1
|
Elling FJ, Pierrel F, Chobert SC, Abby SS, Evans TW, Reveillard A, Pelosi L, Schnoebelen J, Hemingway JD, Boumendjel A, Becker KW, Blom P, Cordes J, Nathan V, Baymann F, Lücker S, Spieck E, Leadbetter JR, Hinrichs KU, Summons RE, Pearson A. A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism. Proc Natl Acad Sci U S A 2025; 122:e2421994122. [PMID: 39977315 PMCID: PMC11874023 DOI: 10.1073/pnas.2421994122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
The dominant organisms in modern oxic ecosystems rely on respiratory quinones with high redox potential (HPQs) for electron transport in aerobic respiration and photosynthesis. The diversification of quinones, from low redox potential (LPQ) in anaerobes to HPQs in aerobes, is assumed to have followed Earth's surface oxygenation ~2.3 billion years ago. However, the evolutionary origins of HPQs remain unresolved. Here, we characterize the structure and biosynthetic pathway of an ancestral HPQ, methyl-plastoquinone (mPQ), that is unique to bacteria of the phylum Nitrospirota. mPQ is structurally related to the two previously known HPQs, plastoquinone from Cyanobacteriota/chloroplasts and ubiquinone from Pseudomonadota/mitochondria, respectively. We demonstrate a common origin of the three HPQ biosynthetic pathways that predates the emergence of Nitrospirota, Cyanobacteriota, and Pseudomonadota. An ancestral HPQ biosynthetic pathway evolved ≥ 3.4 billion years ago in an extinct lineage and was laterally transferred to these three phyla ~2.5 to 3.2 billion years ago. We show that Cyanobacteriota and Pseudomonadota were ancestrally aerobic and thus propose that aerobic metabolism using HPQs significantly predates Earth's surface oxygenation. Two of the three HPQ pathways were later obtained by eukaryotes through endosymbiosis forming chloroplasts and mitochondria, enabling their rise to dominance in modern oxic ecosystems.
Collapse
Affiliation(s)
- Felix J. Elling
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
- Leibniz-Laboratory for Radiometric Dating and Isotope Research, Christian-Albrecht University of Kiel, Kiel24118, Germany
| | - Fabien Pierrel
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Sophie-Carole Chobert
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Sophie S. Abby
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Thomas W. Evans
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Arthur Reveillard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Ludovic Pelosi
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Juliette Schnoebelen
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Jordon D. Hemingway
- Department of Earth and Planetary Sciences, Geological Institute, ETH Zürich, Zurich8092, Switzerland
| | | | - Kevin W. Becker
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel24148, Germany
| | - Pieter Blom
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen6525 AJ, The Netherlands
| | - Julia Cordes
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Vinitra Nathan
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| | - Frauke Baymann
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20F-13402, France
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen6525 AJ, The Netherlands
| | - Eva Spieck
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg22609, Germany
| | - Jared R. Leadbetter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| | - Kai-Uwe Hinrichs
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Roger E. Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Hellwig P. The electrochemical properties of the highly diverse terminal oxidases from different organisms. Bioelectrochemistry 2025; 165:108946. [PMID: 40020283 DOI: 10.1016/j.bioelechem.2025.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Terminal oxidases are critical for aerobic respiratory chains of prokaryotes and eukaryotes, responsible for the final step in the electron transport chain. These enzymes catalyze the transfer of electrons from reduced electron carriers (such as cytochrome c or quinols) to the terminal electron acceptor, molecular oxygen (O₂), thereby reducing it to water. They play a pivotal role in aerobic respiration and energy metabolism, adapting to diverse environmental and physiological needs across different organisms. This review summarizes the electrochemical properties of terminal oxidases from different organisms and reveals their high degree of adaptivity with redox potentials spanning more than 500 mV. The electrocatalytic response in direct electrochemical approaches is described giving insight into the rich and complex electron and proton transfer catalysed by these essential enzymes.
Collapse
Affiliation(s)
- Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioélectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France, Institut Universitaire de France (IUF).
| |
Collapse
|
3
|
Chobert SC, Roger-Margueritat M, Flandrin L, Berraies S, Lefèvre CT, Pelosi L, Junier I, Varoquaux N, Pierrel F, Abby SS. Dynamic quinone repertoire accompanied the diversification of energy metabolism in Pseudomonadota. THE ISME JOURNAL 2025; 19:wrae253. [PMID: 39693360 PMCID: PMC11707229 DOI: 10.1093/ismejo/wrae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/27/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
It is currently unclear how Pseudomonadota, a phylum that originated around the time of the Great Oxidation Event, became one of the most abundant and diverse bacterial phyla on Earth, with metabolically versatile members colonizing a wide range of environments with different O2 concentrations. Here, we address this question by studying isoprenoid quinones, which are central components of energy metabolism covering a wide range of redox potentials. We demonstrate that a dynamic repertoire of quinone biosynthetic pathways accompanied the diversification of Pseudomonadota. The low potential menaquinone (MK) was lost in an ancestor of Pseudomonadota while the high potential ubiquinone (UQ) emerged. We show that the O2-dependent and O2-independent UQ pathways were both present in the last common ancestor of Pseudomonadota, and transmitted vertically. The O2-independent pathway has a conserved genetic organization and displays signs of positive regulation by the master regulator "fumarate and nitrate reductase" (FNR), suggesting a conserved role for UQ in anaerobiosis across Pseudomonadota. The O2-independent pathway was lost in some lineages but maintained in others, where it favoured a secondary reacquisition of low potential quinones (MK or rhodoquinone), which promoted diversification towards aerobic facultative and anaerobic metabolisms. Our results support that the ecological success of Pseudomonadota is linked to the acquisition of the largest known repertoire of quinones, which allowed adaptation to oxic niches as O2 levels increased on Earth, and subsequent diversification into anoxic or O2-fluctuating environments.
Collapse
Affiliation(s)
- Sophie-Carole Chobert
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | | | - Laura Flandrin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Safa Berraies
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Christopher T Lefèvre
- Aix-Marseille Université, CNRS, CEA, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance 13108, France
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Ivan Junier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Nelle Varoquaux
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Sophie S Abby
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| |
Collapse
|
4
|
Pagacz J, Borek A, Osyczka A. ROS production by cytochrome bc 1: Its mechanism as inferred from the effects of heme b cofactor mutants. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149513. [PMID: 39326544 DOI: 10.1016/j.bbabio.2024.149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Cytochrome bc1 is one of the enzymes of electron transport chain responsible for generation of reactive oxygen species (ROS). While ROS are considered to be products of side reactions of quinol oxidation site (Qo), molecular aspects of their generation remain unclear. One of them concerns significance of hemes b (bL and bH) redox potentials (Em) and properties on ROS generation by Qo. Here we addressed this question by examining ROS production in mutants of bacterial cytochrome bc1 that replaced one of the His ligand of either heme bL or bH with Lys or Asn. We observed that severe slowing down of electron flow by the Asn mutants induces similar effects on ROS production as inhibition by antimycin in the native cytochrome bc1 (WT). An increase in the Em of hemes b (either bL or bH) in Lys mutants does not exert major effect on the ROS production level, compared to WT. The experimental data were analyzed in the frame of a dynamic model to conclude that the observed ROS rates and levels reflect a combinatory effect of two factors: probability of heme bL being in the reduced state and probability of electron transfer from heme bL towards Qo. A significant contribution from short-circuits maintains the ROS levels at ~15 % in all tested forms. Overall, ROS production by cytochrome bc1 shows remarkably low susceptibility to changes in the Em of heme b cofactors, leaving significance of tuning the Em of hemes b as factor limiting superoxide production an open question.
Collapse
Affiliation(s)
- Jakub Pagacz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-087 Krakow, Poland
| | - Arkadiusz Borek
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-087 Krakow, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-087 Krakow, Poland.
| |
Collapse
|
5
|
Liu S, Cai M, Liu Z, Gao W, Li J, Li Y, Abudouxukuer X, Zhang J. Comprehensive Insights into the Development of Antitoxoplasmosis Drugs: Current Advances, Obstacles, and Future Perspectives. J Med Chem 2024; 67:20740-20764. [PMID: 39589152 DOI: 10.1021/acs.jmedchem.4c01733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Current therapies for toxoplasmosis rely on a few drugs, most of which have severe side effects, and seeking ideal therapies for different types of toxoplasmosis is a long-term and challenging mission. Research and development (R&D) of novel drugs against Toxoplasma gondii (T. gondii) has focused on two main directions, the structural modification of lead compounds and natural products. Here we summarize the recent advances in the development of anti-T. gondii drugs from these two perspectives and provide comprehensive insights, reflecting on the advantages and selected molecules in each field. This review also focuses on the current obstacles to the development of novel anti-T. gondii agents, proposes comprehensive solutions, and facilitates future development.
