin provides the cells with additional capacity to generate proton motive force. Significantly, expression of the Gloeobacter rhodopsin did modulate levels of pigment formation in the transgenic strain.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Center of Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jos Arents
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - J Merijn Schuurmans
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | | | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Squires AH, Dahlberg PD, Liu H, Magdaong NCM, Blankenship RE, Moerner WE. Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein. Nat Commun 2019; 10:1172. [PMID: 30862823 PMCID: PMC6414729 DOI: 10.1038/s41467-019-09084-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
The Orange Carotenoid Protein (OCP) is a cytosolic photosensor that is responsible for non-photochemical quenching (NPQ) of the light-harvesting process in most cyanobacteria. Upon photoactivation by blue-green light, OCP binds to the phycobilisome antenna complex, providing an excitonic trap to thermally dissipate excess energy. At present, both the binding site and NPQ mechanism of OCP are unknown. Using an Anti-Brownian ELectrokinetic (ABEL) trap, we isolate single phycobilisomes in free solution, both in the presence and absence of activated OCP, to directly determine the photophysics and heterogeneity of OCP-quenched phycobilisomes. Surprisingly, we observe two distinct OCP-quenched states, with lifetimes 0.09 ns (6% of unquenched brightness) and 0.21 ns (11% brightness). Photon-by-photon Monte Carlo simulations of exciton transfer through the phycobilisome suggest that the observed quenched states are kinetically consistent with either two or one bound OCPs, respectively, underscoring an additional mechanism for excitation control in this key photosynthetic unit. Upon photoactivation the Orange Carotenoid Protein (OCP) binds to the phycobilisome and prevents damage by thermally dissipating excess energy. Here authors use an Anti-Brownian ELectrokinetic trap to determine the photophysics of single OCP-quenched phycobilisomes and observe two distinct OCP-quenched states with either one or two OCPs bound.
Collapse
Affiliation(s)
- Allison H Squires
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Haijun Liu
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nikki Cecil M Magdaong
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Takahashi H, Kusama Y, Li X, Takaichi S, Nishiyama Y. Overexpression of Orange Carotenoid Protein Protects the Repair of PSII under Strong Light in Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2019; 60:367-375. [PMID: 30398652 DOI: 10.1093/pcp/pcy218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
Orange carotenoid protein (OCP) plays a vital role in the thermal dissipation of excitation energy in the photosynthetic machinery of the cyanobacterium Synechocystis sp. PCC 6803. To clarify the role of OCP in the protection of PSII from strong light, we generated an OCP-overexpressing strain of Synechocystis and examined the effects of overexpression on the photoinhibition of PSII. In OCP-overexpressing cells, thermal dissipation of energy was enhanced and the extent of photoinhibition of PSII was reduced. However, photodamage to PSII, as monitored in the presence of lincomycin, was unaffected, suggesting that overexpressed OCP protects the repair of PSII. Furthermore, the synthesis de novo of proteins in thylakoid membranes, such as the D1 protein which is required for the repair of PSII, was enhanced in OCP-overexpressing cells under strong light, while the production of singlet oxygen was suppressed. Thus, the enhanced thermal dissipation of energy via overexpressed OCP might support the repair of PSII by protecting protein synthesis from oxidative damage by singlet oxygen under strong light, with the resultant mitigation of photoinhibition of PSII.
Collapse
Affiliation(s)
- Hiroko Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Japan
| | - Yuri Kusama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Japan
| | - Xinxiang Li
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Japan
| |
Collapse
|
19
|
Zlenko DV, Elanskaya IV, Lukashev EP, Bolychevtseva YV, Suzina NE, Pojidaeva ES, Kononova IA, Loktyushkin AV, Stadnichuk IN. Role of the PB-loop in ApcE and phycobilisome core function in cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:155-166. [DOI: 10.1016/j.bbabio.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022]
|
20
|
Radioprotective role of cyanobacterial phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:121-128. [PMID: 30465750 DOI: 10.1016/j.bbabio.2018.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/07/2018] [Accepted: 11/18/2018] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are thought to be responsible for pioneering dioxygen production and the so-called "Great Oxygenation Event" that determined the formation of the ozone layer and the ionosphere restricting ionizing radiation levels reaching our planet, which increased biological diversity but also abolished the necessity of radioprotection. We speculated that ancient protection mechanisms could still be present in cyanobacteria and studied the effect of ionizing radiation and space flight during the Foton-M4 mission on Synechocystis sp. PCC6803. Spectral and functional characteristics of photosynthetic membranes revealed numerous similarities of the effects of α-particles and space flight, which both interrupted excitation energy transfer from phycobilisomes to the photosystems and significantly reduced the concentration of phycobiliproteins. Although photosynthetic activity was severely suppressed, the effect was reversible, and the cells could rapidly recover from the stress. We suggest that the actual existence and the uncoupling of phycobilisomes may play a specific role not only in photo-, but also in radioprotection, which could be crucial for the early evolution of Life on Earth.
