1
|
Joshi N, Vaidya B, Sharma SS. Transient receptor potential channels as an emerging target for the treatment of Alzheimer's disease: Unravelling the potential of pharmacological interventions. Basic Clin Pharmacol Toxicol 2024; 135:375-400. [PMID: 39209323 DOI: 10.1111/bcpt.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a devastating disorder with a multifaceted aetiology characterized by dementia, which later progresses to cognitive impairment. Significant efforts have been made to develop pharmacological interventions that slow down the pathogenesis of AD. However, conventional drugs have failed to satisfactorily treat AD and are more focussed towards symptomatic management. Thus, there is a gap in the literature regarding novel targets and modulators targeting them for the effective treatment of AD. Recent studies have demonstrated that modulation of transient receptor potential (TRP) channels has the potential to halt AD pathogenesis at an early stage and rescue hippocampal neurons from death. Amongst several members, TRP channels like TRPA1, TRPC6, TRPM2 and TRPV2 have shown promising results in the attenuation of neurobehavioural cognitive deficits as well as signalling pathways governing such cognitive decline. Furthermore, as these channels govern the ionic balance in the cell, their beneficial effects have also been known to maintain the homeostasis of Ca2+, which is the major culprit eliciting the vicious cycle of excitotoxicity, mitochondrial dysfunction, ROS generation and neurodegeneration. Despite such tremendous potential of TRP channel modulators, their clinical investigation remains elusive. Therefore, in the present review, we have discussed such agents in the light of TRP channels as molecular targets for the amelioration of AD both at the preclinical and clinical levels.
Collapse
Affiliation(s)
- Nishit Joshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| |
Collapse
|
2
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
3
|
Javadpour P, Abbaszadeh F, Ahmadiani A, Rezaei M, Ghasemi R. Mitochondrial Transportation, Transplantation, and Subsequent Immune Response in Alzheimer's Disease: An Update. Mol Neurobiol 2024; 61:7151-7167. [PMID: 38368286 DOI: 10.1007/s12035-024-04009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by memory impairment and a progressive decline in cognitive function. Mitochondrial dysfunction has been identified as an important contributor to the development of AD, leading to oxidative stress and energy deficits within the brain. While current treatments for AD aim to alleviate symptoms, there is an urgent need to target the underlying mechanisms. The emerging field of mitotherapy, which involves the transplantation of healthy mitochondria into damaged cells, has gained substantial attention and has shown promising results. However, research in the context of AD remains limited, necessitating further investigations. In this review, we summarize the mitochondrial pathways that contribute to the progression of AD. Additionally, we discuss mitochondrial transfer among brain cells and mitotherapy, with a focus on different administration routes, various sources of mitochondria, and potential modifications to enhance transplantation efficacy. Finally, we review the limited available evidence regarding the immune system's response to mitochondrial transplantation in damaged brain regions.
Collapse
Affiliation(s)
- Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fluca AL, Pani B, Janjusevic M, Zwas DR, Abraham Y, Calligaris M, Beltrami AP, Campos Corgosinho F, Marketou M, D'Errico S, Sinagra G, Aleksova A. Unraveling the relationship among insulin resistance, IGF-1, and amyloid-beta 1-40: Is the definition of type 3 diabetes applicable in the cardiovascular field? Life Sci 2024; 352:122911. [PMID: 39002609 DOI: 10.1016/j.lfs.2024.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The concept of "type 3 diabetes" has emerged to define alterations in glucose metabolism that predispose individuals to the development of Alzheimer's disease (AD). Novel evidence suggests that changes in the insulin/insulin-like growth factor 1 (IGF-1)/growth hormone (GH) axis, which are characteristic of Diabetes Mellitus, are one of the major factors contributing to excessive amyloid-beta (Aβ) production and neurodegenerative processes in AD. Moreover, molecular findings suggest that insulin resistance and dysregulated IGF-1 signaling promote atherosclerosis via endothelial dysfunction and a pro-inflammatory state. As the pathophysiological role of Aβ1-40 in patients with cardiovascular disease has attracted attention due to its involvement in plaque formation and destabilization, it is of great interest to explore whether a paradigm similar to that in AD exists in the cardiovascular field. Therefore, this review aims to elucidate the intricate interplay between insulin resistance, IGF-1, and Aβ1-40 in the cardiovascular system and assess the applicability of the type 3 diabetes concept. Understanding these relationships may offer novel therapeutic targets and diagnostic strategies to mitigate cardiovascular risk in patients with insulin resistance and dysregulated IGF-1 signaling.