Collapse
Affiliation(s)
- Siyang Liu
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Minghao Cai
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Zhendi Liu
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Weixin Gao
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Junjie Li
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Yuxueqing Li
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Xiayire Abudouxukuer
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Jili Zhang
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| |
Collapse
|
6
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Zheng X, Huang L. Diverse non-canonical electron bifurcating [FeFe]-hydrogenases of separate evolutionary origins in Hydrogenedentota. mSystems 2024; 9:e0099924. [PMID: 39189956 PMCID: PMC11406978 DOI: 10.1128/msystems.00999-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Hydrogenedentota, a globally distributed bacterial phylum-level lineage, is poorly understood. Here, we established a comprehensive genomic catalog of Hydrogenedentota, including a total of seven clades (or families) with 179 genomes, and explored the metabolic potential and evolutionary history of these organisms. We show that a single genome, especially those belonging to Clade 6, often encodes multiple hydrogenases with genomes in Clade 2, which rarely encode hydrogenases being the exception. Notably, most members of Hydrogenedentota contain a group A3 [FeFe]-hydrogenase (BfuABC) with a non-canonical electron bifurcation mechanism, in addition to substrate-level phosphorylation and electron transport-linked phosphorylation pathways, in energy conservation. Furthermore, we show that BfuABC from Hydrogenedentota fall into five sub-types. Phylogenetic analysis reveals five independent routes for the evolution of BfuABC homologs in Hydrogenedentota. We speculate that the five sub-types of BfuABC might be acquired from Bacillota (synonym Firmicutes) through separate horizontal gene transfer events. These data shed light on the diversity and evolution of bifurcating [FeFe]-hydrogenases and provide insight into the strategy of Hydrogenedentota to adapt to survival in various habitats. IMPORTANCE The phylum Hydrogenedentota is widely distributed in various environments. However, their physiology, ecology, and evolutionary history remain unknown, primarily due to the limited availability of the genomes and the lack of cultured representatives of the phylum. Our results have increased the knowledge of the genetic and metabolic diversity of these organisms and shed light on their diverse energy conservation strategies, especially those involving electron bifurcation with a non-canonical mechanism, which are likely responsible for their wide distribution. Besides, the organization and phylogenetic relationships of gene clusters coding for BfuABC in Hydrogenedentota provide valuable clues to the evolutionary history of group A3 electron bifurcating [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Kozuleva MA, Ivanov BN. Superoxide Anion Radical Generation in Photosynthetic Electron Transport Chain. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1045-1060. [PMID: 37758306 DOI: 10.1134/s0006297923080011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 10/03/2023]
Abstract
This review analyzes data available in the literature on the rates, characteristics, and mechanisms of oxygen reduction to a superoxide anion radical at the sites of photosynthetic electron transport chain where this reduction has been established. The existing assumptions about the role of the components of these sites in this process are critically examined using thermodynamic approaches and results of the recent studies. The process of O2 reduction at the acceptor side of PSI, which is considered the main site of this process taking place in the photosynthetic chain, is described in detail. Evolution of photosynthetic apparatus in the context of controlling the leakage of electrons to O2 is explored. The reasons limiting application of the results obtained with the isolated segments of the photosynthetic chain to estimate the rates of O2 reduction at the corresponding sites in the intact thylakoid membrane are discussed.
Collapse
Affiliation(s)
- Marina A Kozuleva
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Boris N Ivanov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
9
|
Mishima E, Wahida A, Seibt T, Conrad M. Diverse biological functions of vitamin K: from coagulation to ferroptosis. Nat Metab 2023:10.1038/s42255-023-00821-y. [PMID: 37337123 DOI: 10.1038/s42255-023-00821-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/12/2023] [Indexed: 06/21/2023]
Abstract
Vitamin K is essential for several physiological processes, such as blood coagulation, in which it serves as a cofactor for the conversion of peptide-bound glutamate to γ-carboxyglutamate in vitamin K-dependent proteins. This process is driven by the vitamin K cycle facilitated by γ-carboxyglutamyl carboxylase, vitamin K epoxide reductase and ferroptosis suppressor protein-1, the latter of which was recently identified as the long-sought-after warfarin-resistant vitamin K reductase. In addition, vitamin K has carboxylation-independent functions. Akin to ubiquinone, vitamin K acts as an electron carrier for ATP production in some organisms and prevents ferroptosis, a type of cell death hallmarked by lipid peroxidation. In this Perspective, we provide an overview of the diverse functions of vitamin K in physiology and metabolism and, at the same time, offer a perspective on its role in ferroptosis together with ferroptosis suppressor protein-1. A comparison between vitamin K and ubiquinone, from an evolutionary perspective, may offer further insights into the manifold roles of vitamin K in biology.
Collapse
Affiliation(s)
- Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tobias Seibt
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
10
|
Glass JB, Elbon CE, Williams LD. Something old, something new, something borrowed, something blue: the anaerobic microbial ancestry of aerobic respiration. Trends Microbiol 2023; 31:135-141. [PMID: 36058785 DOI: 10.1016/j.tim.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
Aerobic respiration evolved by bricolage, with modules cobbled together as microbial biochemistry coevolved with Earth's geochemistry. The mitochondrial electron transport chain represents a patchwork of respiratory modules inherited from microbial methanogenesis, iron oxidation, anoxygenic photosynthesis, and denitrification pathways, and preserves a biochemical record of Earth's redox environment over its four-billion-year history. Imprints of the anoxic early Earth are recognizable in Complex I's numerous iron-sulfur cofactors and vestigial binding sites for ferredoxin, nickel-iron, and molybdopterin, whereas the more recent advent of oxygen as a terminal electron acceptor necessitated use of heme and copper cofactors by Complex IV. Bricolage of respiratory complexes resulted in supercomplexes for improved electron transfer efficiency in some bacteria and archaea, and in many eukaryotes. Accessory subunits evolved to wrap mitochondrial supercomplexes for improved assembly and stability. Environmental microbes with 'fossil' proteins that are similar to ancestral forms of the respiratory complexes deserve further scrutiny and may reveal new insights on the evolution of aerobic respiration.
Collapse
Affiliation(s)
- Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Claire E Elbon
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
11
|
Szwalec M, Bujnowicz Ł, Sarewicz M, Osyczka A. Unexpected Heme Redox Potential Values Implicate an Uphill Step in Cytochrome b6f. J Phys Chem B 2022; 126:9771-9780. [PMID: 36399615 PMCID: PMC9720722 DOI: 10.1021/acs.jpcb.2c05729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytochromes bc, key enzymes of respiration and photosynthesis, contain a highly conserved two-heme motif supporting cross-membrane electron transport (ET) that connects the two catalytic quinone-binding sites (Qn and Qp). Typically, this ET occurs from the low- to high-potential heme b, but in photosynthetic cytochrome b6f, the redox midpoint potentials (Ems) of these hemes remain uncertain. Our systematic redox titration analysis based on three independent and comprehensive low-temperature spectroscopies (continuous wave and pulse electron paramagnetic resonance (EPR) and optical spectroscopies) allowed for unambiguous assignment of spectral components of hemes in cytochrome b6f and revealed that Em of heme bn is unexpectedly low. Consequently, the cross-membrane ET occurs from the high- to low-potential heme introducing an uphill step in the energy landscape for the catalytic reaction. This slows down the ET through a low-potential chain, which can influence the mechanisms of reactions taking place at both Qp and Qn sites and modulate the efficiency of cyclic and linear ET in photosynthesis.
