1
|
Zhao Z, Chen J, Jiang Y, Ci F, Liu T, Li L, Sun Y, Zhang J, Yuwen W. Antheraxanthin: Insights delving from biosynthesis to processing effects. Food Res Int 2024; 194:114879. [PMID: 39232517 DOI: 10.1016/j.foodres.2024.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Antheraxanthin (C40H56O3) is one of fat-soluble carotenoids belonging to natural pigments. Its chemical structure is based on the unsaturated polyene chain skeleton, with a hydroxy-β-ionone ring and an epoxy-β-ionone ring on each side of the skeleton. It is found in a wide range of plants and photosynthetic bacteria, and external stimuli (high temperature, drought, ozone treatment, etc.) can significantly affect its synthesis. It also, like other carotenoids, exhibits a diverse potential pharmacological profile as well as nutraceutical values. However, it is worth noting that various food processing methods (extrusion, puffing, baking, etc.) and storage conditions for fruits and vegetables have distinct impacts on the bioaccessibility and retention of antheraxanthin. This compilation of antheraxanthin includes sources, biosynthesis, chemical analysis, and processing effects.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Jing Chen
- College of Environment and Food Engineering, Liuzhou Vocational and Technical University, Liuzhou 545006, China.
| | - Yingxue Jiang
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Fangfang Ci
- Weihai Institute for Food and Drug Control, Weihai 264200, China
| | - Taishan Liu
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Lei Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yingying Sun
- Eastex Industrial Science and Technology Co., Ltd., Langfang 065001, China
| | - Jiangrui Zhang
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710000, China
| | - Weigang Yuwen
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710000, China
| |
Collapse
|
2
|
Sun Y, Wen J, Gu L, Joiner J, Chang CY, van der Tol C, Porcar-Castell A, Magney T, Wang L, Hu L, Rascher U, Zarco-Tejada P, Barrett CB, Lai J, Han J, Luo Z. From remotely-sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part II-Harnessing data. GLOBAL CHANGE BIOLOGY 2023; 29:2893-2925. [PMID: 36802124 DOI: 10.1111/gcb.16646] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Although our observing capabilities of solar-induced chlorophyll fluorescence (SIF) have been growing rapidly, the quality and consistency of SIF datasets are still in an active stage of research and development. As a result, there are considerable inconsistencies among diverse SIF datasets at all scales and the widespread applications of them have led to contradictory findings. The present review is the second of the two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale, and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify how such data inconsistency superimposed with the theoretical complexities laid out in (Sun et al., 2023) may impact process interpretation of various applications and contribute to inconsistent findings. We emphasize that accurate interpretation of the functional relationships between SIF and other ecological indicators is contingent upon complete understanding of SIF data quality and uncertainty. Biases and uncertainties in SIF observations can significantly confound interpretation of their relationships and how such relationships respond to environmental variations. Built upon our syntheses, we summarize existing gaps and uncertainties in current SIF observations. Further, we offer our perspectives on innovations needed to help improve informing ecosystem structure, function, and service under climate change, including enhancing in-situ SIF observing capability especially in "data desert" regions, improving cross-instrument data standardization and network coordination, and advancing applications by fully harnessing theory and data.
Collapse
Affiliation(s)
- Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jiaming Wen
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joanna Joiner
- National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| | - Christine Y Chang
- US Department of Agriculture, Agricultural Research Service, Adaptive Cropping Systems Laboratory, Beltsville, Maryland, USA
| | - Christiaan van der Tol
- Affiliation Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Troy Magney
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, USA
| | - Leiqiu Hu
- Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Pablo Zarco-Tejada
- School of Agriculture and Food (SAF-FVAS) and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher B Barrett
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA
| | - Jiameng Lai
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jimei Han
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Zhenqi Luo
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Li Y, Rahman SU, Qiu Z, Shahzad SM, Nawaz MF, Huang J, Naveed S, Li L, Wang X, Cheng H. Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121433. [PMID: 36907241 DOI: 10.1016/j.envpol.2023.121433] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities pose a more significant threat to the environment than natural phenomena by contaminating the environment with heavy metals. Cadmium (Cd), a highly poisonous heavy metal, has a protracted biological half-life and threatens food safety. Plant roots absorb Cd due to its high bioavailability through apoplastic and symplastic pathways and translocate it to shoots through the xylem with the help of transporters and then to the edible parts via the phloem. The uptake and accumulation of Cd in plants pose deleterious effects on plant physiological and biochemical processes, which alter the morphology of vegetative and reproductive parts. In vegetative parts, Cd stunts root and shoot growth, photosynthetic activities, stomatal conductance, and overall plant biomass. Plants' male reproductive parts are more prone to Cd toxicity than female reproductive parts, ultimately affecting their grain/fruit production and survival. To alleviate/avoid/tolerate Cd toxicity, plants activate several defense mechanisms, including enzymatic and non-enzymatic antioxidants, Cd-tolerant gene up-regulations, and phytohormonal secretion. Additionally, plants tolerate Cd through chelating and sequestering as part of the intracellular defensive mechanism with the help of phytochelatins and metallothionein proteins, which help mitigate the harmful effects of Cd. The knowledge on the impact of Cd on plant vegetative and reproductive parts and the plants' physiological and biochemical responses can help selection of the most effective Cd-mitigating/avoiding/tolerating strategy to manage Cd toxicity in plants.