Collapse
|
21
|
Cordara A, Manfredi M, van Alphen P, Marengo E, Pirone R, Saracco G, Branco Dos Santos F, Hellingwerf KJ, Pagliano C. Response of the thylakoid proteome of Synechocystis sp. PCC 6803 to photohinibitory intensities of orange-red light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:524-534. [PMID: 30316162 DOI: 10.1016/j.plaphy.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Photoautotrophic growth of Synechocystis sp. PCC 6803 in a flat-panel photobioreactor, run in turbidostat mode under increasing intensities of orange-red light (636 nm), showed a maximal growth rate (0.12 h-1) at 300 μmolphotons m-2 s-1, whereas first signs of photoinhibition were detected above 800 μmolphotons m-2 s-1. To investigate the dynamic modulation of the thylakoid proteome in response to photoinhibitory light intensities, quantitative proteomics analyses by SWATH mass spectrometry were performed by comparing thylakoid membranes extracted from Synechocystis grown under low-intensity illumination (i.e. 50 μmolphotons m-2 s-1) with samples isolated from cells subjected to photoinhibitory light regimes (800, 950 and 1460 μmolphotons m-2 s-1). We identified and quantified 126 proteins with altered abundance in all three photoinhibitory illumination regimes. These data reveal the strategies by which Synechocystis responds to photoinibitory growth irradiances of orange-red light. The accumulation of core proteins of Photosystem II and reduction of oxygen-evolving-complex subunits in photoinhibited cells revealed a different turnover and repair rates of the integral and extrinsic Photosystem II subunits with variation of light intensity. Furthermore, Synechocystis displayed a differentiated response to photoinhibitory regimes also regarding Photosystem I: the amount of PsaD, PsaE, PsaJ and PsaM subunits decreased, while there was an increased abundance of the PsaA, PsaB, Psak2 and PsaL proteins. Photoinhibition with 636 nm light also elicited an increased capacity for cyclic electron transport, a lowering of the amount of phycobilisomes and an increase of the orange carotenoid protein content, all presumably as a photoprotective mechanism against the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Alessandro Cordara
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy; Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Marcello Manfredi
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy; Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Pascal van Alphen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090, GE, Amsterdam, Netherlands
| | - Emilio Marengo
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy; Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Raffaele Pirone
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Guido Saracco
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090, GE, Amsterdam, Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090, GE, Amsterdam, Netherlands
| | - Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy.
| |
Collapse
|
22
|
OCP-FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria. Nat Commun 2018; 9:3869. [PMID: 30250028 PMCID: PMC6155142 DOI: 10.1038/s41467-018-06195-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/17/2018] [Indexed: 11/08/2022] Open
Abstract
In cyanobacteria, high light photoactivates the orange carotenoid protein (OCP) that binds to antennae complexes, dissipating energy and preventing the destruction of the photosynthetic apparatus. At low light, OCP is efficiently deactivated by a poorly understood action of the dimeric fluorescence recovery protein (FRP). Here, we engineer FRP variants with defined oligomeric states and scrutinize their functional interaction with OCP. Complemented by disulfide trapping and chemical crosslinking, structural analysis in solution reveals the topology of metastable complexes of OCP and the FRP scaffold with different stoichiometries. Unable to tightly bind monomeric FRP, photoactivated OCP recruits dimeric FRP, which subsequently monomerizes giving 1:1 complexes. This could be facilitated by a transient OCP–2FRP–OCP complex formed via the two FRP head domains, significantly improving FRP efficiency at elevated OCP levels. By identifying key molecular interfaces, our findings may inspire the design of optically triggered systems transducing light signals into protein–protein interactions. Cyanobacterial photoprotection is controlled by OCP and FRP proteins, but their dynamic interplay is not fully understood. Here, the authors combine protein engineering, disulfide trapping and structural analyses to provide mechanistic insights into the transient OCP-FRP interaction.
Collapse
|
23
|
Elanskaya IV, Zlenko DV, Lukashev EP, Suzina NE, Kononova IA, Stadnichuk IN. Phycobilisomes from the mutant cyanobacterium Synechocystis sp. PCC 6803 missing chromophore domain of ApcE. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:280-291. [DOI: 10.1016/j.bbabio.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/22/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
|
24
|
Sluchanko NN, Slonimskiy YB, Maksimov EG. Features of Protein-Protein Interactions in the Cyanobacterial Photoprotection Mechanism. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523061 DOI: 10.1134/s000629791713003x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photoprotective mechanisms of cyanobacteria are characterized by several features associated with the structure of their water-soluble antenna complexes - the phycobilisomes (PBs). During energy transfer from PBs to chlorophyll of photosystem reaction centers, the "energy funnel" principle is realized, which regulates energy flux due to the specialized interaction of the PBs core with a quenching molecule capable of effectively dissipating electron excitation energy into heat. The role of the quencher is performed by ketocarotenoid within the photoactive orange carotenoid protein (OCP), which is also a sensor for light flux. At a high level of insolation, OCP is reversibly photoactivated, and this is accompanied by a significant change in its structure and spectral characteristics. Such conformational changes open the possibility for protein-protein interactions between OCP and the PBs core (i.e., activation of photoprotection mechanisms) or the fluorescence recovery protein. Even though OCP was discovered in 1981, little was known about the conformation of its active form until recently, as well as about the properties of homologs of its N and C domains. Studies carried out during recent years have made a breakthrough in understanding of the structural-functional organization of OCP and have enabled discovery of new aspects of the regulation of photoprotection processes in cyanobacteria. This review focuses on aspects of protein-protein interactions between the main participants of photoprotection reactions and on certain properties of representatives of newly discovered families of OCP homologs.