Collapse
|
12
|
(Meta)Genomic Analysis Reveals Diverse Energy Conservation Strategies Employed by Globally Distributed Gemmatimonadota. mSystems 2022; 7:e0022822. [PMID: 35913193 PMCID: PMC9426454 DOI: 10.1128/msystems.00228-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gemmatimonadota is a phylum-level lineage distributed widely but rarely reported. Only six representatives of Gemmatimonadota have so far been isolated and cultured in laboratory. The physiology, ecology, and evolutionary history of this phylum remain unknown. The 16S rRNA gene survey of our salt lake and deep-sea sediments, and Earth Microbiome Project (EMP) samples, reveals that Gemmatimonadota exist in diverse environments globally. In this study, we retrieved 17 metagenome-assembled genomes (MAGs) from salt lake sediments (12 MAGs) and deep-sea sediments (5 MAGs). Analysis of these MAGs and the nonredundant MAGs or genomes from public databases reveals Gemmatimonadota can degrade various complex organic substrates, and mainly employ heterotrophic pathways (e.g., glycolysis and tricarboxylic acid [TCA] cycle) for growth via aerobic respiration. And the processes of sufficient energy being stored in glucose through gluconeogenesis, followed by the synthesis of more complex compounds, are prevalent in Gemmatimonadota. A highly expandable pangenome for Gemmatimonadota has been observed, which presumably results from their adaptation to thriving in diverse environments. The enrichment of the Na+/H+ antiporter in the SG8-23 order represents their adaptation to salty habitats. Notably, we identified a novel lineage of the SG8-23 order, which is potentially anoxygenic phototrophic. This lineage is not closely related to the phototrophs in the order of Gemmatimonadales. The two orders differ distinctly in the gene organization and phylogenetic relationship of their photosynthesis gene clusters, indicating photosystems in Gemmatimonadota have evolved in two independent routes. IMPORTANCE The phylum Gemmatimonadota is widely distributed in various environments. However, their physiology, ecology and evolutionary history remain unknown, primary due to the limited cultured isolates and available genomes. We were intrigued to find out how widespread this phylum is, and how it can thrive under diverse conditions. Our results here expand the knowledge of the genetic and metabolic diversity of Gemmatimonadota, and shed light on the diverse energy conservation strategies (i.e., oxidative phosphorylation, substrate phosphorylation, and photosynthetic phosphorylation) responsible for their global distribution. Moreover, gene organization and phylogenetic analysis of photosynthesis gene clusters in Gemmatimonadota provide a valuable insight into the evolutionary history of photosynthesis.
Collapse
|
13
|
Quinone binding sites of cyt bc complexes analysed by X-ray crystallography and cryogenic electron microscopy. Biochem Soc Trans 2022; 50:877-893. [PMID: 35356963 PMCID: PMC9162462 DOI: 10.1042/bst20190963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022]
Abstract
Cytochrome (cyt) bc1, bcc and b6f complexes, collectively referred to as cyt bc complexes, are homologous isoprenoid quinol oxidising enzymes present in diverse phylogenetic lineages. Cyt bc1 and bcc complexes are constituents of the electron transport chain (ETC) of cellular respiration, and cyt b6f complex is a component of the photosynthetic ETC. Cyt bc complexes share in general the same Mitchellian Q cycle mechanism, with which they accomplish proton translocation and thus contribute to the generation of proton motive force which drives ATP synthesis. They therefore require a quinol oxidation (Qo) and a quinone reduction (Qi) site. Yet, cyt bc complexes evolved to adapt to specific electrochemical properties of different quinone species and exhibit structural diversity. This review summarises structural information on native quinones and quinone-like inhibitors bound in cyt bc complexes resolved by X-ray crystallography and cryo-EM structures. Although the Qi site architecture of cyt bc1 complex and cyt bcc complex differs considerably, quinone molecules were resolved at the respective Qi sites in very similar distance to haem bH. In contrast, more diverse positions of native quinone molecules were resolved at Qo sites, suggesting multiple quinone binding positions or captured snapshots of trajectories toward the catalytic site. A wide spectrum of inhibitors resolved at Qo or Qi site covers fungicides, antimalarial and antituberculosis medications and drug candidates. The impact of these structures for characterising the Q cycle mechanism, as well as their relevance for the development of medications and agrochemicals are discussed.
Collapse
|
14
|
An uncharacteristically low-potential flavin governs the energy landscape of electron bifurcation. Proc Natl Acad Sci U S A 2022; 119:e2117882119. [PMID: 35290111 PMCID: PMC8944662 DOI: 10.1073/pnas.2117882119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nature has long been an inspiration for materials design, as it exemplifies exquisite control of both matter and energy. Electron bifurcation, a mechanism employed in biological systems to drive thermodynamically unfavorable and energetically challenging chemical reactions, is one such example. A key feature of bifurcating enzymes is the ability of a single redox cofactor to distribute a pair of electrons across two spatially separated electron transfer pathways. Here, we report on the empirical determination of both the one-electron potential and two-electron potential of the bifurcating flavin cofactor in the NADH-dependent ferredoxin-NADP+ oxidoreductase I (NfnSL) enzyme. Insights arising from the defined energy landscape of this bifurcation site may underlie the design of synthetic catalysts capable of generating high-energy intermediates. Electron bifurcation, an energy-conserving process utilized extensively throughout all domains of life, represents an elegant means of generating high-energy products from substrates with less reducing potential. The coordinated coupling of exergonic and endergonic reactions has been shown to operate over an electrochemical potential of ∼1.3 V through the activity of a unique flavin cofactor in the enzyme NADH-dependent ferredoxin-NADP+ oxidoreductase I. The inferred energy landscape has features unprecedented in biochemistry and presents novel energetic challenges, the most intriguing being a large thermodynamically uphill step for the first electron transfer of the bifurcation reaction. However, ambiguities in the energy landscape at the bifurcating site deriving from overlapping flavin spectral signatures have impeded a comprehensive understanding of the specific mechanistic contributions afforded by thermodynamic and kinetic factors. Here, we elucidate an uncharacteristically low two-electron potential of the bifurcating flavin, resolving the energetic challenge of the first bifurcation event.
Collapse
|
15
|
Buckel W. Energy Conservation in Fermentations of Anaerobic Bacteria. Front Microbiol 2021; 12:703525. [PMID: 34589068 PMCID: PMC8473912 DOI: 10.3389/fmicb.2021.703525] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 02/04/2023] Open
Abstract
Anaerobic bacteria ferment carbohydrates and amino acids to obtain energy for growth. Due to the absence of oxygen and other inorganic electron acceptors, the substrate of a fermentation has to serve as electron donor as well as acceptor, which results in low free energies as compared to that of aerobic oxidations. Until about 10 years ago, anaerobes were thought to exclusively use substrate level phosphorylation (SLP), by which only part of the available energy could be conserved. Therefore, anaerobes were regarded as unproductive and inefficient energy conservers. The discovery of electrochemical Na+ gradients generated by biotin-dependent decarboxylations or by reduction of NAD+ with ferredoxin changed this view. Reduced ferredoxin is provided by oxidative decarboxylation of 2-oxoacids and the recently discovered flavin based electron bifurcation (FBEB). In this review, the two different fermentation pathways of glutamate to ammonia, CO2, acetate, butyrate and H2 via 3-methylaspartate or via 2-hydroxyglutarate by members of the Firmicutes are discussed as prototypical examples in which all processes characteristic for fermentations occur. Though the fermentations proceed on two entirely different pathways, the maximum theoretical amount of ATP is conserved in each pathway. The occurrence of the 3-methylaspartate pathway in clostridia from soil and the 2-hydroxyglutarate pathway in the human microbiome of the large intestine is traced back to the oxygen-sensitivity of the radical enzymes. The coenzyme B12-dependent glutamate mutase in the 3-methylaspartate pathway tolerates oxygen, whereas 2-hydroxyglutaryl-CoA dehydratase is extremely oxygen-sensitive and can only survive in the gut, where the combustion of butyrate produced by the microbiome consumes the oxygen and provides a strict anaerobic environment. Examples of coenzyme B12-dependent eliminases are given, which in the gut are replaced by simpler extremely oxygen sensitive glycyl radical enzymes.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
16
|
Yuly JL, Zhang P, Ru X, Terai K, Singh N, Beratan DN. Efficient and reversible electron bifurcation with either normal or inverted potentials at the bifurcating cofactor. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Zuchan K, Baymann F, Baffert C, Brugna M, Nitschke W. The dyad of the Y-junction- and a flavin module unites diverse redox enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148401. [PMID: 33684340 DOI: 10.1016/j.bbabio.2021.148401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/26/2022]
Abstract
The concomitant presence of two distinctive polypeptide modules, which we have chosen to denominate as the "Y-junction" and the "flavin" module, is observed in 3D structures of enzymes as functionally diverse as complex I, NAD(P)-dependent [NiFe]-hydrogenases and NAD(P)-dependent formate dehydrogenases. Amino acid sequence conservation furthermore suggests that both modules are also part of NAD(P)-dependent [FeFe]-hydrogenases for which no 3D structure model is available yet. The flavin module harbours the site of interaction with the substrate NAD(P) which exchanges two electrons with a strictly conserved flavin moiety. The Y-junction module typically contains four iron-sulphur centres arranged to form a Y-shaped electron transfer conduit and mediates electron transfer between the flavin module and the catalytic units of the respective enzymes. The Y-junction module represents an electron transfer hub with three potential electron entry/exit sites. The pattern of specific redox centres present both in the Y-junction and the flavin module is correlated to present knowledge of these enzymes' functional properties. We have searched publicly accessible genomes for gene clusters containing both the Y-junction and the flavin module to assemble a comprehensive picture of the diversity of enzymes harbouring this dyad of modules and to reconstruct their phylogenetic relationships. These analyses indicate the presence of the dyad already in the last universal common ancestor and the emergence of complex I's EFG-module out of a subgroup of NAD(P)- dependent formate dehydrogenases.