Collapse
Affiliation(s)
- Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhixin Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | - Jianzhi Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sadiq Naveed
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lei Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Berger K, Machwitz M, Kycko M, Kefauver SC, Van Wittenberghe S, Gerhards M, Verrelst J, Atzberger C, van der Tol C, Damm A, Rascher U, Herrmann I, Paz VS, Fahrner S, Pieruschka R, Prikaziuk E, Buchaillot ML, Halabuk A, Celesti M, Koren G, Gormus ET, Rossini M, Foerster M, Siegmann B, Abdelbaki A, Tagliabue G, Hank T, Darvishzadeh R, Aasen H, Garcia M, Pôças I, Bandopadhyay S, Sulis M, Tomelleri E, Rozenstein O, Filchev L, Stancile G, Schlerf M. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. REMOTE SENSING OF ENVIRONMENT 2022; 280:113198. [PMID: 36090616 PMCID: PMC7613382 DOI: 10.1016/j.rse.2022.113198] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under shortterm, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions.
Collapse
Affiliation(s)
- Katja Berger
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna 46980, Valencia, Spain
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Miriam Machwitz
- Remote Sensing and Natural Resources Modelling Group, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Marlena Kycko
- Department of Geoinformatics Cartography and Remote Sensing, Chair of Geomatics and Information Systems, Faculty of Geography and Regional Studies, University of Warsaw, 00-927 Warszawa, Poland
| | - Shawn C. Kefauver
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Shari Van Wittenberghe
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna 46980, Valencia, Spain
| | - Max Gerhards
- Earth Observation and Climate Processes, Trier University, 54286 Trier, Germany
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna 46980, Valencia, Spain
| | - Clement Atzberger
- Institute of Geomatics, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter Jordan Str. 82, 1190 Vienna, Austria
| | - Christiaan van der Tol
- Faculty Geo-Information Science and Earth Observation, ITC, University of Twente, the Netherlands
| | - Alexander Damm
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ittai Herrmann
- The Plant Sensing Laboratory, The Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Veronica Sobejano Paz
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Sven Fahrner
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Roland Pieruschka
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Egor Prikaziuk
- Faculty Geo-Information Science and Earth Observation, ITC, University of Twente, the Netherlands
| | - Ma. Luisa Buchaillot
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Andrej Halabuk
- Institute of Landscape Ecology, Slovak Academy of Sciences, 814 99 Bratislava, Slovakia
| | - Marco Celesti
- HE Space for ESA - European Space Agency, European Space Research and Technology Centre (ESA-ESTEC), Keplerlaan 1, 2201, AZ Noordwijk, the Netherlands
| | - Gerbrand Koren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
| | - Esra Tunc Gormus
- Department of Geomatics Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Micol Rossini
- Remote Sensing of Environmental Dynamics Laboratory (LTDA), University of Milano - Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Michael Foerster
- Geoinformation in Environmental Planning Lab, Technische Universität Berlin, 10623 Berlin, Germany
| | - Bastian Siegmann
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Asmaa Abdelbaki
- Earth Observation and Climate Processes, Trier University, 54286 Trier, Germany
| | - Giulia Tagliabue
- Remote Sensing of Environmental Dynamics Laboratory (LTDA), University of Milano - Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Tobias Hank
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Roshanak Darvishzadeh
- Faculty Geo-Information Science and Earth Observation, ITC, University of Twente, the Netherlands
| | - Helge Aasen
- Earth Observation and Analysis of Agroecosystems Team, Division Agroecology and Environment, Agroscope, Zurich, Switzerland
- Institute of Agricultural Science, ETH Zürich, Zurich, Switzerland
| | - Monica Garcia
- Research Centre for the Management of Agricultural and Environmental Risks (CEIGRAM), ETSIAAB, Universidad Politécnica de Madrid, 28040, Spain
| | - Isabel Pôças
- ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, Campus da UTAD, 5001-801 Vila Real, Portugal
| | | | - Mauro Sulis
- Remote Sensing and Natural Resources Modelling Group, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Enrico Tomelleri
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Italy
| | - Offer Rozenstein
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization—Volcani Institute, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Lachezar Filchev