Collapse
Affiliation(s)
- N N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
25
|
Nganou C, Adir N, Mkandawire M. Cryospectroscopy Studies of Intact Light-Harvesting Antennas Reveal Empirical Electronic Energy Transitions in Two Cyanobacteria Species. J Phys Chem B 2018; 122:3068-3078. [DOI: 10.1021/acs.jpcb.8b00714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Collins Nganou
- Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, P.O. Box 5300, 1250 Grand Lake Road, Sydney, Nova Scotia, Canada B1P 6L2
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion, Israel Institute of Technology, Haifa 32000 Israel
| | - Martin Mkandawire
- Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, P.O. Box 5300, 1250 Grand Lake Road, Sydney, Nova Scotia, Canada B1P 6L2
| |
Collapse
|
26
|
Zlenko DV, Galochkina TV, Krasilnikov PM, Stadnichuk IN. Coupled rows of PBS cores and PSII dimers in cyanobacteria: symmetry and structure. PHOTOSYNTHESIS RESEARCH 2017; 133:245-260. [PMID: 28365856 DOI: 10.1007/s11120-017-0362-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/23/2017] [Indexed: 05/26/2023]
Abstract
Phycobilisome (PBS) is a giant water-soluble photosynthetic antenna transferring the energy of absorbed light mainly to the photosystem II (PSII) in cyanobacteria. Under the low light conditions, PBSs and PSII dimers form coupled rows where each PBS is attached to the cytoplasmic surface of PSII dimer, and PBSs come into contact with their face surfaces (state 1). The model structure of the PBS core that we have developed earlier by comparison and combination of different fine allophycocyanin crystals, as reported in Zlenko et al. (Photosynth Res 130(1):347-356, 2016b), provides a natural way of the PBS core face-to-face stacking. According to our model, the structure of the protein-protein contact between the neighboring PBS cores in the rows is the same as the contact between the APC hexamers inside the PBS core. As a result, the rates of energy transfer between the cores can occur, and the row of PBS cores acts as an integral PBS "supercore" providing energy transfer between the individual PBS cores. The PBS cores row pitch in our elaborated model (12.4 nm) is very close to the PSII dimers row pitch obtained by the electron microscopy (12.2 nm) that allowed to unite a model of the PBS cores row with a model of the PSII dimers row. Analyzing the resulting model, we have determined the most probable locations of ApcD and ApcE terminal emitter subunits inside the bottom PBS core cylinders and also revealed the chlorophyll molecules of PSII gathering energy from the PBS.
Collapse
Affiliation(s)
- Dmitry V Zlenko
- Biological Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/12, Moscow, Russia, 119991.
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya St, 35, Moscow, Russia, 127276.
| | - Tatiana V Galochkina
- Biological Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/12, Moscow, Russia, 119991
- INRIA Team Dracula, INRIA Antenne Lyon la Doua, 69603, Villeurbanne, France
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622, Villeurbanne, France
| | - Pavel M Krasilnikov
- Biological Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/12, Moscow, Russia, 119991
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya St, 35, Moscow, Russia, 127276
| | - Igor N Stadnichuk
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya St, 35, Moscow, Russia, 127276
| |
Collapse
|
27
|
Kerfeld CA, Melnicki MR, Sutter M, Dominguez-Martin MA. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. THE NEW PHYTOLOGIST 2017; 215:937-951. [PMID: 28675536 DOI: 10.1111/nph.14670] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Contents 937 I. 937 II. 938 III. 939 IV. 943 V. 947 VI. 948 948 References 949 SUMMARY: The orange carotenoid protein (OCP) is a water-soluble, photoactive protein involved in thermal dissipation of excess energy absorbed by the light-harvesting phycobilisomes (PBS) in cyanobacteria. The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain and a keto-carotenoid. On photoactivation, the OCP converts from a stable orange form, OCPO , to a red form, OCPR . Activation is accompanied by a translocation of the carotenoid deeper into the effector domain. The increasing availability of cyanobacterial genomes has enabled the identification of new OCP families (OCP1, OCP2, OCPX). The fluorescence recovery protein (FRP) detaches OCP1 from the PBS core, accelerating its back-conversion to OCPO ; by contrast, other OCP families are not regulated by FRP. N-terminal domain homologs, the helical carotenoid proteins (HCPs), have been found among diverse cyanobacteria, occurring as multiple paralogous groups, with two representatives exhibiting strong singlet oxygen (1 O2 ) quenching (HCP2, HCP3) and another capable of dissipating PBS excitation (HCP4). Crystal structures are presently available for OCP1 and HCP1, and models of other HCP subtypes can be readily produced as a result of strong sequence conservation, providing new insights into the determinants of carotenoid binding and 1 O2 quenching.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | |
Collapse
|
28
|
Maksimov EG, Sluchanko NN, Mironov KS, Shirshin EA, Klementiev KE, Tsoraev GV, Moldenhauer M, Friedrich T, Los DA, Allakhverdiev SI, Paschenko VZ, Rubin AB. Fluorescent Labeling Preserving OCP Photoactivity Reveals Its Reorganization during the Photocycle. Biophys J 2017; 112:46-56. [PMID: 28076815 DOI: 10.1016/j.bpj.2016.11.3193] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/29/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Orange carotenoid protein (OCP), responsible for the photoprotection of the cyanobacterial photosynthetic apparatus under excessive light conditions, undergoes significant rearrangements upon photoconversion and transits from the stable orange to the signaling red state. This is thought to involve a 12-Å translocation of the carotenoid cofactor and separation of the N- and C-terminal protein domains. Despite clear recent progress, the detailed mechanism of the OCP photoconversion and associated photoprotection remains elusive. Here, we labeled the OCP of Synechocystis with tetramethylrhodamine-maleimide (TMR) and obtained a photoactive OCP-TMR complex, the fluorescence of which was highly sensitive to the protein state, showing unprecedented contrast between the orange and red states and reflecting changes in protein conformation and the distances from TMR to the carotenoid throughout the photocycle. The OCP-TMR complex was sensitive to the light intensity, temperature, and viscosity of the solvent. Based on the observed Förster resonance energy transfer, we determined that upon photoconversion, the distance between TMR (donor) bound to a cysteine in the C-terminal domain and the carotenoid (acceptor) increased by 18 Å, with simultaneous translocation of the carotenoid into the N-terminal domain. Time-resolved fluorescence anisotropy revealed a significant decrease of the OCP rotation rate in the red state, indicating that the light-triggered conversion of the protein is accompanied by an increase of its hydrodynamic radius. Thus, our results support the idea of significant structural rearrangements of OCP, providing, to our knowledge, new insights into the structural rearrangements of OCP throughout the photocycle and a completely novel approach to the study of its photocycle and non-photochemical quenching. We suggest that this approach can be generally applied to other photoactive proteins.