Collapse
Affiliation(s)
- Kilian Zuchan
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Frauke Baymann
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Carole Baffert
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Myriam Brugna
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France.
| | - Wolfgang Nitschke
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| |
Collapse
|
18
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
19
|
Falke D, Fischer M, Ihling C, Hammerschmidt C, Sinz A, Sawers G. Co-purification of nitrate reductase 1 with components of the cytochrome bcc-aa 3 oxidase supercomplex from spores of Streptomyces coelicolor A3(2). FEBS Open Bio 2021; 11:652-669. [PMID: 33462996 PMCID: PMC7931247 DOI: 10.1002/2211-5463.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
In order to reduce nitrate in vivo, the spore‐specific respiratory nitrate reductase, Nar1, of Streptomyces coelicolor relies on an active cytochrome bcc‐aa3 oxidase supercomplex (bcc‐aa3 supercomplex). This suggests that membrane‐associated Nar1, comprising NarG1, NarH1, and NarI1 subunits, might not act as a classical menaquinol oxidase but could either receive electrons from the bcc‐aa3 supercomplex, or require the supercomplex to stabilize the reductase in the membrane to allow it to function. To address the biochemical basis for this dependence on the bcc‐aa3 supercomplex, we purified two different Strep‐tagged variants of Nar1 and enriched the native enzyme complex from spore extracts using different chromatographic and electrophoretic procedures. Polypeptides associated with the isolated Nar1 complexes were identified using mass spectrometry and included components of the bcc‐aa3 supercomplex, along with an alternative, spore‐specific cytochrome b component, QcrB3. Surprisingly, we also co‐enriched the Nar3 enzyme with Nar1 from the wild‐type strain of S. coelicolor. Two differentially migrating active Nar1 complexes could be identified after clear native polyacrylamide gel electrophoresis; these had masses of approximately 450 and 250 kDa. The distribution of active Nar1 in these complexes was influenced by the presence of cytochrome bd oxidase and by QcrB3; the presence of the latter shifted Nar1 into the larger complex. Together, these data suggest that several respiratory complexes can associate in the spore membrane, including Nar1, Nar3, and the bcc‐aa3 supercomplex. Moreover, these findings provide initial support for the hypothesis that Nar1 and the bcc‐aa3 supercomplex physically associate.
Collapse
Affiliation(s)
- Dörte Falke
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marco Fischer
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy, Charles Tanford Protein Center, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Hammerschmidt
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy, Charles Tanford Protein Center, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
20
|
Meyer GW, Bahamon Naranjo MA, Widhalm JR. Convergent evolution of plant specialized 1,4-naphthoquinones: metabolism, trafficking, and resistance to their allelopathic effects. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:167-176. [PMID: 33258472 PMCID: PMC7853596 DOI: 10.1093/jxb/eraa462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/03/2020] [Indexed: 05/08/2023]
Abstract
Plant 1,4-naphthoquinones encompass a class of specialized metabolites known to mediate numerous plant-biotic interactions. This class of compounds also presents a remarkable case of convergent evolution. The 1,4-naphthoquinones are synthesized by species belonging to nearly 20 disparate orders spread throughout vascular plants, and their production occurs via one of four known biochemically distinct pathways. Recent developments from large-scale biology and genetic studies corroborate the existence of multiple pathways to synthesize plant 1,4-naphthoquinones and indicate that extraordinary events of metabolic innovation and links to respiratory and photosynthetic quinone metabolism probably contributed to their independent evolution. Moreover, because many 1,4-naphthoquinones are excreted into the rhizosphere and they are highly reactive in biological systems, plants that synthesize these compounds also needed to independently evolve strategies to deploy them and to resist their effects. In this review, we highlight new progress made in understanding specialized 1,4-naphthoquinone biosynthesis and trafficking with a focus on how these discoveries have shed light on the convergent evolution and diversification of this class of compounds in plants. We also discuss how emerging themes in metabolism-based herbicide resistance may provide clues to mechanisms plants employ to tolerate allelopathic 1,4-naphthoquinones.
Collapse
Affiliation(s)
- George W Meyer
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Maria A Bahamon Naranjo
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Correspondence:
| |
Collapse
|
21
|
Wise CE, Ledinina AE, Yuly JL, Artz JH, Lubner CE. The role of thermodynamic features on the functional activity of electron bifurcating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148377. [PMID: 33453185 DOI: 10.1016/j.bbabio.2021.148377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
Electron bifurcation is a biological mechanism to drive a thermodynamically unfavorable redox reaction through direct coupling with an exergonic reaction. This process allows microorganisms to generate high energy reducing equivalents in order to sustain life and is often found in anaerobic metabolism, where the energy economy of the cell is poor. Recent work has revealed details of the redox energy landscapes for a variety of electron bifurcating enzymes, greatly expanding the understanding of how energy is transformed by this unique mechanism. Here we highlight the plasticity of these emerging landscapes, what is known regarding their mechanistic underpinnings, and provide a context for interpreting their biochemical activity within the physiological framework. We conclude with an outlook for propelling the field toward an integrative understanding of the impact of electron bifurcation.
Collapse
Affiliation(s)
| | | | | | - Jacob H Artz
- National Renewable Energy Laboratory, Golden, CO, USA
| | | |
Collapse
|
22
|
Das A, Hessin C, Ren Y, Desage-El Murr M. Biological concepts for catalysis and reactivity: empowering bioinspiration. Chem Soc Rev 2020; 49:8840-8867. [PMID: 33107878 DOI: 10.1039/d0cs00914h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological systems provide attractive reactivity blueprints for the design of challenging chemical transformations. Emulating the operating mode of natural systems may however not be so easy and direct translation of structural observations does not always afford the anticipated efficiency. Metalloenzymes rely on earth-abundant metals to perform an incredibly wide range of chemical transformations. To do so, enzymes in general have evolved tools and tricks to enable control of such reactivity. The underlying concepts related to these tools are usually well-known to enzymologists and bio(inorganic) chemists but may be a little less familiar to organometallic chemists. So far, the field of bioinspired catalysis has greatly focused on the coordination sphere and electronic effects for the design of functional enzyme models but might benefit from a paradigm shift related to recent findings in biological systems. The goal of this review is to bring these fields closer together as this could likely result in the development of a new generation of highly efficient bioinspired systems. This contribution covers the fields of redox-active ligands, entatic state reactivity, energy conservation through electron bifurcation, and quantum tunneling for C-H activation.
