1
|
Markevich NI, Markevich LN. Computational Modeling Analysis of Kinetics of Fumarate Reductase Activity and ROS Production during Reverse Electron Transfer in Mitochondrial Respiratory Complex II. Int J Mol Sci 2023; 24:ijms24098291. [PMID: 37175997 PMCID: PMC10179487 DOI: 10.3390/ijms24098291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Reverse electron transfer in mitochondrial complex II (CII) plays an important role in hypoxia/anoxia, in particular, in ischemia, when the blood supply to an organ is disrupted and oxygen is not available. A computational model of CII was developed in this work to facilitate the quantitative analysis of the kinetics of quinol-fumarate reduction as well as ROS production during reverse electron transfer in CII. The model consists of 20 ordinary differential equations and 7 moiety conservation equations. The parameter values were determined at which the kinetics of electron transfer in CII in both forward and reverse directions would be explained simultaneously. The possibility of the existence of the "tunnel diode" behavior in the reverse electron transfer in CII, where the driving force is QH2, was tested. It was found that any high concentrations of QH2 and fumarate are insufficient for the appearance of a tunnel effect. The results of computer modeling show that the maximum rate of succinate production cannot provide a high concentration of succinate in ischemia. Furthermore, computational modeling results predict a very low rate of ROS production, about 50 pmol/min/mg mitochondrial protein, which is considerably less than 1000 pmol/min/mg protein observed in CII in forward direction.
Collapse
Affiliation(s)
- Nikolay I Markevich
- Institute of Theoretical and Experimental Biophysics of RAS, Pushchino, Moscow 142290, Russia
| | - Lubov N Markevich
- Institute of Cell Biophysics of RAS, Pushchino, Moscow 142290, Russia
| |
Collapse
|
2
|
Lee YH, Kuk MU, So MK, Song ES, Lee H, Ahn SK, Kwon HW, Park JT, Park SC. Targeting Mitochondrial Oxidative Stress as a Strategy to Treat Aging and Age-Related Diseases. Antioxidants (Basel) 2023; 12:antiox12040934. [PMID: 37107309 PMCID: PMC10136354 DOI: 10.3390/antiox12040934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria are one of the organelles undergoing rapid alteration during the senescence process. Senescent cells show an increase in mitochondrial size, which is attributed to the accumulation of defective mitochondria, which causes mitochondrial oxidative stress. Defective mitochondria are also targets of mitochondrial oxidative stress, and the vicious cycle between defective mitochondria and mitochondrial oxidative stress contributes to the onset and development of aging and age-related diseases. Based on the findings, strategies to reduce mitochondrial oxidative stress have been suggested for the effective treatment of aging and age-related diseases. In this article, we discuss mitochondrial alterations and the consequent increase in mitochondrial oxidative stress. Then, the causal role of mitochondrial oxidative stress on aging is investigated by examining how aging and age-related diseases are exacerbated by induced stress. Furthermore, we assess the importance of targeting mitochondrial oxidative stress for the regulation of aging and suggest different therapeutic strategies to reduce mitochondrial oxidative stress. Therefore, this review will not only shed light on a new perspective on the role of mitochondrial oxidative stress in aging but also provide effective therapeutic strategies for the treatment of aging and age-related diseases through the regulation of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Moon Kyoung So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Soon Kil Ahn
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
The evolution of the human mitochondrial bc1 complex- adaptation for reduced rate of superoxide production? J Bioenerg Biomembr 2023; 55:15-31. [PMID: 36737563 DOI: 10.1007/s10863-023-09957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
The mitochondrial bc1 complex is a major source of mitochondrial superoxide. While bc1-generated superoxide plays a beneficial signaling role, excess production of superoxide lead to aging and degenerative diseases. The catalytic core of bc1 comprises three peptides -cytochrome b, Fe-S protein, and cytochrome c1. All three core peptides exhibit accelerated evolution in anthropoid primates. It has been suggested that the evolution of cytochrome b in anthropoids was driven by a pressure to reduce the production of superoxide. In humans, the bc1 core peptides exhibit anthropoid-specific substitutions that are clustered near functionally critical sites that may affect the production of superoxide. Here we compare the high-resolution structures of bovine, mouse, sheep and human bc1 to identify structural changes that are associated with human-specific substitutions. Several cytochrome b substitutions in humans alter its interactions with other subunits. Most significantly, there is a cluster of seven substitutions, in cytochrome b, the Fe-S protein, and cytochrome c1 that affect the interactions between these proteins at the tether arm of the Fe-S protein and may alter the rate of ubiquinone oxidation and the rate of superoxide production. Another cluster of substitutions near heme bH and the ubiquinone reduction site, Qi, may affect the rate of ubiquinone reduction and thus alter the rate of superoxide production. These results are compatible with the hypothesis that cytochrome b in humans (and other anthropoid primates) evolve to reduce the rate of production of superoxide thus enabling the exceptional longevity and exceptional cognitive ability of humans.