Collapse
Affiliation(s)
- Eugene G Maksimov
- Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia.
| | - Nikolai N Sluchanko
- Laboratory of Structural Biochemistry of Proteins, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Kirill S Mironov
- Laboratory of Cell Regulation, K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny A Shirshin
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | | | - Georgy V Tsoraev
- Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia
| | - Marcus Moldenhauer
- Department of Intracellular Regulation, Institute of Plant Physiology, Moscow, Russia
| | - Thomas Friedrich
- Department of Intracellular Regulation, Institute of Plant Physiology, Moscow, Russia
| | - Dmitry A Los
- Department of Intracellular Regulation, Institute of Plant Physiology, Moscow, Russia
| | - Suleyman I Allakhverdiev
- Laboratory of Cell Regulation, K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Moscow, Russia.
| | | | - Andrew B Rubin
- Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
29
|
Thurotte A, Bourcier de Carbon C, Wilson A, Talbot L, Cot S, López-Igual R, Kirilovsky D. The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:308-317. [PMID: 28188781 DOI: 10.1016/j.bbabio.2017.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/17/2017] [Accepted: 02/05/2017] [Indexed: 12/21/2022]
Abstract
To deal with fluctuating light condition, cyanobacteria have developed a photoprotective mechanism which, under high light conditions, decreases the energy arriving at the photochemical centers. It relies on a photoswitch, the Orange Carotenoid Protein (OCP). Once photoactivated, OCP binds to the light harvesting antenna, the phycobilisome (PBS), and triggers the thermal dissipation of the excess energy absorbed. Deactivation of the photoprotective mechanism requires the intervention of a third partner, the Fluorescence Recovery Protein (FRP). FRP by interacting with the photoactivated OCP accelerates its conversion to the non-active form and its detachment from the phycobilisome. We have studied the interaction of FRP with free and phycobilisome-bound OCP. Several OCP variants were constructed and characterized. In this article we show that OCP amino acid F299 is essential and D220 important for OCP deactivation mediated by FRP. Mutations of these amino acids did not affect FRP activity as helper to detach OCP from phycobilisomes. In addition, while mutated R60L FRP is inactive on OCP deactivation, its activity on the detachment of the OCP from the phycobilisomes is not affected. Thus, our results demonstrate that FRP has two distinct activities: it accelerates OCP detachment from phycobilisomes and then it helps deactivation of the OCP. They also suggest that different OCP and FRP amino acids could be involved in these two activities.
Collapse
Affiliation(s)
- Adrien Thurotte
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Céline Bourcier de Carbon
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France; Phycosource, 13 boulevard de l'Hautil, 95092 Cergy Cedex, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Léa Talbot
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Sandrine Cot
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Rocio López-Igual
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France.
| |
Collapse
|
30
|
Kirilovsky D, Kerfeld CA. Cyanobacterial photoprotection by the orange carotenoid protein. NATURE PLANTS 2016; 2:16180. [PMID: 27909300 DOI: 10.1038/nplants.2016.180] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/20/2016] [Indexed: 05/18/2023]
Abstract
In photosynthetic organisms, the production of dangerous oxygen species is stimulated under high irradiance. To cope with this stress, these organisms have evolved photoprotective mechanisms. One type of mechanism functions to decrease the energy arriving at the photochemical centres by increasing thermal dissipation at the level of antennae. In cyanobacteria, the trigger for this mechanism is the photoactivation of a soluble carotenoid protein, the orange carotenoid protein (OCP), which is a structurally and functionally modular protein. The inactive orange form (OCPo) is compact and globular, with the carotenoid spanning the effector and the regulatory domains. In the active red form (OCPr), the two domains are completely separated and the carotenoid has translocated entirely into the effector domain. The activated OCPr interacts with the phycobilisome (PBS), the cyanobacterial antenna, and induces excitation-energy quenching. A second protein, the fluorescence recovery protein (FRP), dislodges the active OCPr from the PBSs and accelerates its conversion to the inactive OCP.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Berkeley Synthetic Biology Institute, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Maksimov EG, Moldenhauer M, Shirshin EA, Parshina EA, Sluchanko NN, Klementiev KE, Tsoraev GV, Tavraz NN, Willoweit M, Schmitt FJ, Breitenbach J, Sandmann G, Paschenko VZ, Friedrich T, Rubin AB. A comparative study of three signaling forms of the orange carotenoid protein. PHOTOSYNTHESIS RESEARCH 2016; 130:389-401. [PMID: 27161566 DOI: 10.1007/s11120-016-0272-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
Orange carotenoid protein (OCP) is a water-soluble photoactive protein responsible for a photoprotective mechanism of nonphotochemical quenching in cyanobacteria. Under blue-green illumination, OCP converts from the stable orange into the signaling red quenching form; however, the latter form could also be obtained by chemical activation with high concentrations of sodium thiocyanate (NaSCN) or point mutations. In this work, we show that a single replacement of tryptophan-288, normally involved in protein-chromophore interactions, by alanine, results in formation of a new protein form, hereinafter referred to as purple carotenoid protein (PCP). Comparison of resonance Raman spectra of the native photoactivated red form, chemically activated OCP, and PCP reveals that carotenoid conformation is sensitive to the structure of the C-domain, implicating that the chromophore retains some interactions with this part of the protein in the active red form. Combination of differential scanning fluorimetry and picosecond time-resolved fluorescence anisotropy measurements allowed us to compare the stability of different OCP forms and to estimate relative differences in protein rotation rates. These results were corroborated by hydrodynamic analysis of proteins by dynamic light scattering and analytical size-exclusion chromatography, indicating that the light-induced conversion of the protein is accompanied by a significant increase in its size. On the whole, our data support the idea that the red form of OCP is a molten globule-like protein in which, however, interactions between the carotenoid and the C-terminal domain are preserved.