Collapse
Affiliation(s)
- Agnideep Das
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
23
|
Szyttenholm J, Chaspoul F, Bauzan M, Ducluzeau AL, Chehade MH, Pierrel F, Denis Y, Nitschke W, Schoepp-Cothenet B. The controversy on the ancestral arsenite oxidizing enzyme; deducing evolutionary histories with phylogeny and thermodynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148252. [PMID: 32569664 DOI: 10.1016/j.bbabio.2020.148252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
The three presently known enzymes responsible for arsenic-using bioenergetic processes are arsenite oxidase (Aio), arsenate reductase (Arr) and alternative arsenite oxidase (Arx), all of which are molybdoenzymes from the vast group referred to as the Mo/W-bisPGD enzyme superfamily. Since arsenite is present in substantial amounts in hydrothermal environments, frequently considered as vestiges of primordial biochemistry, arsenite-based bioenergetics has long been predicted to be ancient. Conflicting scenarios, however, have been put forward proposing either Arr/Arx or Aio as operating in the ancestral metabolism. Phylogenetic data argue in favor of Aio whereas biochemical and physiological data led several authors to propose Arx/Arr as the most ancient anaerobic arsenite metabolizing enzymes. Here we combine phylogenetic approaches with physiological and biochemical experiments to demonstrate that the Arx/Arr enzymes could not have been functional in the Archaean geological eon. We propose that Arr reacts with menaquinones to reduce arsenate whereas Arx reacts with ubiquinone to oxidize arsenite, in line with thermodynamic considerations. The distribution of the quinone biosynthesis pathways, however, clearly indicates that the ubiquinone pathway is recent. An updated phylogeny of Arx furthermore reinforces the hypothesis of a recent emergence of this enzyme. We therefore conclude that anaerobic arsenite redox conversion in the Archaean must have been performed in a metabolism involving Aio.
Collapse
Affiliation(s)
- Julie Szyttenholm
- Aix-Marseille Univ., CNRS, BIP UMR 7281, FR 3479, IMM, 13402 Marseille Cedex 20, France
| | - Florence Chaspoul
- Aix Marseille Univ., CNRS, IRD, IMBE UMR 7263, Faculté de Pharmacie, 13005 Marseille, France
| | - Marielle Bauzan
- Aix-Marseille Univ., CNRS, Plateforme Fermentation, FR3479, IMM, 13402 Marseille Cedex 20, France
| | - Anne-Lise Ducluzeau
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7220, USA
| | | | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Yann Denis
- Aix-Marseille Univ., CNRS, Plateforme Transcriptomique, FR3479, IMM, 13402 Marseille Cedex 20, France
| | - Wolfgang Nitschke
- Aix-Marseille Univ., CNRS, BIP UMR 7281, FR 3479, IMM, 13402 Marseille Cedex 20, France
| | | |
Collapse
|
24
|
Braasch-Turi M, Crans DC. Synthesis of Naphthoquinone Derivatives: Menaquinones, Lipoquinones and Other Vitamin K Derivatives. Molecules 2020; 25:molecules25194477. [PMID: 33003459 PMCID: PMC7582351 DOI: 10.3390/molecules25194477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Menaquinones are a class of isoprenoid molecules that have important roles in human biology and bacterial electron transport, and multiple methods have been developed for their synthesis. These compounds consist of a methylnaphthoquinone (MK) unit and an isoprene side chain, such as found in vitamin K1 (phylloquinone), K2, and other lipoquinones. The most common naturally occurring menaquinones contain multiple isoprene units and are very hydrophobic, rendering it difficult to evaluate the biological activity of these compounds in aqueous assays. One way to overcome this challenge has been the application of truncated MK-derivatives for their moderate solubility in water. The synthesis of such derivatives has been dominated by Friedel-Crafts alkylation with BF3∙OEt2. This attractive method occurs over two steps from commercially available starting materials, but it generally produces low yields and a mixture of isomers. In this review, we summarize reported syntheses of both truncated and naturally occurring MK-derivatives that encompass five different synthetic strategies: Nucleophilic ring methods, metal-mediated reactions, electrophilic ring methods, pericyclic reactions, and homologation and side chain extensions. The advantages and disadvantages of each method are discussed, identifying methods with a focus on high yields, regioselectivity, and stereochemistry leading to a detailed overview of the reported chemistry available for preparation of these compounds.
Collapse
Affiliation(s)
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Ft. Collins, CO 80525, USA;
- Cell & Molecular Biology Program, Colorado State University, Ft. Collins, CO 80525, USA
- Correspondence:
| |
Collapse
|
25
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
26
|
Universal free-energy landscape produces efficient and reversible electron bifurcation. Proc Natl Acad Sci U S A 2020; 117:21045-21051. [PMID: 32801212 DOI: 10.1073/pnas.2010815117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For decades, it was unknown how electron-bifurcating systems in nature prevented energy-wasting short-circuiting reactions that have large driving forces, so synthetic electron-bifurcating molecular machines could not be designed and built. The underpinning free-energy landscapes for electron bifurcation were also enigmatic. We predict that a simple and universal free-energy landscape enables electron bifurcation, and we show that it enables high-efficiency bifurcation with limited short-circuiting (the EB scheme). The landscape relies on steep free-energy slopes in the two redox branches to insulate against short-circuiting using an electron occupancy blockade effect, without relying on nuanced changes in the microscopic rate constants for the short-circuiting reactions. The EB scheme thus unifies a body of observations on biological catalysis and energy conversion, and the scheme provides a blueprint to guide future campaigns to establish synthetic electron bifurcation machines.
Collapse
|
27
|
Kvam E, Benner K. Mechanistic insights into UV-A mediated bacterial disinfection via endogenous photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111899. [PMID: 32485344 DOI: 10.1016/j.jphotobiol.2020.111899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023]
Abstract
UV-A and visible light are thought to excite endogenous photosensitizers in microbes, thereby initiating complex chemical interactions that ultimately kill cells. Natural solar-based disinfection methods have been adapted into commercial lighting technologies with varying degrees of reported efficacy and associated safety hazards for human exposure. Here we utilize a narrow-spectrum UV-A LED prototype (currently in development for health care applications) to investigate the mechanism of bacterial photoinactivation using 365 nm light. Using a combination of reverse genetics and biochemical investigation, we report mechanistic evidence that 365nm light initiates a chain-reaction of superoxide-mediated damage via auto-excitation of vitamin-based electron carriers, specifically vitamin K2 menaquinones and the FAD flavoprotein in Complex II in the electron transport chain. We observe that photoinactivation is modifiable through supplementation of the environment to bypass cell damage. Lastly, we observe that bacteria forced into metabolic dormancy by desiccation become hypersensitized to the effects of UV-A light, thereby permitting photoinactivation at fluences that are significantly lower than the industry threshold for safe human exposure. In total, these results substantiate the mechanism and potential application of narrow- spectrum UV-A light for bacterial disinfection purposes.
Collapse
Affiliation(s)
- Erik Kvam
- GE Research, One Research Circle, Niskayuna, NY 12309, USA.
| | - Kevin Benner
- GE Current, a Daintree Company, East Cleveland, OH 44112, USA
| |
Collapse
|
28
|
Sucharitakul J, Buttranon S, Wongnate T, Chowdhury NP, Prongjit M, Buckel W, Chaiyen P. Modulations of the reduction potentials of flavin-based electron bifurcation complexes and semiquinone stabilities are key to control directional electron flow. FEBS J 2020; 288:1008-1026. [PMID: 32329961 DOI: 10.1111/febs.15343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 01/09/2023]
Abstract
The flavin-based electron bifurcation (FBEB) system from Acidaminococcus fermentans is composed of the electron transfer flavoprotein (EtfAB) and butyryl-CoA dehydrogenase (Bcd). α-FAD binds to domain II of the A-subunit of EtfAB, β-FAD to the B-subunit of EtfAB and δ-FAD to Bcd. NADH reduces β-FAD to β-FADH- , which bifurcates one electron to the high potential α-FAD•- semiquinone followed by the other to the low potential ferredoxin (Fd). As deduced from crystal structures, upon interaction of EtfAB with Bcd, the formed α-FADH- approaches δ-FAD by rotation of domain II, yielding δ-FAD•- . Repetition of this process leads to a second reduced ferredoxin (Fd- ) and δ-FADH- , which reduces crotonyl-CoA to butyryl-CoA. In this study, we measured the redox properties of the components EtfAB, EtfaB (Etf without α-FAD), Bcd, and Fd, as well as of the complexes EtfaB:Bcd, EtfAB:Bcd, EtfaB:Fd, and EftAB:Fd. In agreement with the structural studies, we have shown for the first time that the interaction of EtfAB with Bcd drastically decreases the midpoint reduction potential of α-FAD to be within the same range of that of β-FAD and to destabilize the semiquinone of α-FAD. This finding clearly explains that these interactions facilitate the passing of electrons from β-FADH- via α-FAD•- to the final electron acceptor δ-FAD•- on Bcd. The interactions modulate the semiquinone stability of δ-FAD in an opposite way by having a greater semiquinone stability than in free Bcd.