- Space Research and Technology Institute, Bulgarian Academy of Sciences (SRTI-BAS), Bulgaria
| | - Gheorghe Stancile
- National Meteorological Administration, Building A, Soseaua Bucuresti-Ploiesti 97, 013686 Bucuresti, Romania
| | - Martin Schlerf
- Remote Sensing and Natural Resources Modelling Group, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
5
|
Porcar-Castell A, Malenovský Z, Magney T, Van Wittenberghe S, Fernández-Marín B, Maignan F, Zhang Y, Maseyk K, Atherton J, Albert LP, Robson TM, Zhao F, Garcia-Plazaola JI, Ensminger I, Rajewicz PA, Grebe S, Tikkanen M, Kellner JR, Ihalainen JA, Rascher U, Logan B. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. NATURE PLANTS 2021; 7:998-1009. [PMID: 34373605 DOI: 10.1038/s41477-021-00980-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/28/2021] [Indexed: 05/27/2023]
Abstract
For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full potential of SIF, intensive cross-disciplinary work is required to harmonize these new advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering the development of next-generation plant physiological and Earth-system models. Here, we introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on seven remaining scientific challenges, and present a roadmap to facilitate future collaborative research towards new applications of SIF.
Collapse
Affiliation(s)
- Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland.
| | - Zbyněk Malenovský
- School of Geography, Planning, and Spatial Sciences, College of Sciences Engineering and Technology, University of Tasmania, Hobart, Tasmania, Australia
| | - Troy Magney
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Shari Van Wittenberghe
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
- Laboratory of Earth Observation, University of Valencia, Paterna, Spain
| | - Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, Spain
| | - Fabienne Maignan
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yongguang Zhang
- International Institute for Earth System Sciences, Nanjing University, Nanjing, China
| | - Kadmiel Maseyk
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Jon Atherton
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Loren P Albert
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
- Biology Department, West Virginia University, Morgantown, WV, USA
| | - Thomas Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Feng Zhao
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
| | | | - Ingo Ensminger
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Paulina A Rajewicz
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Steffen Grebe
- Molecular Plant Biology, University of Turku, Turku, Finland
| | - Mikko Tikkanen
- Molecular Plant Biology, University of Turku, Turku, Finland
| | - James R Kellner
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Barry Logan
- Biology Department, Bowdoin College, Brunswick, ME, USA
| |
Collapse
|
6
|
Influence of Local Burning on Difference Reflectance Indices Based on 400-700 nm Wavelengths in Leaves of Pea Seedlings. PLANTS 2021; 10:plants10050878. [PMID: 33925343 PMCID: PMC8146762 DOI: 10.3390/plants10050878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 01/05/2023]
Abstract
Local damage (e.g., burning) induces a variation potential (VP), which is an important electrical signal in higher plants. A VP propagates into undamaged parts of the plant and influences numerous physiological processes, including photosynthesis. Rapidly increasing plant tolerance to stressors is likely to be a result of the physiological changes. Thus, developing methods of revealing VP-induced physiological changes can be used for the remote sensing of plant systemic responses to local damage. Previously, we showed that burning-induced VP influenced a photochemical reflectance index in pea leaves, but the influence of the electrical signals on other reflectance indices was not investigated. In this study, we performed a complex analysis of the influence of VP induction by local burning on difference reflectance indices based on 400–700 nm wavelengths in leaves of pea seedlings. Heat maps of the significance of local burning-induced changes in the reflectance indices and their correlations with photosynthetic parameters were constructed. Large spectral regions with significant changes in these indices after VP induction were revealed. Most changes were strongly correlated to photosynthetic parameters. Some indices, which can be potentially effective for revealing local burning-induced photosynthetic changes, are separately shown. Our results show that difference reflectance indices based on 400–700 nm wavelengths can potentially be used for the remote sensing of plant systemic responses induced by local damages and subsequent propagation of VPs.
Collapse
|