Collapse
Affiliation(s)
- Alessandra Lucia Fluca
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Beatrice Pani
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Milijana Janjusevic
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Donna R Zwas
- Linda Joy Pollin Cardiovascular Wellness Center for Women, Heart Institute, Hadassah University Medical Center, Jerusalem, Israel
| | - Yosefa Abraham
- Department of Human Nutrition and Metabolism, School of Public Health Medical Faculty Jerusalem, Jerusalem, Israel
| | - Matteo Calligaris
- Department of Medicine (DMED), Università degli Studi di Udine, Udine, Italy
| | - Antonio Paolo Beltrami
- Department of Medicine (DMED), Università degli Studi di Udine, Udine, Italy; Azienda Sanitaria Universitaria Friuli Centrale, Istituto di Patologia Clinica, Udine, Italy
| | | | - Maria Marketou
- Heraklion University General Hospital, University of Crete, School of Medicine, Cardiology Department, Crete, Greece
| | - Stefano D'Errico
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Aneta Aleksova
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
5
|
Jung YH, Chae CW, Han HJ. The potential role of gut microbiota-derived metabolites as regulators of metabolic syndrome-associated mitochondrial and endolysosomal dysfunction in Alzheimer's disease. Exp Mol Med 2024; 56:1691-1702. [PMID: 39085351 PMCID: PMC11372123 DOI: 10.1038/s12276-024-01282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 08/02/2024] Open
Abstract
Although the role of gut microbiota (GMB)-derived metabolites in mitochondrial and endolysosomal dysfunction in Alzheimer's disease (AD) under metabolic syndrome remains unclear, deciphering these host-metabolite interactions represents a major public health challenge. Dysfunction of mitochondria and endolysosomal networks (ELNs) plays a crucial role in metabolic syndrome and can exacerbate AD progression, highlighting the need to study their reciprocal regulation for a better understanding of how AD is linked to metabolic syndrome. Concurrently, metabolic disorders are associated with alterations in the composition of the GMB. Recent evidence suggests that changes in the composition of the GMB and its metabolites may be involved in AD pathology. This review highlights the mechanisms of metabolic syndrome-mediated AD development, focusing on the interconnected roles of mitochondrial dysfunction, ELN abnormalities, and changes in the GMB and its metabolites. We also discuss the pathophysiological role of GMB-derived metabolites, including amino acids, fatty acids, other metabolites, and extracellular vesicles, in mediating their effects on mitochondrial and ELN dysfunction. Finally, this review proposes therapeutic strategies for AD by directly modulating mitochondrial and ELN functions through targeting GMB metabolites under metabolic syndrome.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
6
|
Salgado KDCB, Nascimento RGDF, Coelho PJFN, Oliveira LAM, Nogueira KOPC. Cannabidiol protects mouse hippocampal neurons from neurotoxicity induced by amyloid β-peptide 25-35. Toxicol In Vitro 2024; 99:105880. [PMID: 38901785 DOI: 10.1016/j.tiv.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia worldwide, is a significant health concern, according to the World Health Organization (WHO). The neuropathological diagnostic criteria for AD are based on the deposition of amyloid-β peptide (Aβ) and the formation of intracellular tau protein tangles. These proteins are associated with several overlapping neurodegenerative mechanisms, including oxidative stress, mitochondrial dysfunction, lipid peroxidation, reduced neuronal viability, and cell death. In this context, our study focuses on the potential therapeutic use of cannabidiol (CBD), a non-psychotropic cannabinoid with antioxidant and anti-inflammatory effects. We aim to evaluate CBD's neuroprotective role, particularly in protecting hippocampal neurons from Aβ25-35-induced toxicity. Our findings indicate that CBD significantly improves cell viability and decreases levels of lipid peroxidation and oxidative stress. The results demonstrate that CBD possesses a robust potential to rescue cells from induced neurotoxicity through its antioxidant properties. Additionally, the neuroprotective effect of CBD may be associated with the modulation of the endocannabinoid system. These findings suggest that CBD could be a promising compound for adjuvant treatments in neurodegenerative processes triggered by amyloid-β peptide.
Collapse
Affiliation(s)
| | | | | | - Laser Antonio Machado Oliveira
- Laboratory of Neurobiology and Biomaterials, Federal University of Ouro Preto, MG, Brazil; Department of Biological Science, Federal University of Ouro Preto, MG, Brazil
| | - Katiane Oliveira Pinto Coelho Nogueira
- Laboratory of Neurobiology and Biomaterials, Federal University of Ouro Preto, MG, Brazil; Department of Biological Science, Federal University of Ouro Preto, MG, Brazil.
| |
Collapse
|
7
|
Sharma A, Shah OP, Sharma L, Gulati M, Behl T, Khalid A, Mohan S, Najmi A, Zoghebi K. Molecular Chaperones as Therapeutic Target: Hallmark of Neurodegenerative Disorders. Mol Neurobiol 2024; 61:4750-4767. [PMID: 38127187 DOI: 10.1007/s12035-023-03846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Misfolded and aggregated proteins build up in neurodegenerative illnesses, which causes neuronal dysfunction and ultimately neuronal death. In the last few years, there has been a significant upsurge in the level of interest towards the function of molecular chaperones in the control of misfolding and aggregation. The crucial molecular chaperones implicated in neurodegenerative illnesses are covered in this review article, along with a variety of their different methods of action. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones serve critical roles in preserving protein homeostasis. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones have integral roles in preserving regulation of protein balance. It has been demonstrated that aging, a significant risk factor for neurological disorders, affects how molecular chaperones function. The aggregation of misfolded proteins and the development of neurodegeneration may be facilitated by the aging-related reduction in chaperone activity. Molecular chaperones have also been linked to the pathophysiology of several instances of neuron withering illnesses, enumerating as Parkinson's disease, Huntington's disease, and Alzheimer's disease. Molecular chaperones have become potential therapy targets concerning with the prevention and therapeutic approach for brain disorders due to their crucial function in protein homeostasis and their connection to neurodegenerative illnesses. Protein homeostasis can be restored, and illness progression can be slowed down by methods that increase chaperone function or modify their expression. This review emphasizes the importance of molecular chaperones in the context of neuron withering disorders and their potential as therapeutic targets for brain disorders.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Om Prakash Shah
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 20227, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India, Amity University, Mohali, India.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box 2424, 11111, Khartoum, Sudan
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, 45142, Saudi Arabia.