Collapse
|
4
|
Kinetic Mathematical Modeling of Oxidative Phosphorylation in Cardiomyocyte Mitochondria. Cells 2022; 11:cells11244020. [PMID: 36552784 PMCID: PMC9777548 DOI: 10.3390/cells11244020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) is an oxygen-dependent process that consumes catabolized nutrients to produce adenosine triphosphate (ATP) to drive energy-dependent biological processes such as excitation-contraction coupling in cardiomyocytes. In addition to in vivo and in vitro experiments, in silico models are valuable for investigating the underlying mechanisms of OXPHOS and predicting its consequences in both physiological and pathological conditions. Here, we compare several prominent kinetic models of OXPHOS in cardiomyocytes. We examine how their mathematical expressions were derived, how their parameters were obtained, the conditions of their experimental counterparts, and the predictions they generated. We aim to explore the general landscape of energy production mechanisms in cardiomyocytes for future in silico models.
Collapse
|
5
|
Markevich NI, Markevich LN. Mathematical Modeling of ROS Production and Diode-like Behavior in the SDHA/SDHB Subcomplex of Succinate Dehydrogenases in Reverse Quinol-Fumarate Reductase Direction. Int J Mol Sci 2022; 23:ijms232415596. [PMID: 36555239 PMCID: PMC9778801 DOI: 10.3390/ijms232415596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Succinate dehydrogenase (SDH) plays an important role in reverse electron transfer during hypoxia/anoxia, in particular, in ischemia, when blood supply to an organ is disrupted, and oxygen is not available. It was detected in the voltammetry studies about three decades ago that the SDHA/SDHB subcomplex of SDH can have such a strong nonlinear property as a "tunnel-diode" behavior in reverse quinol-fumarate reductase direction. The molecular and kinetic mechanisms of this phenomenon, that is, a strong drop in the rate of fumarate reduction as the driving force is increased, are still unclear. In order to account for this property of SDH, we developed and analyzed a mechanistic computational model of reverse electron transfer in the SDHA/SDHB subcomplex of SDH. It was shown that a decrease in the rate of succinate release from the active center during fumarate reduction quantitatively explains the experimentally observed tunnel-diode behavior in SDH and threshold values of the electrode potential of about -80 mV. Computational analysis of ROS production in the SDHA/SDHB subcomplex of SDH during reverse electron transfer predicts that the rate of ROS production decreases when the tunnel-diode behavior appears. These results predict a low rate of ROS production by the SDHA/SDHB subcomplex of SDH during ischemia.
Collapse
Affiliation(s)
- Nikolay I. Markevich
- Institute of Theoretical and Experimental Biophysics of RAS, 142290 Pushchino, Russia
- Correspondence:
| | | |
Collapse
|
6
|
Chenna S, Koopman WJH, Prehn JHM, Connolly NMC. Mechanisms and mathematical modelling of ROS production by the mitochondrial electron transport chain. Am J Physiol Cell Physiol 2022; 323:C69-C83. [PMID: 35613354 DOI: 10.1152/ajpcell.00455.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) are recognised both as damaging molecules and intracellular signalling entities. In addition to its role in ATP generation, the mitochondrial electron transport chain (ETC) constitutes a relevant source of mitochondrial ROS, in particular during pathological conditions. Mitochondrial ROS homeostasis depends on species- and site-dependent ROS production, their bioreactivity, diffusion, and scavenging. However, our quantitative understanding of mitochondrial ROS homeostasis has thus far been hampered by technical limitations, including lack of truly site- and/or ROS-specific reporter molecules. In this context, the use of computational models is of great value to complement and interpret empirical data, as well as to predict variables that are difficult to assess experimentally. During the last decades, various mechanistic models of ETC-mediated ROS production have been developed. Although these often-complex models have generated novel insights, their parameterisation, analysis, and integration with other computational models is not straightforward. In contrast, phenomenological (sometimes termed "minimal") models use a relatively small set of equations to describe empirical relationship(s) between ROS-related and other parameters, and generally aim to explore system behaviour and generate hypotheses for experimental validation. In this review, we first discuss ETC-linked ROS homeostasis and introduce various detailed mechanistic models. Next, we present how bioenergetic parameters (e.g. NADH/NAD+ ratio, mitochondrial membrane potential) relate to site-specific ROS production within the ETC and how these relationships can be used to design minimal models of ROS homeostasis. Finally, we illustrate how minimal models have been applied to explore pathophysiological aspects of ROS.
Collapse
Affiliation(s)
- Sandeep Chenna
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Disorders (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jochen H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,SFI FutureNeuro Research Centre, Dublin, Ireland
| | - Niamh M C Connolly
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
7
|
Manna S, Ruano CSM, Hegenbarth JC, Vaiman D, Gupta S, McCarthy FP, Méhats C, McCarthy C, Apicella C, Scheel J. Computational Models on Pathological Redox Signalling Driven by Pregnancy: A Review. Antioxidants (Basel) 2022; 11:585. [PMID: 35326235 PMCID: PMC8945226 DOI: 10.3390/antiox11030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress is associated with a myriad of diseases including pregnancy pathologies with long-term cardiovascular repercussions for both the mother and baby. Aberrant redox signalling coupled with deficient antioxidant defence leads to chronic molecular impairment. Abnormal placentation has been considered the primary source for reactive species; however, placental dysfunction has been deemed secondary to maternal cardiovascular maladaptation in pregnancy. While various therapeutic interventions, aimed at combating deregulated oxidative stress during pregnancy have shown promise in experimental models, they often result as inconclusive or detrimental in clinical trials, warranting the need for further research to identify candidates. The strengths and limitations of current experimental methods in redox research are discussed. Assessment of redox status and oxidative stress in experimental models and in clinical practice remains challenging; the state-of-the-art of computational models in this field is presented in this review, comparing static and dynamic models which provide functional information such as protein-protein interactions, as well as the impact of changes in molecular species on the redox-status of the system, respectively. Enhanced knowledge of redox biology in during pregnancy through computational modelling such as generation of Systems Biology Markup Language model which integrates existing models to a larger network in the context of placenta physiology.