Collapse
Affiliation(s)
- Jeerus Sucharitakul
- Department of Biochemistry, Chulalongkorn University, Patumwan, Bangkok, Thailand.,Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Nilanjan Pal Chowdhury
- Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro, Philipps-Universität, Marburg, Germany.,Max-Plank-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Methinee Prongjit
- Department of Biochemistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro, Philipps-Universität, Marburg, Germany.,Max-Plank-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
29
|
Kozuleva MA, Ivanov BN, Vetoshkina DV, Borisova-Mubarakshina MM. Minimizing an Electron Flow to Molecular Oxygen in Photosynthetic Electron Transfer Chain: An Evolutionary View. FRONTIERS IN PLANT SCIENCE 2020; 11:211. [PMID: 32231675 PMCID: PMC7082748 DOI: 10.3389/fpls.2020.00211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/11/2020] [Indexed: 05/10/2023]
Abstract
Recruitment of H2O as the final donor of electrons for light-governed reactions in photosynthesis has been an utmost breakthrough, bursting the evolution of life and leading to the accumulation of O2 molecules in the atmosphere. O2 molecule has a great potential to accept electrons from the components of the photosynthetic electron transfer chain (PETC) (so-called the Mehler reaction). Here we overview the Mehler reaction mechanisms, specifying the changes in the structure of the PETC of oxygenic phototrophs that probably had occurred as the result of evolutionary pressure to minimize the electron flow to O2. These changes are warranted by the fact that the efficient electron flow to O2 would decrease the quantum yield of photosynthesis. Moreover, the reduction of O2 leads to the formation of reactive oxygen species (ROS), namely, the superoxide anion radical and hydrogen peroxide, which cause oxidative stress to plant cells if they are accumulated at a significant amount. From another side, hydrogen peroxide acts as a signaling molecule. We particularly zoom in into the role of photosystem I (PSI) and the plastoquinone (PQ) pool in the Mehler reaction.
Collapse
|
30
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Schut GJ, Mohamed-Raseek N, Tokmina-Lukaszewska M, Mulder DW, Nguyen DMN, Lipscomb GL, Hoben JP, Patterson A, Lubner CE, King PW, Peters JW, Bothner B, Miller AF, Adams MWW. The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD<sup/>. J Biol Chem 2019; 294:3271-3283. [PMID: 30567738 PMCID: PMC6398123 DOI: 10.1074/jbc.ra118.005653] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD+, we propose a catalytic cycle involving formation of an intermediary NAD+-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP+ oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD+, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family.
Collapse
Affiliation(s)
- Gerrit J Schut
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | | | | | - David W Mulder
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Diep M N Nguyen
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - Gina L Lipscomb
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - John P Hoben
- the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Angela Patterson
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Carolyn E Lubner
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Paul W King
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - John W Peters
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Brian Bothner
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Anne-Frances Miller
- the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Michael W W Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229,
| |
Collapse
|
32
|
Vuono DC, Read RW, Hemp J, Sullivan BW, Arnone JA, Neveux I, Blank RR, Loney E, Miceli D, Winkler MKH, Chakraborty R, Stahl DA, Grzymski JJ. Resource Concentration Modulates the Fate of Dissimilated Nitrogen in a Dual-Pathway Actinobacterium. Front Microbiol 2019; 10:3. [PMID: 30723459 PMCID: PMC6349771 DOI: 10.3389/fmicb.2019.00003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/07/2019] [Indexed: 11/30/2022] Open
Abstract
Respiratory ammonification and denitrification are two evolutionarily unrelated dissimilatory nitrogen (N) processes central to the global N cycle, the activity of which is thought to be controlled by carbon (C) to nitrate (NO3 -) ratio. Here we find that Intrasporangium calvum C5, a novel dual-pathway denitrifier/respiratory ammonifier, disproportionately utilizes ammonification rather than denitrification when grown under low C concentrations, even at low C:NO3 - ratios. This finding is in conflict with the paradigm that high C:NO3 - ratios promote ammonification and low C:NO3 - ratios promote denitrification. We find that the protein atomic composition for denitrification modules (NirK) are significantly cost minimized for C and N compared to ammonification modules (NrfA), indicating that limitation for C and N is a major evolutionary selective pressure imprinted in the architecture of these proteins. The evolutionary precedent for these findings suggests ecological importance for microbial activity as evidenced by higher growth rates when I. calvum grows predominantly using its ammonification pathway and by assimilating its end-product (ammonium) for growth under ammonium-free conditions. Genomic analysis of I. calvum further reveals a versatile ecophysiology to cope with nutrient stress and redox conditions. Metabolite and transcriptional profiles during growth indicate that enzyme modules, NrfAH and NirK, are not constitutively expressed but rather induced by nitrite production via NarG. Mechanistically, our results suggest that pathway selection is driven by intracellular redox potential (redox poise), which may be lowered when resource concentrations are low, thereby decreasing catalytic activity of upstream electron transport steps (i.e., the bc1 complex) needed for denitrification enzymes. Our work advances our understanding of the biogeochemical flexibility of N-cycling organisms, pathway evolution, and ecological food-webs.
Collapse
Affiliation(s)
- David C. Vuono
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Robert W. Read
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| | - James Hemp
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Benjamin W. Sullivan
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV, United States
| | - John A. Arnone
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| | - Iva Neveux
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| | - Robert R. Blank
- Agricultural Research Service, United States Department of Agriculture, Reno, NV, United States
| | - Evan Loney
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| | - David Miceli
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| | - Mari-Karoliina H. Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Romy Chakraborty
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Joseph J. Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| |
Collapse
|
33
|
Yuly JL, Lubner CE, Zhang P, Beratan DN, Peters JW. Electron bifurcation: progress and grand challenges. Chem Commun (Camb) 2019; 55:11823-11832. [DOI: 10.1039/c9cc05611d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electron bifurcation moves electrons from a two-electron donor to reduce two spatially separated one-electron acceptors.
Collapse
Affiliation(s)
| | | | - Peng Zhang
- Department of Chemistry
- Duke University
- Durham
- USA
| | - David N. Beratan
- Department of Physics
- Duke University
- Durham
- USA
- Department of Chemistry
| | - John W. Peters
- Institute of Biological Chemistry
- Washington State University
- Pullman
- USA
| |
Collapse
|
34
|
Baymann F, Schoepp-Cothenet B, Duval S, Guiral M, Brugna M, Baffert C, Russell MJ, Nitschke W. On the Natural History of Flavin-Based Electron Bifurcation. Front Microbiol 2018; 9:1357. [PMID: 30018596 PMCID: PMC6037941 DOI: 10.3389/fmicb.2018.01357] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/05/2018] [Indexed: 11/23/2022] Open
Abstract
Electron bifurcation is here described as a special case of the continuum of electron transfer reactions accessible to two-electron redox compounds with redox cooperativity. We argue that electron bifurcation is foremost an electrochemical phenomenon based on (a) strongly inverted redox potentials of the individual redox transitions, (b) a high endergonicity of the first redox transition, and (c) an escapement-type mechanism rendering completion of the first electron transfer contingent on occurrence of the second one. This mechanism is proposed to govern both the traditional quinone-based and the newly discovered flavin-based versions of electron bifurcation. Conserved and variable aspects of the spatial arrangement of electron transfer partners in flavoenzymes are assayed by comparing the presently available 3D structures. A wide sample of flavoenzymes is analyzed with respect to conserved structural modules and three major structural groups are identified which serve as basic frames for the evolutionary construction of a plethora of flavin-containing redox enzymes. We argue that flavin-based and other types of electron bifurcation are of primordial importance to free energy conversion, the quintessential foundation of life, and discuss a plausible evolutionary ancestry of the mechanism.