Collapse
Affiliation(s)
- E G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - M Moldenhauer
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - E A Shirshin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - E A Parshina
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - N N Sluchanko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - K E Klementiev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - G V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - N N Tavraz
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - M Willoweit
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - F-J Schmitt
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - J Breitenbach
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University of Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - G Sandmann
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University of Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - V Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - T Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - A B Rubin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
32
|
Du W, Jongbloets JA, Pineda Hernández H, Bruggeman FJ, Hellingwerf KJ, Branco dos Santos F. Photonfluxostat: A method for light-limited batch cultivation of cyanobacteria at different, yet constant, growth rates. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Maksimov EG, Shirshin EA, Sluchanko NN, Zlenko DV, Parshina EY, Tsoraev GV, Klementiev KE, Budylin GS, Schmitt FJ, Friedrich T, Fadeev VV, Paschenko VZ, Rubin AB. The Signaling State of Orange Carotenoid Protein. Biophys J 2016; 109:595-607. [PMID: 26244741 DOI: 10.1016/j.bpj.2015.06.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/01/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022] Open
Abstract
Orange carotenoid protein (OCP) is the photoactive protein that is responsible for high light tolerance in cyanobacteria. We studied the kinetics of the OCP photocycle by monitoring changes in its absorption spectrum, intrinsic fluorescence, and fluorescence of the Nile red dye bound to OCP. It was demonstrated that all of these three methods provide the same kinetic parameters of the photocycle, namely, the kinetics of OCP relaxation in darkness was biexponential with a ratio of two components equal to 2:1 independently of temperature. Whereas the changes of the absorption spectrum of OCP characterize the geometry and environment of its chromophore, the intrinsic fluorescence of OCP reveals changes in its tertiary structure, and the fluorescence properties of Nile red indicate the exposure of hydrophobic surface areas of OCP to the solvent following the photocycle. The results of molecular-dynamics studies indicated the presence of two metastable conformations of 3'-hydroxyechinenone, which is consistent with characteristic changes in the Raman spectra. We conclude that rotation of the β-ionylidene ring in the C-terminal domain of OCP could be one of the first conformational rearrangements that occur during photoactivation. The obtained results suggest that the photoactivated form of OCP represents a molten globule-like state that is characterized by increased mobility of tertiary structure elements and solvent accessibility.
Collapse
Affiliation(s)
- Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | - Evgeny A Shirshin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Zlenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Evgenia Y Parshina
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Georgy V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin E Klementiev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Gleb S Budylin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Franz-Josef Schmitt
- Institute of Chemistry, Max-Volmer Laboratory of Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - Thomas Friedrich
- Institute of Chemistry, Max-Volmer Laboratory of Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - Victor V Fadeev
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Andrew B Rubin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
34
|
Huang JY, Chiu YF, Ortega JM, Wang HT, Tseng TS, Ke SC, Roncel M, Chu HA. Mutations of Cytochrome b559 and PsbJ on and near the QC Site in Photosystem II Influence the Regulation of Short-Term Light Response and Photosynthetic Growth of the Cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 2016; 55:2214-26. [DOI: 10.1021/acs.biochem.6b00133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jine-Yung Huang
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Fang Chiu
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - José M. Ortega
- Instituto
de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - Hsing-Ting Wang
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Sheng Tseng
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shyue-Chu Ke
- Department
of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Mercedes Roncel
- Instituto
de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - Hsiu-An Chu
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
35
|
Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. Proc Natl Acad Sci U S A 2016; 113:E1655-62. [PMID: 26957606 DOI: 10.1073/pnas.1523680113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cyanobacteria, photoprotection from overexcitation of photochemical centers can be obtained by excitation energy dissipation at the level of the phycobilisome (PBS), the cyanobacterial antenna, induced by the orange carotenoid protein (OCP). A single photoactivated OCP bound to the core of the PBS affords almost total energy dissipation. The precise mechanism of OCP energy dissipation is yet to be fully determined, and one question is how the carotenoid can approach any core phycocyanobilin chromophore at a distance that can promote efficient energy quenching. We have performed intersubunit cross-linking using glutaraldehyde of the OCP and PBS followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS) to identify cross-linked residues. The only residues of the OCP that cross-link with the PBS are situated in the linker region, between the N- and C-terminal domains and a single C-terminal residue. These links have enabled us to construct a model of the site of OCP binding that differs from previous models. We suggest that the N-terminal domain of the OCP burrows tightly into the PBS while leaving the OCP C-terminal domain on the exterior of the complex. Further analysis shows that the position of the small core linker protein ApcC is shifted within the cylinder cavity, serving to stabilize the interaction between the OCP and the PBS. This is confirmed by a ΔApcC mutant. Penetration of the N-terminal domain can bring the OCP carotenoid to within 5-10 Å of core chromophores; however, alteration of the core structure may be the actual source of energy dissipation.