Collapse
Affiliation(s)
- Samprikta Manna
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland;
| | - Camino S. M. Ruano
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Jana-Charlotte Hegenbarth
- Department of Molecular Genetics, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 KH Maastricht, The Netherlands;
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Daniel Vaiman
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, Rostock University, 18051 Rostock, Germany; (S.G.); (J.S.)
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland;
| | - Céline Méhats
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Cathal McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 K8AF Cork, Ireland;
| | - Clara Apicella
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Julia Scheel
- Department of Systems Biology and Bioinformatics, Rostock University, 18051 Rostock, Germany; (S.G.); (J.S.)
| |
Collapse
|
8
|
Duong QV, Levitsky Y, Dessinger MJ, Strubbe-Rivera JO, Bazil JN. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab050. [PMID: 35330793 PMCID: PMC8788716 DOI: 10.1093/function/zqab050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) play important roles in cellular signaling; however, certain pathological conditions such as ischemia/reperfusion (I/R) injury disrupt ROS homeostasis and contribute to cell death. A major impediment to developing therapeutic measures against oxidative stress-induced cellular damage is the lack of a quantitative framework to identify the specific sources and regulatory mechanisms of mitochondrial ROS production. We developed a thermodynamically consistent, mass-and-charge balanced, kinetic model of mitochondrial ROS homeostasis focused on redox sites of electron transport chain complexes I, II, and III. The model was calibrated and corroborated using comprehensive data sets relevant to ROS homeostasis. The model predicts that complex I ROS production dominates other sources under conditions favoring a high membrane potential with elevated nicotinamide adenine dinucleotide (NADH) and ubiquinol (QH2) levels. In general, complex I contributes to significant levels of ROS production under pathological conditions, while complexes II and III are responsible for basal levels of ROS production, especially when QH2 levels are elevated. The model also reveals that hydrogen peroxide production by complex I underlies the non-linear relationship between ROS emission and O2 at low O2 concentrations. Lastly, the model highlights the need to quantify scavenging system activity under different conditions to establish a complete picture of mitochondrial ROS homeostasis. In summary, we describe the individual contributions of the electron transport system complex redox sites to total ROS emission in mitochondria respiring under various combinations of NADH- and Q-linked respiratory fuels under varying workloads.
Collapse
Affiliation(s)
- Quynh V Duong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Levitsky
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Maria J Dessinger
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jasiel O Strubbe-Rivera
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
9
|
Oxidative Stress as a Common Key Event in Developmental Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6685204. [PMID: 34336113 PMCID: PMC8315852 DOI: 10.1155/2021/6685204] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
The developing brain is extremely sensitive to many chemicals. Perinatal exposure to neurotoxicants has been implicated in several neurodevelopmental disorders, including autism spectrum disorder, attention-deficit hyperactive disorder, and schizophrenia. Studies of the molecular and cellular events related to developmental neurotoxicity have identified a number of “adverse outcome pathways,” many of which share oxidative stress as a key event. Oxidative stress occurs when the balance between the production of free oxygen radicals and the activity of the cellular antioxidant system is dysregulated. In this review, we describe some of the developmental neurotoxins that target the antioxidant system and the mechanisms by which they elicit stress, including oxidative phosphorylation in mitochondria and plasma membrane redox system in rodent models. We also discuss future directions for identifying adverse outcome pathways related to oxidative stress and developmental neurotoxicity, with the goal of improving our ability to quickly and accurately screen chemicals for their potential developmental neurotoxicity.
Collapse
|
10
|
Abstract
This book chapter is drafted for biologists with experimental experiences in ROS biology but being newcomers in the field of modeling. We start with a general introduction about computational modeling in biology and an overview of software tools suitable for beginners. This chapter encompasses an introduction to computational models with special focus on simulation of ROS dynamics. A step-by-step tutorial follows providing guidance for all relevant model development processes. This course of action gives a comprehensible way to understand the benefits of computational models and to gain the necessary knowledge to build own small equation-based models. Small models can be created without any special programming expertise or in-depth technical and mathematical knowledge. Afterward in the final section, a short overview of pitfalls, challenges, and limitations is provided, combined with suggestions for further reading to improve and expand modeling skills of biologists.