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| |
Collapse
|
8
|
Samanta S, Akhter F, Roy A, Chen D, Turner B, Wang Y, Clemente N, Wang C, Swerdlow RH, Battaile KP, Lovell S, Yan SF, Yan SS. New cyclophilin D inhibitor rescues mitochondrial and cognitive function in Alzheimer's disease. Brain 2024; 147:1710-1725. [PMID: 38146639 PMCID: PMC11484516 DOI: 10.1093/brain/awad432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-β-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.
Collapse
Affiliation(s)
- Sourav Samanta
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Firoz Akhter
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, Del M. Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047, USA
| | - Doris Chen
- Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Benjamin Turner
- High Throughput Screening Laboratory, Del M. Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047, USA
| | - Yongfu Wang
- Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Nicolina Clemente
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, NY 12180-3590, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, NY 12180-3590, USA
| | | | - Kevin P Battaile
- New York Structural Biology Center, NSLS-II, Upton, NY 11973, USA
| | - Scott Lovell
- Protein Structure and X-Ray Crystallography Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Shi Fang Yan
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Shirley ShiDu Yan
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Fišar Z, Hroudová J. CoQ 10 and Mitochondrial Dysfunction in Alzheimer's Disease. Antioxidants (Basel) 2024; 13:191. [PMID: 38397789 PMCID: PMC10885987 DOI: 10.3390/antiox13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The progress in understanding the pathogenesis and treatment of Alzheimer's disease (AD) is based on the recognition of the primary causes of the disease, which can be deduced from the knowledge of risk factors and biomarkers measurable in the early stages of the disease. Insights into the risk factors and the time course of biomarker abnormalities point to a role for the connection of amyloid beta (Aβ) pathology, tau pathology, mitochondrial dysfunction, and oxidative stress in the onset and development of AD. Coenzyme Q10 (CoQ10) is a lipid antioxidant and electron transporter in the mitochondrial electron transport system. The availability and activity of CoQ10 is crucial for proper mitochondrial function and cellular bioenergetics. Based on the mitochondrial hypothesis of AD and the hypothesis of oxidative stress, the regulation of the efficiency of the oxidative phosphorylation system by means of CoQ10 can be considered promising in restoring the mitochondrial function impaired in AD, or in preventing the onset of mitochondrial dysfunction and the development of amyloid and tau pathology in AD. This review summarizes the knowledge on the pathophysiology of AD, in which CoQ10 may play a significant role, with the aim of evaluating the perspective of the pharmacotherapy of AD with CoQ10 and its analogues.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic;
| | | |
Collapse
|
10
|
Pérez MJ, Ibarra-García-Padilla R, Tang M, Porter GA, Johnson GVW, Quintanilla RA. Caspase-3 cleaved tau impairs mitochondrial function through the opening of the mitochondrial permeability transition pore. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166898. [PMID: 37774936 PMCID: PMC11361306 DOI: 10.1016/j.bbadis.2023.166898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Mitochondrial dysfunction is a significant factor in the development of Alzheimer's disease (AD). Previous studies have demonstrated that the expression of tau cleaved at Asp421 by caspase-3 leads to mitochondrial abnormalities and bioenergetic impairment. However, the underlying mechanism behind these alterations and their impact on neuronal function remains unknown. To investigate the mechanism behind mitochondrial dysfunction caused by this tau form, we used transient transfection and pharmacological approaches in immortalized cortical neurons and mouse primary hippocampal neurons. We assessed mitochondrial morphology and bioenergetics function after expression of full-length tau and caspase-3-cleaved tau. We also evaluated the mitochondrial permeability transition pore (mPTP) opening and its conformation as a possible mechanism to explain mitochondrial impairment induced by caspase-3 cleaved tau. Our studies showed that pharmacological inhibition of mPTP by cyclosporine A (CsA) prevented all mitochondrial length and bioenergetics abnormalities in neuronal cells expressing caspase-3 cleaved tau. Neuronal cells expressing caspase-3-cleaved tau showed sustained mPTP opening which is mostly dependent on cyclophilin D (CypD) protein expression. Moreover, the impairment of mitochondrial length and bioenergetics induced by caspase-3-cleaved tau were prevented in hippocampal neurons obtained from CypD knock-out mice. Interestingly, previous studies using these mice showed a prevention of mPTP opening and a reduction of mitochondrial failure and neurodegeneration induced by AD. Therefore, our findings showed that caspase-3-cleaved tau negatively impacts mitochondrial bioenergetics through mPTP activation, highlighting the importance of this channel and its regulatory protein, CypD, in the neuronal damage induced by tau pathology in AD.