Collapse
|
36
|
Krasilnikov PM, Zlenko DV, Stadnichuk IN. The efficiency of non-photochemical fluorescence quenching of phycobilisomes by the orange carotenoid protein. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915050103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore. Proc Natl Acad Sci U S A 2015; 112:15880-5. [PMID: 26669441 DOI: 10.1073/pnas.1519177113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthesis relies on energy transfer from light-harvesting complexes to reaction centers. Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, attach to the membrane via the multidomain core-membrane linker, L(CM). The chromophore domain of L(CM) forms a bottleneck for funneling the harvested energy either productively to reaction centers or, in case of light overload, to quenchers like orange carotenoid protein (OCP) that prevent photodamage. The crystal structure of the solubly modified chromophore domain from Nostoc sp. PCC7120 was resolved at 2.2 Å. Although its protein fold is similar to the protein folds of phycobiliproteins, the phycocyanobilin (PCB) chromophore adopts ZZZssa geometry, which is unknown among phycobiliproteins but characteristic for sensory photoreceptors (phytochromes and cyanobacteriochromes). However, chromophore photoisomerization is inhibited in L(CM) by tight packing. The ZZZssa geometry of the chromophore and π-π stacking with a neighboring Trp account for the functionally relevant extreme spectral red shift of L(CM). Exciton coupling is excluded by the large distance between two PCBs in a homodimer and by preservation of the spectral features in monomers. The structure also indicates a distinct flexibility that could be involved in quenching. The conclusions from the crystal structure are supported by femtosecond transient absorption spectra in solution.
Collapse
|
38
|
Kirilovsky D. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. PHOTOSYNTHESIS RESEARCH 2015; 126:3-17. [PMID: 25139327 DOI: 10.1007/s11120-014-0031-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/08/2014] [Indexed: 05/09/2023]
Abstract
Photosynthetic organisms tightly regulate the energy arriving to the reaction centers in order to avoid photodamage or imbalance between the photosystems. To this purpose, cyanobacteria have developed mechanisms involving relatively rapid (seconds to minutes) changes in the photosynthetic apparatus. In this review, two of these processes will be described: orange carotenoid protein(OCP)-related photoprotection and state transitions which optimize energy distribution between the two photosystems. The photoactive OCP is a light intensity sensor and an energy dissipater. Photoactivation depends on light intensity and only the red-active OCP form, by interacting with phycobilisome cores, increases thermal energy dissipation at the level of the antenna. A second protein, the "fluorescence recovery protein", is needed to recover full antenna capacity under low light conditions. This protein accelerates OCP conversion to the inactive orange form and plays a role in dislodging the red OCP protein from the phycobilisome. The mechanism of state transitions is still controversial. Changes in the redox state of the plastoquinone pool induce movement of phycobilisomes and/or photosystems leading to redistribution of energy absorbed by phycobilisomes between PSII and PSI and/or to changes in excitation energy spillover between photosystems. The different steps going from the induction of redox changes to movement of phycobilisomes or photosystems remain to be elucidated.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique (CEA), SB2SM, Bat 532, Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191, Gif sur Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), UMR 8221, 91191, Gif sur Yvette, France.
| |
Collapse
|
39
|
Kish E, Pinto MMM, Kirilovsky D, Spezia R, Robert B. Echinenone vibrational properties: From solvents to the orange carotenoid protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1044-54. [DOI: 10.1016/j.bbabio.2015.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/29/2015] [Accepted: 05/12/2015] [Indexed: 01/08/2023]
|
40
|
Maksimov EG, Klementiev KE, Shirshin EA, Tsoraev GV, Elanskaya IV, Paschenko VZ. Features of temporal behavior of fluorescence recovery in Synechocystis sp. PCC6803. PHOTOSYNTHESIS RESEARCH 2015; 125:167-178. [PMID: 25800518 DOI: 10.1007/s11120-015-0124-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Under high photon flux density of solar radiation, the photosynthetic apparatus can be damaged. To prevent this photodestruction, cyanobacteria developed special mechanisms of non-photochemical quenching (NPQ) of excitation energy in phycobilisomes. In Synechocystis, NPQ is triggered by the orange carotenoid protein (OCP), which is sensitive to blue-green illumination allowing it to bind to the phycobilisome reducing the flow of energy to the photosystems. Consequent decoupling of OCP and recovery of phycobilisome fluorescence in vivo is controlled by the so called fluorescence recovery protein (FRP). In this work, the role of the phycobilisome core components, apcD and apcF, in non-photochemical quenching and subsequent fluorescence recovery in the phycobilisomes of the cyanobacterium Synechocystis sp. PCC6803 has been investigated. Using a single photon counting technique, we have registered fluorescence decay spectra with picosecond time resolution during fluorescence recovery. In order to estimate the activation energy for the photocycle, spectroscopic studies in dependency on the temperature from 5 to 45 °C have been performed. It was found that fluorescence quenching and recovery were strongly temperature dependent for all strains exhibiting characteristic non-linear time courses. The rise of the fluorescence intensity during fluorescence recovery after NPQ can be completely described by the increase of the phycobilisome core fluorescence lifetime. It was shown that fluorescence recovery of apcD- and apcF-deficient mutants is characterized by a significantly lower activation energy barrier compared to wild type. This phenomenon indicates that apcD and apcF gene products may be required for proper interaction of FRP and OCP coupled to the phycobilisome core. In addition, we found that the rate of fluorescence recovery decreases with an increase of the non-photochemical quenching amplitude, probably due to depletion of substrate for the enzymatic reaction catalyzed by FRP.