Collapse
Affiliation(s)
- Jana Schleicher
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany.
| |
Collapse
|
11
|
Plecitá-Hlavatá L, Engstová H, Holendová B, Tauber J, Špaček T, Petrásková L, Křen V, Špačková J, Gotvaldová K, Ježek J, Dlasková A, Smolková K, Ježek P. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD + Ratio. Antioxid Redox Signal 2020; 33:789-815. [PMID: 32517485 PMCID: PMC7482716 DOI: 10.1089/ars.2019.7800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Aims: Glucose-stimulated insulin secretion (GSIS) in pancreatic β cells was expected to enhance mitochondrial superoxide formation. Hence, we elucidated relevant redox equilibria. Results: Unexpectedly, INS-1E cells at transitions from 3 (11 mM; pancreatic islets from 5 mM) to 25 mM glucose decreased matrix superoxide release rates (MitoSOX Red monitoring validated by MitoB) and H2O2 (mitoHyPer, subtracting mitoSypHer emission). Novel double-channel fluorescence lifetime imaging, approximating free mitochondrial matrix NADHF, indicated its ∼20% decrease. Matrix NAD+F increased on GSIS, indicated by the FAD-emission lifetime decrease, reflecting higher quenching of FAD by NAD+F. The participation of pyruvate/malate and pyruvate/citrate redox shuttles, elevating cytosolic NADPHF (iNAP1 fluorescence monitoring) at the expense of matrix NADHF, was indicated, using citrate (2-oxoglutarate) carrier inhibitors and cytosolic malic enzyme silencing: All changes vanished on these manipulations. 13C-incorporation from 13C-L-glutamine into 13C-citrate reflected the pyruvate/isocitrate shuttle. Matrix NADPHF (iNAP3 monitored) decreased. With decreasing glucose, the suppressor of Complex III site Q electron leak (S3QEL) suppressor caused a higher Complex I IF site contribution, but a lower superoxide fraction ascribed to the Complex III site IIIQo. Thus, the diminished matrix NADHF/NAD+F decreased Complex I flavin site IF superoxide formation on GSIS. Innovation: Mutually validated methods showed decreasing superoxide release into the mitochondrial matrix in pancreatic β cells on GSIS, due to the decreasing matrix NADHF/NAD+F (NADPHF/NADP+F) at increasing cytosolic NADPHF levels. The developed innovative methods enable real-time NADH/NAD+ and NADPH/NADP+ monitoring in any distinct cell compartment. Conclusion: The export of reducing equivalents from mitochondria adjusts lower mitochondrial superoxide production on GSIS, but it does not prevent oxidative stress in pancreatic β cells.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Tauber
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Špaček
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Špačková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Gotvaldová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Smolková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
12
|
Mazat JP, Devin A, Ransac S. Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci 2020; 77:455-465. [PMID: 31748915 PMCID: PMC11104992 DOI: 10.1007/s00018-019-03381-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
ROS (superoxide and oxygen peroxide in this paper) play a dual role as signalling molecules and strong oxidizing agents leading to oxidative stress. Their production mainly occurs in mitochondria although they may have other locations (such as NADPH oxidase in particular cell types). Mitochondrial ROS production depends in an interweaving way upon many factors such as the membrane potential, the cell type and the respiratory substrates. Moreover, it is experimentally difficult to quantitatively assess the contribution of each potential site in the respiratory chain. To overcome these difficulties, mathematical models have been developed with different degrees of complexity in order to analyse different physiological questions ranging from a simple reproduction/simulation of experimental results to a detailed model of the possible mechanisms leading to ROS production. Here, we analyse experimental results concerning ROS production including results still under discussion. We then critically review the three models of ROS production in the whole respiratory chain available in the literature and propose some direction for future modelling work.
Collapse
Affiliation(s)
- Jean-Pierre Mazat
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France.
- Université de Bordeaux, 146 Rue Léo-Saignat, 33076, Bordeaux Cedex, France.
| | - Anne Devin
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France
| | - Stéphane Ransac
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France
- Université de Bordeaux, 146 Rue Léo-Saignat, 33076, Bordeaux Cedex, France
| |
Collapse
|
13
|
Sanvee GM, Bouitbir J, Krähenbühl S. Insulin prevents and reverts simvastatin-induced toxicity in C2C12 skeletal muscle cells. Sci Rep 2019; 9:7409. [PMID: 31092879 PMCID: PMC6520350 DOI: 10.1038/s41598-019-43938-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Simvastatin is an inhibitor of the 3-hydroxy-3-methylglutaryl-CoA reductase used for decreasing low density lipoprotein (LDL)-cholesterol in patients. It is well-tolerated but can cause myopathy. Our aims were to enlarge our knowledge regarding mechanisms and effects of insulin on simvastatin-associated myotoxicity in C2C12 myotubes. Simvastatin (10 µM) reduced membrane integrity and ATP content in myotubes treated for 24 hours, which could be prevented and partially reversed concentration- and time-dependently by insulin. Furthermore, simvastatin impaired the phosphorylation of Akt (Protein Kinase B) mainly at Ser473 and less at Thr308, indicating impaired activity of the mammalian Target of Rapamycin Complex 2 (mTORC2). Impaired activation of Akt increased mRNA expression of the muscle atrophy F-Box (MAFbx), decreased activation of the mammalian Target of Rapamycin Complex 1 (mTORC1) and stimulated apoptosis by impairing the Ser9 phosphorylation of glycogen synthase kinase 3β. Decreased phosphorylation of Akt at both phosphorylation sites and of downstream substrates as well as apoptosis were prevented concentration-dependently by insulin. In addition, simvastatin caused accumulation of the insulin receptor β-chain in the endoplasmic reticulum (ER) and increased cleavage of procaspase-12, indicating ER stress. Insulin reduced the expression of the insulin receptor β-chain but increased procaspase-12 activation in the presence of simvastatin. In conclusion, simvastatin impaired activation of Akt Ser473 most likely as a consequence of reduced activity of mTORC2. Insulin could prevent the effects of simvastatin on the insulin signaling pathway and on apoptosis, but not on the endoplasmic reticulum (ER) stress induction.