Collapse
Affiliation(s)
- Frauke Baymann
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| | | | - Simon Duval
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| | - Marianne Guiral
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| | - Myriam Brugna
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| | - Carole Baffert
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| | - Michael J. Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Wolfgang Nitschke
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| |
Collapse
|
35
|
Müller V, Chowdhury NP, Basen M. Electron Bifurcation: A Long-Hidden Energy-Coupling Mechanism. Annu Rev Microbiol 2018; 72:331-353. [PMID: 29924687 DOI: 10.1146/annurev-micro-090816-093440] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A decade ago, a novel mechanism to drive thermodynamically unfavorable redox reactions was discovered that is used in prokaryotes to drive endergonic electron transfer reactions by a direct coupling to an exergonic redox reaction in one soluble enzyme complex. This process is referred to as flavin-based electron bifurcation, or FBEB. An important function of FBEB is that it allows the generation of reduced low-potential ferredoxin (Fdred) from comparably high-potential electron donors such as NADH or molecular hydrogen (H2). Fdred is then the electron donor for anaerobic respiratory chains leading to the synthesis of ATP. In many metabolic scenarios, Fd is reduced by metabolic oxidoreductases and Fdred then drives endergonic metabolic reactions such as H2 production by the reverse, electron confurcation. FBEB is energetically more economical than ATP hydrolysis or reverse electron transport as a driving force for endergonic redox reactions; thus, it does "save" cellular ATP. It is essential for autotrophic growth at the origin of life and also allows for heterotrophic growth on certain low-energy substrates.
Collapse
Affiliation(s)
- Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany;
| | - Nilanjan Pal Chowdhury
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany;
| | - Mirko Basen
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany;
| |
Collapse
|
36
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling. Chem Rev 2018; 118:3862-3886. [PMID: 29561602 DOI: 10.1021/acs.chemrev.7b00707] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are two types of electron bifurcation (EB), either quinone- or flavin-based (QBEB/FBEB), that involve reduction of a quinone or flavin by a two-electron transfer and two reoxidations by a high- and low-potential one-electron acceptor with a reactive semiquinone intermediate. In QBEB, the reduced low-potential acceptor (cytochrome b) is exclusively used to generate ΔμH+. In FBEB, the "energy-rich" low-potential reduced ferredoxin or flavodoxin has dual function. It can give rise to ΔμH+/Na+ via a ferredoxin:NAD reductase (Rnf) or ferredoxin:proton reductase (Ech) or conducts difficult reductions such as CO2 to CO. The QBEB membrane complexes are similar in structure and function and occur in all domains of life. In contrast, FBEB complexes are soluble and occur only in strictly anaerobic bacteria and archaea (FixABCX being an exception). The FBEB complexes constitute a group consisting of four unrelated families that contain (1) electron-transferring flavoproteins (EtfAB), (2) NAD(P)H dehydrogenase (NuoF homologues), (3) heterodisulfide reductase (HdrABC) or HdrABC homologues, and (4) NADH-dependent ferredoxin:NADP reductase (NfnAB). The crystal structures and electron transport of EtfAB-butyryl-CoA dehydrogenase and NfnAB are compared with those of complex III of the respiratory chain (cytochrome bc1), whereby unexpected common features have become apparent.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| | - Rudolf K Thauer
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| |
Collapse
|
37
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD + (Rnf) as Electron Acceptors: A Historical Review. Front Microbiol 2018; 9:401. [PMID: 29593673 PMCID: PMC5861303 DOI: 10.3389/fmicb.2018.00401] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Flavin-based electron bifurcation is a newly discovered mechanism, by which a hydride electron pair from NAD(P)H, coenzyme F420H2, H2, or formate is split by flavoproteins into one-electron with a more negative reduction potential and one with a more positive reduction potential than that of the electron pair. Via this mechanism microorganisms generate low- potential electrons for the reduction of ferredoxins (Fd) and flavodoxins (Fld). The first example was described in 2008 when it was found that the butyryl-CoA dehydrogenase-electron-transferring flavoprotein complex (Bcd-EtfAB) of Clostridium kluyveri couples the endergonic reduction of ferredoxin (E0′ = −420 mV) with NADH (−320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (−10 mV) with NADH. The discovery was followed by the finding of an electron-bifurcating Fd- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Thermotoga maritima (2009), Fd-dependent transhydrogenase (NfnAB) in various bacteria and archaea (2010), Fd- and H2-dependent heterodisulfide reductase (MvhADG-HdrABC) in methanogenic archaea (2011), Fd- and NADH-dependent caffeyl-CoA reductase (CarCDE) in Acetobacterium woodii (2013), Fd- and NAD-dependent formate dehydrogenase (HylABC-FdhF2) in Clostridium acidi-urici (2013), Fd- and NADP-dependent [FeFe]-hydrogenase (HytA-E) in Clostridium autoethanogrenum (2013), Fd(?)- and NADH-dependent methylene-tetrahydrofolate reductase (MetFV-HdrABC-MvhD) in Moorella thermoacetica (2014), Fd- and NAD-dependent lactate dehydrogenase (LctBCD) in A. woodii (2015), Fd- and F420H2-dependent heterodisulfide reductase (HdrA2B2C2) in Methanosarcina acetivorans (2017), and Fd- and NADH-dependent ubiquinol reductase (FixABCX) in Azotobacter vinelandii (2017). The electron-bifurcating flavoprotein complexes known to date fall into four groups that have evolved independently, namely those containing EtfAB (CarED, LctCB, FixBA) with bound FAD, a NuoF homolog (HydB, HytB, or HylB) harboring FMN, NfnB with bound FAD, or HdrA harboring FAD. All these flavoproteins are cytoplasmic except for the membrane-associated protein FixABCX. The organisms—in which they have been found—are strictly anaerobic microorganisms except for the aerobe A. vinelandii. The electron-bifurcating complexes are involved in a variety of processes such as butyric acid fermentation, methanogenesis, acetogenesis, anaerobic lactate oxidation, dissimilatory sulfate reduction, anaerobic- dearomatization, nitrogen fixation, and CO2 fixation. They contribute to energy conservation via the energy-converting ferredoxin: NAD+ reductase complex Rnf or the energy-converting ferredoxin-dependent hydrogenase complex Ech. This Review describes how this mechanism was discovered.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Laboratory for Microbiology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
38
|
Koehn J, Magallanes ES, Peters BJ, Beuning CN, Haase AA, Zhu MJ, Rithner CD, Crick DC, Crans DC. A Synthetic Isoprenoid Lipoquinone, Menaquinone-2, Adopts a Folded Conformation in Solution and at a Model Membrane Interface. J Org Chem 2018; 83:275-288. [PMID: 29168636 PMCID: PMC5759649 DOI: 10.1021/acs.joc.7b02649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 11/29/2022]
Abstract
Menaquinones (naphthoquinones, MK) are isoprenoids that play key roles in the respiratory electron transport system of some prokaryotes by shuttling electrons between membrane-bound protein complexes acting as electron acceptors and donors. Menaquinone-2 (MK-2), a truncated MK, was synthesized, and the studies presented herein characterize the conformational and chemical properties of the hydrophobic MK-2 molecule. Using 2D NMR spectroscopy, we established for the first time that MK-2 has a folded conformation defined by the isoprenyl side-chain folding back over the napthoquinone in a U-shape, which depends on the specific environmental conditions found in different solvents. We used molecular mechanics to illustrate conformations found by the NMR experiments. The measured redox potentials of MK-2 differed in three organic solvents, where MK-2 was most easily reduced in DMSO, which may suggest a combination of solvent effect (presumably in part because of differences in dielectric constants) and/or conformational differences of MK-2 in different organic solvents. Furthermore, MK-2 was found to associate with the interface of model membranes represented by Langmuir phospholipid monolayers and Aerosol-OT (AOT) reverse micelles. MK-2 adopts a slightly different U-shaped conformation within reverse micelles compared to within solution, which is in sharp contrast to the extended conformations illustrated in literature for MKs.