Collapse
Affiliation(s)
- E G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia,
| | | | | | | | | | | |
Collapse
|
41
|
Zlenko DV, Krasilnikov PM, Stadnichuk IN. Role of inter-domain cavity in the attachment of the orange carotenoid protein to the phycobilisome core and to the fluorescence recovery protein. J Biomol Struct Dyn 2015; 34:486-96. [DOI: 10.1080/07391102.2015.1042913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Stadnichuk IN, Krasilnikov PM, Zlenko DV, Freidzon AY, Yanyushin MF, Rubin AB. Electronic coupling of the phycobilisome with the orange carotenoid protein and fluorescence quenching. PHOTOSYNTHESIS RESEARCH 2015; 124:315-335. [PMID: 25948498 DOI: 10.1007/s11120-015-0148-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Using computational modeling and known 3D structure of proteins, we arrived at a rational spatial model of the orange carotenoid protein (OCP) and phycobilisome (PBS) interaction in the non-photochemical fluorescence quenching. The site of interaction is formed by the central cavity of the OCP monomer in the capacity of a keyhole to the characteristic external tip of the phycobilin-containing domain (PB) and folded loop of the core-membrane linker LCM within the PBS core. The same central protein cavity was shown to be also the site of the OCP and fluorescence recovery protein (FRP) interaction. The revealed geometry of the OCP to the PBLCM attachment is believed to be the most advantageous one as the LCM, being the major terminal PBS fluorescence emitter, gathers, before quenching by OCP, the energy from most other phycobilin chromophores of the PBS. The distance between centers of mass of the OCP carotenoid 3'-hydroxyechinenone (hECN) and the adjacent phycobilin chromophore of the PBLCM was determined to be 24.7 Å. Under the dipole-dipole approximation, from the point of view of the determined mutual orientation and the values of the transition dipole moments and spectral characteristics of interacting chromophores, the time of the direct energy transfer from the phycobilin of PBLCM to the S1 excited state of hECN was semiempirically calculated to be 36 ps, which corresponds to the known experimental data and implies the OCP is a very efficient energy quencher. The complete scheme of OCP and PBS interaction that includes participation of the FRP is proposed.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- K. A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya, 35, 127726, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
43
|
Derks A, Schaven K, Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:468-485. [DOI: 10.1016/j.bbabio.2015.02.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/26/2022]
|
44
|
Zaitsev S, Solovyeva D. Supramolecular nanostructures based on bacterial reaction center proteins and quantum dots. Adv Colloid Interface Sci 2015; 218:34-47. [PMID: 25660688 DOI: 10.1016/j.cis.2015.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/25/2022]
Abstract
Design of the nanostructures based on membrane proteins (the key functional elements of biomembranes) and colloid nanoparticles is a fascinating field at the interface of biochemistry and colloids, nanotechnology and biomedicine. The review discusses the main achievements in the field of ultrathin films prepared from bacterial reaction center proteins and light-harvesting complexes, as well as these complexes tagged with quantum dots. The principles of preparation of these thin films and their structure and properties at different interfaces are described; as well as their characteristics estimated using a combination of the modern interfacial techniques (absorption and fluorescence spectroscopy, atomic force and Brewster angle microscopy, etc.) are discussed. Further approaches to develop the nanostructures based on the membrane proteins and quantum dots are suggested. These supramolecular nanostructures are promising prototypes of the materials for photovoltaic, optoelectronic and biosensing applications.
Collapse
|
45
|
Bourcier de Carbon C, Thurotte A, Wilson A, Perreau F, Kirilovsky D. Biosynthesis of soluble carotenoid holoproteins in Escherichia coli. Sci Rep 2015; 5:9085. [PMID: 25765842 PMCID: PMC4358027 DOI: 10.1038/srep09085] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/16/2015] [Indexed: 01/23/2023] Open
Abstract
Carotenoids are widely distributed natural pigments that are excellent antioxidants acting in photoprotection. They are typically solubilized in membranes or attached to proteins. In cyanobacteria, the photoactive soluble Orange Carotenoid Protein (OCP) is involved in photoprotective mechanisms as a highly active singlet oxygen and excitation energy quencher. Here we describe a method for producing large amounts of holo-OCP in E.coli. The six different genes involved in the synthesis of holo-OCP were introduced into E. coli using three different plasmids. The choice of promoters and the order of gene induction were important: the induction of genes involved in carotenoid synthesis must precede the induction of the ocp gene in order to obtain holo-OCPs. Active holo-OCPs with primary structures derived from several cyanobacterial strains and containing different carotenoids were isolated. This approach for rapid heterologous synthesis of large quantities of carotenoproteins is a fundamental advance in the production of antioxidants of great interest to the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Céline Bourcier de Carbon
- 1] Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif sur Yvette, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 8221, 91191 Gif sur Yvette, France [3] Phycosource, 13 boulevard de l'Hautil, 95092 Cergy Cedex, France
| | - Adrien Thurotte
- 1] Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif sur Yvette, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 8221, 91191 Gif sur Yvette, France
| | - Adjélé Wilson
- 1] Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif sur Yvette, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 8221, 91191 Gif sur Yvette, France
| | - François Perreau
- 1] INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France [2] AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Diana Kirilovsky
- 1] Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif sur Yvette, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 8221, 91191 Gif sur Yvette, France
| |
Collapse
|
46
|
Lebedev VM, Maksimov GV, Maksimov EG, Paschenko VZ, Spassky AV, Trukhanov KA, Tsoraev GV. Using a 120-cm cyclotron to study the synchronous effects of ionizing radiation and hypomagnetic conditions on the simplest biological objects. ACTA ACUST UNITED AC 2014. [DOI: 10.3103/s1062873814070181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Maksimov EG, Schmitt FJ, Tsoraev GV, Ryabova AV, Friedrich T, Paschenko VZ. Fluorescence quenching in the lichen Peltigera aphthosa due to desiccation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:67-73. [PMID: 24485218 DOI: 10.1016/j.plaphy.2014.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Photoprotective mechanisms were studied on the tripartite lichen Peltigera aphthosa that exhibits external cephalodia. Using the methods of steady-state and time-resolved fluorescence microscopy, we studied the dynamics of the rehydration process in different parts of the lichen thalli. It was found that apical, medial and basal parts of the thallus are not only morphologically different, but also show completely different chlorophyll induction curves and other spectral characteristics. In dry state, significant contribution to the fluorescence spectrum of lichen gives a green fluorescence of hyphae forming the upper crust, which is rapidly and almost completely quenched during the rehydration process. Probably this is one of the protective mechanisms that reduce the amount of light reaching the PS II reaction centers in the dry state. In the process of rehydration, we observed an increase in the intensity of the chlorophyll fluorescence of the photobiont at 680 nm, with significant changes of the fluorescence lifetimes and the amplitude ratios of fast and slow components of fluorescence decay kinetics. While in dry state, chlorophyll fluorescence is strongly quenched (opposite to the fluorescence of the hyphae), and the fluorescence time constants recover to the typical decay times of active photosynthetic organisms during rehydration. The quantitative behavior of these changes differs largely between the apical, medial and basal parts of the thallus, probably due to the complex interactions of the fungus, algae and cyanobacteria.