Collapse
Affiliation(s)
- Gerda M Sanvee
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Basel, Switzerland. .,Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| |
Collapse
|
14
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
15
|
Iron overload promotes mitochondrial fragmentation in mesenchymal stromal cells from myelodysplastic syndrome patients through activation of the AMPK/MFF/Drp1 pathway. Cell Death Dis 2018; 9:515. [PMID: 29725013 PMCID: PMC5938711 DOI: 10.1038/s41419-018-0552-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022]
Abstract
Iron overload (IO) has been reported to contribute to mesenchymal stromal cell (MSC) damage, but the precise mechanism has yet to be clearly elucidated. In this study, we found that IO increased cell apoptosis and lowered cell viability in MSCs, accompanied by extensive mitochondrial fragmentation and autophagy enhancement. All these effects were reactive oxygen species (ROS) dependent. In MSCs with IO, the ATP concentrations were significantly reduced due to high ROS levels and low electron respiratory chain complex (ETC) II/III activity. Reduced ATP phosphorylated AMP-activated protein kinase (AMPK). Activation of AMPK kinase complexes triggered mitochondrial fission. Moreover, gene knockout of AMPK via CRISPR/Cas9 reduced cell apoptosis, enhanced cell viability and attenuated mitochondrial fragmentation and autophagy caused by IO in MSCs. Further, AMPK-induced mitochondrial fragmentation of MSCs with IO was mediated via phosphorylation of mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for the GTPase dynamin-related protein 1 (Drp1). Gene knockdown of MFF reversed AMPK-induced mitochondrial fragmentation in MSCs with IO. In addition, MSCs from IO patients with myelodysplastic syndrome (MDS) showed increased cell apoptosis, decreased cell viability, higher ROS levels, lower ATP concentrations and increased mitochondrial fragmentation compared with MSCs from non-IO patients. In addition, iron chelation or antioxidant weakened the activity of the AMPK/MFF/Drp1 pathway in MDS-MSCs with IO from several patients, accompanied by attenuation of mitochondrial fragmentation and autophagy. Taken together, the AMPK/MFF/Drp1 pathway has an important role in the damage to MDS-MSCs caused by IO.
Collapse
|
16
|
Christ B, Dahmen U, Herrmann KH, König M, Reichenbach JR, Ricken T, Schleicher J, Ole Schwen L, Vlaic S, Waschinsky N. Computational Modeling in Liver Surgery. Front Physiol 2017; 8:906. [PMID: 29249974 PMCID: PMC5715340 DOI: 10.3389/fphys.2017.00906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Molecular Hepatology Lab, Clinics of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias König
- Department of Biology, Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tim Ricken
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| | - Jana Schleicher
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany.,Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | | | - Sebastian Vlaic
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Navina Waschinsky
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
17
|
Ajiboye TO, Habibu RS, Saidu K, Haliru FZ, Ajiboye HO, Aliyu NO, Ibitoye OB, Uwazie JN, Muritala HF, Bello SA, Yusuf II, Mohammed AO. Involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality. Microbiologyopen 2017; 6:e00472. [PMID: 28349673 PMCID: PMC5552917 DOI: 10.1002/mbo3.472] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 12/13/2022] Open
Abstract
The involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality was investigated. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) of protocatechuic acid against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus are 600 and 700 μg/ml, 600 and 800 μg/ml, and 600 and 800 μg/ml, respectively. The optical densities and colony-forming units of protocatechuic acid-treated bacteria decreased in time-dependent manner. Protocatechuic acid (4× MIC) significantly increased the superoxide anion content of E. coli, P. aeruginosa, and S. aureus compared to dimethyl sulfoxide (DMSO). Superoxide dismutase, catalase, and NAD+ /NADH in protocatechuic acid-treated E. coli, P. aeruginosa, and S. aureus increased significantly when compared to DMSO. Conversely, level of reduced glutathione decreased in protocatechuic acid-treated E. coli, P. aeruginosa, and S. aureus, while glutathione disulfide increased when compared to DMSO. Furthermore, malondialdehyde and fragmented DNA increased significantly following exposure to protocatechuic acid. Protocatechuic acid inhibited the activity of complexes I and II. From the above findings, protocatechuic acid enhanced the generation of reactive oxygen species (superoxide anion radical and hydroxyl radical) in E. coli, P. aeruginosa, and S. aureus, possibly by autoxidation, fenton chemistry, and inhibiting electron transport chain resulting in lipid peroxidation and DNA fragmentation and consequentially bacterial cell death.