Collapse
Affiliation(s)
- María José Pérez
- Laboratory of Neurodegenerative Diseases, Centro de Investigaciones Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo Ibarra-García-Padilla
- Laboratory of Neurodegenerative Diseases, Centro de Investigaciones Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maoping Tang
- Department of Anesthesiology, University of Rochester Medical Center, New York, USA
| | - George A Porter
- Department of Pediatrics, University of Rochester Medical Center, New York, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester Medical Center, New York, USA
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Centro de Investigaciones Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Coluccino G, Muraca VP, Corazza A, Lippe G. Cyclophilin D in Mitochondrial Dysfunction: A Key Player in Neurodegeneration? Biomolecules 2023; 13:1265. [PMID: 37627330 PMCID: PMC10452829 DOI: 10.3390/biom13081265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in numerous complex diseases. Understanding the molecular mechanisms by which the "powerhouse of the cell" turns into the "factory of death" is an exciting yet challenging task that can unveil new therapeutic targets. The mitochondrial matrix protein CyPD is a peptidylprolyl cis-trans isomerase involved in the regulation of the permeability transition pore (mPTP). The mPTP is a multi-conductance channel in the inner mitochondrial membrane whose dysregulated opening can ultimately lead to cell death and whose involvement in pathology has been extensively documented over the past few decades. Moreover, several mPTP-independent CyPD interactions have been identified, indicating that CyPD could be involved in the fine regulation of several biochemical pathways. To further enrich the picture, CyPD undergoes several post-translational modifications that regulate both its activity and interaction with its clients. Here, we will dissect what is currently known about CyPD and critically review the most recent literature about its involvement in neurodegenerative disorders, focusing on Alzheimer's Disease and Parkinson's Disease, supporting the notion that CyPD could serve as a promising therapeutic target for the treatment of such conditions. Notably, significant efforts have been made to develop CyPD-specific inhibitors, which hold promise for the treatment of such complex disorders.
Collapse
Affiliation(s)
- Gabriele Coluccino
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| | | | | | - Giovanna Lippe
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| |
Collapse
|
12
|
Tan TH, Li SW, Chang CW, Chen YC, Liu YH, Ma JT, Chang CP, Liao PC. Rat Hair Metabolomics Analysis Reveals Perturbations of Unsaturated Fatty Acid Biosynthesis, Phenylalanine, and Arachidonic Acid Metabolism Pathways Are Associated with Amyloid-β-Induced Cognitive Deficits. Mol Neurobiol 2023; 60:4373-4395. [PMID: 37095368 PMCID: PMC10293421 DOI: 10.1007/s12035-023-03343-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Hair is a noninvasive valuable biospecimen for the long-term assessment of endogenous metabolic disturbance. Whether the hair is suitable for identifying biomarkers of the Alzheimer's disease (AD) process remains unknown. We aim to investigate the metabolism changes in hair after β-amyloid (Aβ1-42) exposure in rats using ultra-high-performance liquid chromatography-high-resolution mass spectrometry-based untargeted and targeted methods. Thirty-five days after Aβ1-42 induction, rats displayed significant cognitive deficits, and forty metabolites were changed, of which twenty belonged to three perturbed pathways: (1) phenylalanine metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis-L-phenylalanine, phenylpyruvate, ortho-hydroxyphenylacetic acid, and phenyllactic acid are up-regulated; (2) arachidonic acid (ARA) metabolism-leukotriene B4 (LTB4), arachidonyl carnitine, and 5(S)-HPETE are upregulation, but ARA, 14,15-DiHETrE, 5(S)-HETE, and PGB2 are opposite; and (3) unsaturated fatty acid biosynthesis- eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), FA 18:3 + 1O, and FA 18:3 + 2O are downregulated. Linoleic acid metabolism belonging to the biosynthesis of unsaturated fatty acid includes the upregulation of 8-hydroxy-9,10-epoxystearic acid, 13-oxoODE, and FA 18:2 + 4O, and downregulation of 9(S)-HPODE and dihomo-γ-linolenic acid. In addition, cortisone and dehydroepiandrosterone belonging to steroid hormone biosynthesis are upregulated. These three perturbed metabolic pathways also correlate with cognitive impairment after Aβ1-42 stimulation. Furthermore, ARA, DHA, EPA, L-phenylalanine, and cortisone have been previously implicated in the cerebrospinal fluid of AD patients and show a similar changing trend in Aβ1-42 rats' hair. These data suggest hair can be a useful biospecimen that well reflects the expression of non-polar molecules under Aβ1-42 stimulation, and the five metabolites have the potential to serve as novel AD biomarkers.