Collapse
Affiliation(s)
- E G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - F-J Schmitt
- Institute of Chemistry, Biophysical Chemistry, Berlin Institute of Technology, 10623 Berlin, Germany
| | - G V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - A V Ryabova
- A.M.Prokhorov General Physics Institute RAS, 119991 Moscow, Russia
| | - T Friedrich
- Institute of Chemistry, Biophysical Chemistry, Berlin Institute of Technology, 10623 Berlin, Germany
| | - V Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
48
|
Zaitsev SY, Solovyeva DO, Nabiev IR. Nanobiohybrid structures based on the organized films of photosensitive membrane proteins. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n01abeh004372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Jallet D, Thurotte A, Leverenz RL, Perreau F, Kerfeld CA, Kirilovsky D. Specificity of the cyanobacterial orange carotenoid protein: influences of orange carotenoid protein and phycobilisome structures. PLANT PHYSIOLOGY 2014; 164:790-804. [PMID: 24335507 PMCID: PMC3912106 DOI: 10.1104/pp.113.229997] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the reaction centers by increasing thermal energy dissipation at the level of the phycobilisome (PB), the extramembranous light-harvesting antenna. This mechanism is triggered by the photoactive Orange Carotenoid Protein (OCP), which acts both as the photosensor and the energy quencher. The OCP binds the core of the PB. The structure of this core differs in diverse cyanobacterial strains. Here, using two isolated OCPs and four classes of PBs, we demonstrated that differences exist between OCPs related to PB binding, photoactivity, and carotenoid binding. Synechocystis PCC 6803 (hereafter Synechocystis) OCP, but not Arthrospira platensis PCC 7345 (hereafter Arthrospira) OCP, can attach echinenone in addition to hydroxyechinenone. Arthrospira OCP binds more strongly than Synechocystis OCP to all types of PBs. Synechocystis OCP can strongly bind only its own PB in 0.8 m potassium phosphate. However, if the Synechocystis OCP binds to the PB at very high phosphate concentrations (approximately 1.4 m), it is able to quench the fluorescence of any type of PB, even those isolated from strains that lack the OCP-mediated photoprotective mechanism. Thus, the determining step for the induction of photoprotection is the binding of the OCP to PBs. Our results also indicated that the structure of PBs, at least in vitro, significantly influences OCP binding and the stabilization of OCP-PB complexes. Finally, the fact that the OCP induced large fluorescence quenching even in the two-cylinder core of Synechococcus elongatus PBs strongly suggested that OCP binds to one of the basal allophycocyanin cylinders.
Collapse
|
50
|
Maksimov EG, Schmitt FJ, Shirshin EA, Svirin MD, Elanskaya IV, Friedrich T, Fadeev VV, Paschenko VZ, Rubin AB. The time course of non-photochemical quenching in phycobilisomes of Synechocystis sp. PCC6803 as revealed by picosecond time-resolved fluorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1540-7. [PMID: 24463052 DOI: 10.1016/j.bbabio.2014.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/25/2013] [Accepted: 01/15/2014] [Indexed: 11/29/2022]
Abstract
As high-intensity solar radiation can lead to extensive damage of the photosynthetic apparatus, cyanobacteria have developed various protection mechanisms to reduce the effective excitation energy transfer (EET) from the antenna complexes to the reaction center. One of them is non-photochemical quenching (NPQ) of the phycobilisome (PB) fluorescence. In Synechocystis sp. PCC6803 this role is carried by the orange carotenoid protein (OCP), which reacts to high-intensity light by a series of conformational changes, enabling the binding of OCP to the PBs reducing the flow of energy into the photosystems. In this paper the mechanisms of energy migration in two mutant PB complexes of Synechocystis sp. were investigated and compared. The mutant CK is lacking phycocyanin in the PBs while the mutant ΔPSI/PSII does not contain both photosystems. Fluorescence decay spectra with picosecond time resolution were registered using a single photon counting technique. The studies were performed in a wide range of temperatures - from 4 to 300 K. The time course of NPQ and fluorescence recovery in darkness was studied at room temperature using both steady-state and time-resolved fluorescence measurements. The OCP induced NPQ has been shown to be due to EET from PB cores to the red form of OCP under photon flux densities up to 1000 μmolphotonsm⁻²s⁻¹. The gradual changes of the energy transfer rate from allophycocyanin to OCP were observed during the irradiation of the sample with blue light and consequent adaptation to darkness. This fact was interpreted as the revelation of intermolecular interaction between OCP and PB binding site. At low temperatures a significantly enhanced EET from allophycocyanin to terminal emitters has been shown, due to the decreased back transfer from terminal emitter to APC. The activation of OCP not only leads to fluorescence quenching, but also affects the rate constants of energy transfer as shown by model based analysis of the decay associated spectra. The results indicate that the ability of OCP to quench the fluorescence is strongly temperature dependent. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- E G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - F-J Schmitt
- Institute of Chemistry, Biophysical Chemistry, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - E A Shirshin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - M D Svirin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - I V Elanskaya
- Department of Genetics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - T Friedrich
- Institute of Chemistry, Biophysical Chemistry, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - V V Fadeev
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - V Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - A B Rubin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|