Collapse
Affiliation(s)
- Taofeek O. Ajiboye
- Antioxidants, Redox Biology and Toxicology Research LaboratoryDepartment of Biological SciencesAl‐Hikmah UniversityIlorinNigeria
| | - Ramat S. Habibu
- Antioxidants, Redox Biology and Toxicology Research LaboratoryDepartment of Biological SciencesAl‐Hikmah UniversityIlorinNigeria
| | - Kabiru Saidu
- Antioxidants, Redox Biology and Toxicology Research LaboratoryDepartment of Biological SciencesAl‐Hikmah UniversityIlorinNigeria
| | - Fatimah Z. Haliru
- Antioxidants, Redox Biology and Toxicology Research LaboratoryDepartment of Biological SciencesAl‐Hikmah UniversityIlorinNigeria
| | | | | | - Oluwayemisi B. Ibitoye
- Antioxidants, Redox Biology and Toxicology Research LaboratoryDepartment of Biological SciencesAl‐Hikmah UniversityIlorinNigeria
| | | | | | - Sharafa A. Bello
- Microbiology UnitDepartment of Biological SciencesAl‐Hikmah UniversityIlorinNigeria
| | - Idris I. Yusuf
- Microbiology UnitDepartment of Biological SciencesAl‐Hikmah UniversityIlorinNigeria
| | - Aisha O. Mohammed
- Microbiology UnitDepartment of Biological SciencesAl‐Hikmah UniversityIlorinNigeria
| |
Collapse
|
18
|
Ježek J, Engstová H, Ježek P. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:750-762. [PMID: 28554565 DOI: 10.1016/j.bbabio.2017.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022]
Abstract
Previously suggested antioxidant mechanisms for mitochondria-targeted plastoquinone SkQ1 included: i) ion-pairing of cationic SkQ1+ with free fatty acid anions resulting in uncoupling; ii) SkQ1H2 ability to interact with lipoperoxyl radical; iii) interference with electron flow at the inner ubiquinone (Q) binding site of Complex III (Qi), involving the reduction of SkQ1 to SkQ1H2 by ubiquinol. We elucidated SkQ1 antioxidant properties by confocal fluorescence semi-quantification of mitochondrial superoxide (Jm) and cytosolic H2O2 (Jc) release rates in HepG2 cells. Only in glycolytic cells, SkQ1 prevented the rotenone-induced enhancement of Jm and Jc but not basal releases without rotenone. The effect ceased in glutaminolytic aglycemic cells, in which the redox parameter NAD(P)H/FAD increased after rotenone in contrast to its decrease in glycolytic cells. Autofluorescence decay indicated decreased NADPH/NADH ratios with rotenone in both metabolic modes. SkQ1 did not increase cell respiration and diminished Jm established high by antimycin or myxothiazol but not by stigmatellin. The revealed SkQ1 antioxidant modes reflect its reduction to SkQ1H2 at Complex I IQ or Complex III Qi site. Both reductions diminish electron diversions to oxygen thus attenuating superoxide formation. Resulting SkQ1H2 oxidizes back to SkQ1at the second (flavin) Complex I site, previously indicated for MitoQ10. Regeneration proceeds only at lower NAD(P)H/FAD in glycolytic cells. In contrast, cyclic SkQ1 reduction/SkQ1H2 oxidation does not substantiate antioxidant activity in intact cells in the absence of oxidative stress (neither pro-oxidant activity, representing a great advantage). A targeted delivery to oxidative-stressed tissues is suggested for the effective antioxidant therapy based on SkQ1.
Collapse
Affiliation(s)
- Jan Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic.
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic
| | - Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic.
| |
Collapse
|
19
|
Mc Auley MT, Guimera AM, Hodgson D, Mcdonald N, Mooney KM, Morgan AE, Proctor CJ. Modelling the molecular mechanisms of aging. Biosci Rep 2017; 37:BSR20160177. [PMID: 28096317 PMCID: PMC5322748 DOI: 10.1042/bsr20160177] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/15/2016] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
The aging process is driven at the cellular level by random molecular damage that slowly accumulates with age. Although cells possess mechanisms to repair or remove damage, they are not 100% efficient and their efficiency declines with age. There are many molecular mechanisms involved and exogenous factors such as stress also contribute to the aging process. The complexity of the aging process has stimulated the use of computational modelling in order to increase our understanding of the system, test hypotheses and make testable predictions. As many different mechanisms are involved, a wide range of models have been developed. This paper gives an overview of the types of models that have been developed, the range of tools used, modelling standards and discusses many specific examples of models that have been grouped according to the main mechanisms that they address. We conclude by discussing the opportunities and challenges for future modelling in this field.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Faculty of Science and Engineering, University of Chester, Chester, U.K
| | - Alvaro Martinez Guimera
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Newcastle University, Newcastle upon Tyne, Ormskirk, U.K
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, U.K
| | - David Hodgson
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Newcastle University, Newcastle upon Tyne, Ormskirk, U.K
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, U.K
| | - Neil Mcdonald
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Newcastle University, Newcastle upon Tyne, Ormskirk, U.K
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, U.K
| | | | - Amy E Morgan
- Faculty of Science and Engineering, University of Chester, Chester, U.K
| | - Carole J Proctor
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Newcastle University, Newcastle upon Tyne, Ormskirk, U.K.