Collapse
Affiliation(s)
- Tian-Hoe Tan
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Senior Services, Southern Taiwan University of Science and Technology, No.1, Nantai St., Yungkang Dist., Tainan, 710, Taiwan
| | - Shih-Wen Li
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yu-Hsuan Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Jui-Ti Ma
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan, 710, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan, 710, Taiwan.
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
13
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202215785. [PMID: 38515735 PMCID: PMC10952214 DOI: 10.1002/ange.202215785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 03/08/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
14
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202215785. [PMID: 36876912 PMCID: PMC10953358 DOI: 10.1002/anie.202215785] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
15
|
Almikhlafi MA, Karami MM, Jana A, Alqurashi TM, Majrashi M, Alghamdi BS, Ashraf GM. Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1165-1183. [PMID: 36043795 PMCID: PMC10286591 DOI: 10.2174/1570159x20666220830112408] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal mitochondrial morphology and metabolic dysfunction have been observed in many neurodegenerative disorders (NDDs). Mitochondrial dysfunction can be caused by aberrant mitochondrial DNA, mutant nuclear proteins that interact with mitochondria directly or indirectly, or for unknown reasons. Since mitochondria play a significant role in neurodegeneration, mitochondriatargeted therapies represent a prosperous direction for the development of novel drug compounds that can be used to treat NDDs. This review gives a brief description of how mitochondrial abnormalities lead to various NDDs such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We further explore the promising therapeutic effectiveness of mitochondria- directed antioxidants, MitoQ, MitoVitE, MitoPBN, and dimebon. We have also discussed the possibility of mitochondrial gene therapy as a therapeutic option for these NDDs.
Collapse
Affiliation(s)
- Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Mohammed M. Karami
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Thamer M. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
16
|
Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets. Biomolecules 2022; 12:1676. [PMID: 36421690 PMCID: PMC9687482 DOI: 10.3390/biom12111676] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
17
|
Kumari S, Maddeboina K, Bachu RD, Boddu SHS, Trippier PC, Tiwari AK. Pivotal role of nitrogen heterocycles in Alzheimer's disease drug discovery. Drug Discov Today 2022; 27:103322. [PMID: 35868626 DOI: 10.1016/j.drudis.2022.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease that progressively worsens with time. Clinical options are limited and only provide symptomatic relief to AD patients. The search for effective anti-AD compounds is ongoing with a few already in Phase III clinical trials, yet to be approved. Heterocycles containing nitrogen are important to biological processes owing to their abundance in nature, their function as subunits of biological molecules and/or macromolecular structures, and their biological activities. The present review discusses previously used strategies, SAR, relevant in vitro and in vivo studies, and success stories of nitrogen-containing heterocyclic compounds in AD drug discovery. Also, we propose strategies for designing and developing novel potent anti-AD small molecules that can be used as treatments for AD.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
| | - Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, UNMC Center for Drug Discovery, Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE; Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
18
|
Li RL, Wang LY, Duan HX, Zhang Q, Guo X, Wu C, Peng W. Regulation of mitochondrial dysfunction induced cell apoptosis is a potential therapeutic strategy for herbal medicine to treat neurodegenerative diseases. Front Pharmacol 2022; 13:937289. [PMID: 36210852 PMCID: PMC9535092 DOI: 10.3389/fphar.2022.937289] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disease is a progressive neurodegeneration caused by genetic and environmental factors. Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are the three most common neurodegenerative diseases clinically. Unfortunately, the incidence of neurodegenerative diseases is increasing year by year. However, the current available drugs have poor efficacy and large side effects, which brings a great burden to the patients and the society. Increasing evidence suggests that occurrence and development of the neurodegenerative diseases is closely related to the mitochondrial dysfunction, which can affect mitochondrial biogenesis, mitochondrial dynamics, as well as mitochondrial mitophagy. Through the disruption of mitochondrial homeostasis, nerve cells undergo varying degrees of apoptosis. Interestingly, it has been shown in recent years that the natural agents derived from herbal medicines are beneficial for prevention/treatment of neurodegenerative diseases via regulation of mitochondrial dysfunction. Therefore, in this review, we will focus on the potential therapeutic agents from herbal medicines for treating neurodegenerative diseases via suppressing apoptosis through regulation of mitochondrial dysfunction, in order to provide a foundation for the development of more candidate drugs for neurodegenerative diseases from herbal medicine.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| |
Collapse
|
19
|
Shelton MG, Kerns KA, Castora FJ, Coleman RA. Incorporating Mitochondrial Gene Expression Changes Within a Testable Mathematical Model for Alzheimer’s Disease: Stress Response Modulation Predicts Potential Therapeutic Targets. J Alzheimers Dis 2022; 90:109-117. [DOI: 10.3233/jad-220163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Alzheimer’s disease is a specific form of dementia characterized by the aggregation of amyloid-β plaques and tau tangles. New research has found that the formation of these aggregates occurs after dysregulation of cellular respiration and the production of radical oxygen species. Proteomic data shows that these changes are also related to unique gene expression patterns. Objective: This study is designed to incorporate both proteomic and gene expression data into a testable mathematical model for AD. Manipulation of this new model allows the identification of potential therapeutic targets for AD. Methods: We investigate the impact of these findings on new therapeutic targets via metabolic flux analysis of sirtuin stress response pathways while also highlighting the importance of metabolic enzyme activity in maintaining proper respiratory activity. Results: Our results indicate that protective changes in SIRT1 and AMPK expression are potential avenues for therapeutics. Conclusion: Combining our mitochondrial gene expression analyses with available protein data allowed the construction of a new mathematical model for AD that provides a useful approach to test the efficacy of potential AD therapeutic targets.