Collapse
Affiliation(s)
- Jordan
T. Koehn
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Estela S. Magallanes
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Benjamin J. Peters
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Cheryle N. Beuning
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Allison A. Haase
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Michelle J. Zhu
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Christopher D. Rithner
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Dean C. Crick
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Debbie C. Crans
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
39
|
Demmer JK, Pal Chowdhury N, Selmer T, Ermler U, Buckel W. The semiquinone swing in the bifurcating electron transferring flavoprotein/butyryl-CoA dehydrogenase complex from Clostridium difficile. Nat Commun 2017; 8:1577. [PMID: 29146947 PMCID: PMC5691135 DOI: 10.1038/s41467-017-01746-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/13/2017] [Indexed: 11/29/2022] Open
Abstract
The electron transferring flavoprotein/butyryl-CoA dehydrogenase (EtfAB/Bcd) catalyzes the reduction of one crotonyl-CoA and two ferredoxins by two NADH within a flavin-based electron-bifurcating process. Here we report on the X-ray structure of the Clostridium difficile (EtfAB/Bcd)4 complex in the dehydrogenase-conducting D-state, α-FAD (bound to domain II of EtfA) and δ-FAD (bound to Bcd) being 8 Å apart. Superimposing Acidaminococcus fermentans EtfAB onto C. difficile EtfAB/Bcd reveals a rotation of domain II of nearly 80°. Further rotation by 10° brings EtfAB into the bifurcating B-state, α-FAD and β-FAD (bound to EtfB) being 14 Å apart. This dual binding mode of domain II, substantiated by mutational studies, resembles findings in non-bifurcating EtfAB/acyl-CoA dehydrogenase complexes. In our proposed mechanism, NADH reduces β-FAD, which bifurcates. One electron goes to ferredoxin and one to α-FAD, which swings over to reduce δ-FAD to the semiquinone. Repetition affords a second reduced ferredoxin and δ-FADH−, which reduces crotonyl-CoA. The electron-transferring flavoprotein / butyryl-CoA dehydrogenase (EtfAB/Bcd) complex catalyzes the reduction of crotonyl-CoA and ferredoxins by NADH in anaerobic microbes. Here, the authors present the crystal structure of Clostridium difficile EtfAB/Bcd and discuss the bifurcation mechanism for electron flow.
Collapse
Affiliation(s)
- Julius K Demmer
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Nilanjan Pal Chowdhury
- Laboratorium für Mikrobiologie, Fachbereich Biologie and SYNMIKRO, Philipps-Universität, 35032, Marburg, Germany.,Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Thorsten Selmer
- Fachbereich Chemie und Biotechnologie, FH Aachen, Heinrich-Mußmann-Str. 1, 52428, Jülich, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| | - Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie and SYNMIKRO, Philipps-Universität, 35032, Marburg, Germany. .,Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
40
|
Dibrova DV, Shalaeva DN, Galperin MY, Mulkidjanian AY. Emergence of cytochrome bc complexes in the context of photosynthesis. PHYSIOLOGIA PLANTARUM 2017; 161:150-170. [PMID: 28493482 PMCID: PMC5600118 DOI: 10.1111/ppl.12586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/22/2017] [Accepted: 05/04/2017] [Indexed: 05/18/2023]
Abstract
The cytochrome bc (cyt bc) complexes are involved in Q-cycling; they oxidize membrane quinols by high-potential electron acceptors, such as cytochromes or plastocyanin, and generate transmembrane proton gradient. In several prokaryotic lineages, and also in plant chloroplasts, the catalytic core of the cyt bc complexes is built of a four-helical cytochrome b (cyt b) that contains three hemes, a three-helical subunit IV, and an iron-sulfur Rieske protein (cytochrome b6 f-type complexes). In other prokaryotic lineages, and also in mitochondria, the cyt b subunit is fused with subunit IV, yielding a seven- or eight-helical cyt b with only two hemes (cyt bc1 -type complexes). Here we present an updated phylogenomic analysis of the cyt b subunits of cyt bc complexes. This analysis provides further support to our earlier suggestion that (1) the ancestral version of cyt bc complex contained a small four-helical cyt b with three hemes similar to the plant cytochrome b6 and (2) independent fusion events led to the formation of large cyts b in several lineages. In the search for a primordial function for the ancestral cyt bc complex, we address the intimate connection between the cyt bc complexes and photosynthesis. Indeed, the Q-cycle turnover in the cyt bc complexes demands high-potential electron acceptors. Before the Great Oxygenation Event, the biosphere had been highly reduced, so high-potential electron acceptors could only be generated upon light-driven charge separation. It appears that an ancestral cyt bc complex capable of Q-cycling has emerged in conjunction with the (bacterio)chlorophyll-based photosynthetic systems that continuously generated electron vacancies at the oxidized (bacterio)chlorophyll molecules.
Collapse
Affiliation(s)
- Daria V. Dibrova
- A.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119991Russia
| | - Daria N. Shalaeva
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscow119991Russia
- School of PhysicsUniversity of OsnabrueckOsnabrueckD‐49069Germany
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of MedicineNational Institutes of HealthBethesdaMD20894USA
| | - Armen Y. Mulkidjanian
- A.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119991Russia
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscow119991Russia
- School of PhysicsUniversity of OsnabrueckOsnabrueckD‐49069Germany
| |
Collapse
|
41
|
Alday PH, Bruzual I, Nilsen A, Pou S, Winter R, Ben Mamoun C, Riscoe MK, Doggett JS. Genetic Evidence for Cytochrome b Qi Site Inhibition by 4(1H)-Quinolone-3-Diarylethers and Antimycin in Toxoplasma gondii. Antimicrob Agents Chemother 2017; 61:e01866-16. [PMID: 27919897 PMCID: PMC5278733 DOI: 10.1128/aac.01866-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/29/2016] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite that causes fatal and debilitating brain and eye disease. Endochinlike quinolones (ELQs) are preclinical compounds that are efficacious against apicomplexan-caused diseases, including toxoplasmosis, malaria, and babesiosis. Of the ELQs, ELQ-316 has demonstrated the greatest efficacy against acute and chronic experimental toxoplasmosis. Although genetic analyses in other organisms have highlighted the importance of the cytochrome bc1 complex Qi site for ELQ sensitivity, the mechanism of action of ELQs against T. gondii and the specific mechanism of ELQ-316 remain unknown. Here, we describe the selection and genetic characterization of T. gondii clones resistant to ELQ-316. A T. gondii strain selected under ELQ-316 drug pressure was found to possess a Thr222-Pro amino acid substitution that confers 49-fold resistance to ELQ-316 and 19-fold resistance to antimycin, a well-characterized Qi site inhibitor. These findings provide further evidence for ELQ Qi site inhibition in T. gondii and greater insight into the interactions of Qi site inhibitors with the apicomplexan cytochrome bc1 complex.
Collapse
Affiliation(s)
- P Holland Alday
- Division of Infectious Diseases, Oregon Health & Science University, Portland, Oregon, USA
| | - Igor Bruzual
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| | - Aaron Nilsen
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| | - Sovitj Pou
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| | - Rolf Winter
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael K Riscoe
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| | - J Stone Doggett
- Division of Infectious Diseases, Oregon Health & Science University, Portland, Oregon, USA
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| |
Collapse
|
42
|
Metastable radical state, nonreactive with oxygen, is inherent to catalysis by respiratory and photosynthetic cytochromes bc1/b6f. Proc Natl Acad Sci U S A 2017; 114:1323-1328. [PMID: 28115711 DOI: 10.1073/pnas.1618840114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygenic respiration and photosynthesis based on quinone redox reactions face a danger of wasteful energy dissipation by diversion of the productive electron transfer pathway through the generation of reactive oxygen species (ROS). Nevertheless, the widespread quinone oxido-reductases from the cytochrome bc family limit the amounts of released ROS to a low, perhaps just signaling, level through an as-yet-unknown mechanism. Here, we propose that a metastable radical state, nonreactive with oxygen, safely holds electrons at a local energetic minimum during the oxidation of plastohydroquinone catalyzed by the chloroplast cytochrome b6f This intermediate state is formed by interaction of a radical with a metal cofactor of a catalytic site. Modulation of its energy level on the energy landscape in photosynthetic vs. respiratory enzymes provides a possible mechanism to adjust electron transfer rates for efficient catalysis under different oxygen tensions.
Collapse
|