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, U.K
| |
Collapse
|
20
|
Hurst S, Hoek J, Sheu SS. Mitochondrial Ca 2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 2017; 49:27-47. [PMID: 27497945 PMCID: PMC5393273 DOI: 10.1007/s10863-016-9672-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/31/2016] [Indexed: 02/06/2023]
Abstract
The mitochondrial permeability transition pore was originally described in the 1970's as a Ca2+ activated pore and has since been attributed to the pathogenesis of many diseases. Here we evaluate how each of the current models of the pore complex fit to what is known about how Ca2+ regulates the pore, and any insight that provides into the molecular identity of the pore complex. We also discuss the central role of Ca2+ in modulating the pore's open probability by directly regulating processes, such as ATP/ADP balance through the tricarboxylic acid cycle, electron transport chain, and mitochondrial membrane potential. We review how Ca2+ influences second messengers such as reactive oxygen/nitrogen species production and polyphosphate formation. We discuss the evidence for how Ca2+ regulates post-translational modification of cyclophilin D including phosphorylation by glycogen synthase kinase 3 beta, deacetylation by sirtuins, and oxidation/ nitrosylation of key residues. Lastly we introduce a novel view into how Ca2+ activated proteolysis through calpains in the mitochondria may be a driver of sustained pore opening during pathologies such as ischemia reperfusion injury.
Collapse
Affiliation(s)
- Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Jan Hoek
- Mitocare Center for Mitochondria Research, Department of Pathology Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA.
| |
Collapse
|
21
|
Pei HF, Hou JN, Wei FP, Xue Q, Zhang F, Peng CF, Yang Y, Tian Y, Feng J, Du J, He L, Li XC, Gao EH, Li D, Yang YJ. Melatonin attenuates postmyocardial infarction injury via increasing Tom70 expression. J Pineal Res 2017; 62. [PMID: 27706848 DOI: 10.1111/jpi.12371] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction leads to reactive oxygen species (ROS) overload, exacerbating injury in myocardial infarction (MI). As a receptor for translocases in the outer mitochondrial membrane (Tom) complex, Tom70 has an unknown function in MI, including melatonin-induced protection against MI injury. We delivered specific small interfering RNAs against Tom70 or lentivirus vectors carrying Tom70a sequences into the left ventricles of mice or to cultured neonatal murine ventricular myocytes (NMVMs). At 48 h post-transfection, the left anterior descending coronary arteries of mice were permanently ligated, while the NMVMs underwent continuous hypoxia. At 24 h after ischemia/hypoxia, oxidative stress was assessed by dihydroethidium and lucigenin-enhanced luminescence, mitochondrial damage by transmission electron microscopy and ATP content, and cell apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling and caspase-3 assay. At 4 weeks after ischemia, cardiac function and fibrosis were evaluated in mice by echocardiography and Masson's trichrome staining, respectively. Ischemic/hypoxic insult reduced Tom70 expression in cardiomyocytes. Tom70 downregulation aggravated post-MI injury, with increased mitochondrial fragmentation and ROS overload. In contrast, Tom70 upregulation alleviated post-MI injury, with improved mitochondrial integrity and decreased ROS production. PGC-1α/Tom70 expression in ischemic myocardium was increased with melatonin alone, but not when combined with luzindole. Melatonin attenuated post-MI injury in control but not in Tom70-deficient mice. N-acetylcysteine (NAC) reversed the adverse effects of Tom70 deficiency in mitochondria and cardiomyocytes, but at a much higher concentration than melatonin. Our findings showed that Tom70 is essential for melatonin-induced protection against post-MI injury, by breaking the cycle of mitochondrial impairment and ROS generation.