Collapse
Affiliation(s)
- Morgan G. Shelton
- Department of Chemistry, The College of William and Mary, Williamsburg, VA, USA
| | - Kimberly A. Kerns
- Department of Physiological Sciences, Division of Biochemistry, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Frank J. Castora
- Department of Physiological Sciences, Division of Biochemistry, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Randolph A. Coleman
- Department of Chemistry, The College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
20
|
Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T, Bali S. Neuronal cell death mechanisms in Alzheimer's disease: An insight. Front Mol Neurosci 2022; 15:937133. [PMID: 36090249 PMCID: PMC9454331 DOI: 10.3389/fnmol.2022.937133] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regulated cell death (RCD) is an ordered and tightly orchestrated set of changes/signaling events in both gene expression and protein activity and is responsible for normal development as well as maintenance of tissue homeostasis. Aberrant activation of this pathway results in cell death by various mechanisms including apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. Such pathological changes in neurons alone or in combination have been observed in the pathogenesis of various neurodegenerative diseases including Alzheimer's disease (AD). Pathological hallmarks of AD focus primarily on the accumulation of two main protein markers: amyloid β peptides and abnormally phosphorylated tau proteins. These protein aggregates result in the formation of A-β plaques and neuro-fibrillary tangles (NFTs) and induce neuroinflammation and neurodegeneration over years to decades leading to a multitude of cognitive and behavioral deficits. Autopsy findings of AD reveal massive neuronal death manifested in the form of cortical volume shrinkage, reduction in sizes of gyri to up to 50% and an increase in the sizes of sulci. Multiple forms of cell death have been recorded in neurons from different studies conducted so far. However, understanding the mechanism/s of neuronal cell death in AD patients remains a mystery as the trigger that results in aberrant activation of RCD is unknown and because of the limited availability of dying neurons. This review attempts to elucidate the process of Regulated cell death, how it gets unregulated in response to different intra and extracellular stressors, various forms of unregulated cell death, their interplay and their role in pathogenesis of Alzheimer's Disease in both human and experimental models of AD. Further we plan to explore the correlation of both amyloid-beta and Tau with neuronal loss as seen in AD.
Collapse
Affiliation(s)
- Parul Goel
- Department of Biochemistry, Shri Atal Bihari Vajpayee Government Medical College Chhainsa, Faridabad, India
| | - Sasanka Chakrabarti
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Kapil Goel
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Karanpreet Bhutani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Tanya Chopra
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Sharadendu Bali
- Department of Surgery, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| |
Collapse
|
21
|
Li X, Kong D, Yu Q, Si X, Yang L, Zeng X, Li Y, Shi J, Qian P, Huang H, Lin Y. Cyclosporine A regulates PMN-MDSCs viability and function through MPTP in acute GVHD: Old medication, new target. Transplant Cell Ther 2022; 28:411.e1-411.e9. [PMID: 35430420 DOI: 10.1016/j.jtct.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 12/29/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs), a population of myeloid lineage cells with immunosuppressive capacity, can mitigate acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We previously found that the immunosuppressive function of polymorphonuclear population (PMN-MDSCs) was impaired in aGVHD milieu. The aim of this study was to explore the intrinsic mechanism regulating the fate and function of donor-derived PMN-MDSCs during allo-HSCT. We firstly found that mitochondrial permeability transition pore (MPTP) opened in the PMN-MDSCs in response to the intense inflammatory environment of aGVHD, which induced mitochondrial damage, oxidative stress, and apoptosis of PMN-MDSCs. Inhibiting MPTP opening by a traditional immunosuppressant, cyclosporine A (CsA), could restore the immunosuppressive function and viability of PMN-MDSCs in vitro and in vivo, which reveals a new mechanism of CsA application.