Collapse
Affiliation(s)
- Hai-Feng Pei
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juan-Ni Hou
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Fei-Peng Wei
- Department of Interventional Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiang Xue
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fan Zhang
- Department of Nephrology, Chengdu Military General Hospital, Chengdu, China
| | - Cheng-Fei Peng
- Cardiovascular Research Institute, Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Yi Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yue Tian
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juan Feng
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Jin Du
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Lei He
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Xiu-Chuan Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Er-He Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, USA
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yong-Jian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| |
Collapse
|
22
|
Redox and respiratory chain related alterations in the lophirones B and C-mediated bacterial lethality. Microb Pathog 2016; 100:95-111. [DOI: 10.1016/j.micpath.2016.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022]
|
23
|
Pannala VR, Camara AKS, Dash RK. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition. J Appl Physiol (1985) 2016; 121:1196-1207. [PMID: 27633738 DOI: 10.1152/japplphysiol.00524.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/11/2016] [Indexed: 01/03/2023] Open
Abstract
Cytochrome c oxidase (CcO) catalyzes the exothermic reduction of O2 to H2O by using electrons from cytochrome c, and hence plays a crucial role in ATP production. Although details on the enzyme structure and redox centers involved in O2 reduction have been known, there still remains a considerable ambiguity on its mechanism of action, e.g., the number of sequential electrons donated to O2 in each catalytic step, the sites of protonation and proton pumping, and nitric oxide (NO) inhibition mechanism. In this work, we developed a thermodynamically constrained mechanistic mathematical model for the catalytic action of CcO based on available kinetic data. The model considers a minimal number of redox centers on CcO and couples electron transfer and proton pumping driven by proton motive force (PMF), and accounts for the inhibitory effects of NO on the reaction kinetics. The model is able to fit well all the available kinetic data under diverse experimental conditions with a physiologically realistic unique parameter set. The model predictions show that: 1) the apparent Km of O2 varies considerably and increases from fully reduced to fully oxidized cytochrome c depending on pH and the energy state of mitochondria, and 2) the intermediate enzyme states depend on pH and cytochrome c redox fraction and play a central role in coupling mitochondrial respiration to PMF. The developed CcO model can easily be integrated into existing mitochondrial bioenergetics models to understand the role of the enzyme in controlling oxidative phosphorylation in normal and disease conditions.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; .,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
24
|
Plecitá-Hlavatá L, Ježek P. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int J Biochem Cell Biol 2016; 80:31-50. [PMID: 27640755 DOI: 10.1016/j.biocel.2016.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
The mitochondrial network provides the central cell's energetic and regulatory unit, which besides ATP and metabolite production participates in cellular signaling through regulated reactive oxygen species (ROS) production and various protein/ion fluxes. The inner membrane forms extensive folds, called cristae, i.e. cavities enfolded from and situated perpendicularly to its inner boundary membrane portion, which encompasses an inner cylinder within the outer membrane tubule. Mitochondrial cristae ultramorphology reflects various metabolic, physiological or pathological states. Since the mitochondrion is typically a predominant superoxide source and generated ROS also serve for the creation of information redox signals, we review known relationships between ROS generation within the respiratory chain complexes of cristae and cristae morphology. Notably, it is emphasized that cristae shape is governed by ATP-synthase dimers, MICOS complexes, OPA1 isoforms and the umbrella of their regulation, and also dependent on local protonmotive force (electrical potential component) in cristae. Cristae are also affected by redox-sensitive kinases/phosphatases or p66SHC. ATP-synthase dimers decrease in the inflated intracristal space, diminishing pH and hypothetically having minimal superoxide formation. Matrix-released signaling superoxide/H2O2 is predominantly integrated along mitochondrial tubules, whereas the diffusion of intracristal signaling ROS species is controlled by crista junctions, the widening of which enables specific retrograde redox signaling such as during hypoxic cell adaptation. Other physiological cases of H2O2 release from the mitochondrion include the modulation of insulin release in pancreatic β-cells, enhancement of insulin signaling in peripheral tissues, signaling by T-cell receptors, retrograde signaling during the cell cycle and cell differentiation, specifically that of adipocytes.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- Department of Membrane Transport Biophysics, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Ježek
- Department of Membrane Transport Biophysics, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
25
|
Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:19-47. [PMID: 27345199 PMCID: PMC5613937 DOI: 10.1016/j.lssr.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.
Collapse
Affiliation(s)
| | | | - Steve R Blattnig
- Langley Research Center, Langley Research Center (LaRC), VA, United States
| | - Sylvain V Costes
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Lynn Hlatky
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Yared Kidane
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mamta D Naidu
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Leif E Peterson
- Houston Methodist Research Institute, Houston, TX, United States
| | - Ianik Plante
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Artem L Ponomarev
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Janapriya Saha
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Jonathan Tang
- Exogen Biotechnology, Inc., Berkeley, CA, United States
| | | | - Janice M Pluth
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
26
|
de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF. Quercetin and the mitochondria: A mechanistic view. Biotechnol Adv 2015; 34:532-549. [PMID: 26740171 DOI: 10.1016/j.biotechadv.2015.12.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 12/24/2022]
Abstract
Quercetin is an important flavonoid that is ubiquitously present in the diet in a variety of fruits and vegetables. It has been traditionally viewed as a potent antioxidant and anti-inflammatory molecule. However, recent studies have suggested that quercetin may exert its beneficial effects independent of its free radical-scavenging properties. Attention has been placed on the effect of quercetin on an array of mitochondrial processes. Quercetin is now recognized as a phytochemical that can modulate pathways associated with mitochondrial biogenesis, mitochondrial membrane potential, oxidative respiration and ATP anabolism, intra-mitochondrial redox status, and subsequently, mitochondria-induced apoptosis. The present review evaluates recent evidence on the ability of quercetin to interact with the abovementioned pathways, and critically analyses how, such interactions can exert protection against mitochondrial damage in response to toxicity induced by several exogenously and endogenously-produced cellular stressors, and oxidative stress in particular.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiabá, MT, Brazil.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Touqeer Ahmed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|