Collapse
Affiliation(s)
- Xiaoqing Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University, School of Medicine, No. 79 Qingchun Road, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Delin Kong
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University, School of Medicine, No. 79 Qingchun Road, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Qiru Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University, School of Medicine, No. 79 Qingchun Road, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiaohui Si
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University, School of Medicine, No. 79 Qingchun Road, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lin Yang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University, School of Medicine, No. 79 Qingchun Road, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yixue Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University, School of Medicine, No. 79 Qingchun Road, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University, School of Medicine, No. 79 Qingchun Road, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University, School of Medicine, No. 79 Qingchun Road, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University, School of Medicine, No. 79 Qingchun Road, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
22
|
Sautchuk R, Kalicharan BH, Escalera-Rivera K, Jonason JH, Porter GA, Awad HA, Eliseev RA. Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation. eLife 2022; 11:e75023. [PMID: 35635445 PMCID: PMC9191891 DOI: 10.7554/elife.75023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Cyclophilin D (CypD) promotes opening of the mitochondrial permeability transition pore (MPTP) which plays a key role in both cell physiology and pathology. It is, therefore, beneficial for cells to tightly regulate CypD and MPTP but little is known about such regulation. We have reported before that CypD is downregulated and MPTP deactivated during differentiation in various tissues. Herein, we identify BMP/Smad signaling, a major driver of differentiation, as a transcriptional regulator of the CypD gene, Ppif. Using osteogenic induction of mesenchymal lineage cells as a BMP/Smad activation-dependent differentiation model, we show that CypD is in fact transcriptionally repressed during this process. The importance of such CypD downregulation is evidenced by the negative effect of CypD 'rescue' via gain-of-function on osteogenesis both in vitro and in a mouse model. In sum, we characterized BMP/Smad signaling as a regulator of CypD expression and elucidated the role of CypD downregulation during cell differentiation.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | - Brianna H Kalicharan
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | | | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, University of RochesterRochesterUnited States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
- Department of Pharmacology & Physiology, University of RochesterRochesterUnited States
| |
Collapse
|
23
|
Nath S. Supercomplex supercomplexes: Raison d’etre and functional significance of supramolecular organization in oxidative phosphorylation. Biomol Concepts 2022; 13:272-288. [DOI: 10.1515/bmc-2022-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Following structural determination by recent advances in electron cryomicroscopy, it is now well established that the respiratory Complexes I–IV in oxidative phosphorylation (OXPHOS) are organized into supercomplexes in the respirasome. Nonetheless, the reason for the existence of the OXPHOS supercomplexes and their functional role remains an enigma. Several hypotheses have been proposed for the existence of these supercomplex supercomplexes. A commonly-held view asserts that they enhance catalysis by substrate channeling. However, this – and other views – has been challenged based on structural and biophysical information. Hence, new ideas, concepts, and frameworks are needed. Here, a new model of energy transfer in OXPHOS is developed on the basis of biochemical data on the pure competitive inhibition of anionic substrates like succinate by the classical anionic uncouplers of OXPHOS (2,4-dinitrophenol, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, and dicoumarol), and pharmacological data on the unique site-selective, energy-linked inhibition of energy conservation pathways in mitochondria induced by the guanidine derivatives. It is further found that uncouplers themselves are site-specific and exhibit differential selectivity and efficacy in reversing the inhibition caused by the Site 1/Complex I or Site 2/Complexes II–III-selective guanidine derivatives. These results lead to new vistas and sufficient complexity in the network of energy conservation pathways in the mitochondrial respiratory chain that necessitate discrete points of interaction with two classes of guanidine derivatives and uncoupling agents and thereby separate and distinct energy transfer pathways between Site 1 and Site 2 and the intermediate that energizes adenosine triphosphate (ATP) synthesis by Complex V. Interpretation based on Mitchell’s single-ion chemiosmotic theory that postulates only a single energy pool is inadequate to rationalize the data and account for the required complexity. The above results and available information are shown to be explained by Nath’s two-ion theory of energy coupling and ATP synthesis, involving coupled movement of succinate anions and protons, along with the requirement postulated by the theory for maintenance of homeostasis and ion translocation across the energy-transducing membrane of both succinate monoanions and succinate dianions by Complexes I–V in the OXPHOS supercomplexes. The new model of energy transfer in mitochondria is mapped onto the solved structures of the supercomplexes and integrated into a consistent model with the three-dimensional electron microscope computer tomography visualization of the internal structure of the cristae membranes in mammalian mitochondria. The model also offers valuable insights into diseased states induced in type 2 diabetes and especially in Alzheimer’s and other neurodegenerative diseases that involve mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| |
Collapse
|
24
|
Reiss AB, Ahmed S, Dayaramani C, Glass AD, Gomolin IH, Pinkhasov A, Stecker MM, Wisniewski T, De Leon J. The role of mitochondrial dysfunction in Alzheimer's disease: A potential pathway to treatment. Exp Gerontol 2022; 164:111828. [DOI: 10.1016/j.exger.2022.111828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
|
25
|
Yalamanchili K, Afzal N, Boyman L, Mannella CA, Lederer WJ, Jafri MS. Understanding the Dynamics of the Transient and Permanent Opening Events of the Mitochondrial Permeability Transition Pore with a Novel Stochastic Model. MEMBRANES 2022; 12:494. [PMID: 35629820 PMCID: PMC9146742 DOI: 10.3390/membranes12050494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
The mitochondrial permeability transition pore (mPTP) is a non-selective pore in the inner mitochondrial membrane (IMM) which causes depolarization when it opens under conditions of oxidative stress and high concentrations of Ca2+. In this study, a stochastic computational model was developed to better understand the dynamics of mPTP opening and closing associated with elevated reactive oxygen species (ROS) in cardiomyocytes. The data modeled are from "photon stress" experiments in which the fluorescent dye TMRM (tetramethylrhodamine methyl ester) is both the source of ROS (induced by laser light) and sensor of the electrical potential difference across the IMM. Monte Carlo methods were applied to describe opening and closing of the pore along with the Hill Equation to account for the effect of ROS levels on the transition probabilities. The amplitude distribution of transient mPTP opening events, the number of transient mPTP opening events per minute in a cell, the time it takes for recovery after transient depolarizations in the mitochondria, and the change in TMRM fluorescence during the transition from transient to permanent mPTP opening events were analyzed. The model suggests that mPTP transient open times have an exponential distribution that are reflected in TMRM fluorescence. A second multiple pore model in which individual channels have no permanent open state suggests that 5-10 mPTP per mitochondria would be needed for sustained mitochondrial depolarization at elevated ROS with at least 1 mPTP in the transient open state.
Collapse
Affiliation(s)
- Keertana Yalamanchili
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (K.Y.); (N.A.)
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Nasrin Afzal
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (K.Y.); (N.A.)
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.B.); (C.A.M.); (W.J.L.)
| | - Carmen A. Mannella
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.B.); (C.A.M.); (W.J.L.)
| | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.B.); (C.A.M.); (W.J.L.)
| | - M. Saleet Jafri
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| |
Collapse
|
26
|
Matuz-Mares D, González-Andrade M, Araiza-Villanueva MG, Vilchis-Landeros MM, Vázquez-Meza H. Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxidants (Basel) 2022; 11:antiox11050801. [PMID: 35624667 PMCID: PMC9138001 DOI: 10.3390/antiox11050801] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Calcium is used in many cellular processes and is maintained within the cell as free calcium at low concentrations (approximately 100 nM), compared with extracellular (millimolar) concentrations, to avoid adverse effects such as phosphate precipitation. For this reason, cells have adapted buffering strategies by compartmentalizing calcium into mitochondria and the endoplasmic reticulum (ER). In mitochondria, the calcium concentration is in the millimolar range, as it is in the ER. Mitochondria actively contribute to buffering cellular calcium, but if matrix calcium increases beyond physiological demands, it can promote the opening of the mitochondrial permeability transition pore (mPTP) and, consequently, trigger apoptotic or necrotic cell death. The pathophysiological implications of mPTP opening in ischemia-reperfusion, liver, muscle, and lysosomal storage diseases, as well as those affecting the central nervous system, for example, Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) have been reported. In this review, we present an updated overview of the main cellular mechanisms of mitochondrial calcium regulation. We specially focus on neurodegenerative diseases related to imbalances in calcium homeostasis and summarize some proposed therapies studied to attenuate these diseases.
Collapse
Affiliation(s)
- Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | | | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
- Correspondence: ; Tel.: +52-55-5623-2168
| |
Collapse
|
27
|
Guan X, Iyaswamy A, Sreenivasmurthy SG, Su C, Zhu Z, Liu J, Kan Y, Cheung KH, Lu J, Tan J, Li M. Mechanistic Insights into Selective Autophagy Subtypes in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23073609. [PMID: 35408965 PMCID: PMC8998506 DOI: 10.3390/ijms23073609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigating neurodegenerative diseases, especially Alzheimer's disease (AD). However, surprisingly, activation of macroautophagy has not shown clinical efficacy. Hence, alternative strategies are urgently needed for AD therapy. In recent years, selective autophagy has been reported to be involved in AD pathology, and different subtypes have been identified, such as aggrephagy, mitophagy, reticulophagy, lipophagy, pexophagy, nucleophagy, lysophagy and ribophagy. By clarifying the underlying mechanisms governing these various subtypes, we may come to understand how to control autophagy to treat AD. In this review, we summarize the latest findings concerning the role of selective autophagy in the pathogenesis of AD. The evidence overwhelmingly suggests that selective autophagy is an active mechanism in AD pathology, and that regulating selective autophagy would be an effective strategy for controlling this pathogenesis.
Collapse
Affiliation(s)
- Xinjie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Chengfu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Zhou Zhu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Yuxuan Kan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jiahong Lu
- State Key Lab of Quality Research in Chinese Medicine, University of Macau, Macao, China;
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Correspondence: (J.T.); (M.L.)
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
- Correspondence: (J.T.); (M.L.)
| |
Collapse
|
28
|
Boyenle ID, Oyedele AK, Ogunlana AT, Adeyemo AF, Oyelere FS, Akinola OB, Adelusi TI, Ehigie LO, Ehigie AF. Targeting the mitochondrial permeability transition pore for drug discovery: Challenges and opportunities. Mitochondrion 2022; 63:57-71. [PMID: 35077882 DOI: 10.1016/j.mito.2022.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Several drug targets have been amenable to drug discovery pursuit not until the characterization of the mitochondrial permeability transition pore (MPTP), a pore with an undefined molecular identity that forms on the inner mitochondrial membrane upon mitochondrial permeability transition (MPT) under the influence of calcium overload and oxidative stress. The opening of the pore which is presumed to cause cell death in certain human diseases also has implications under physiological parlance. Different models for this pore have been postulated following its first identification in the last six decades. The mitochondrial community has witnessed many protein candidates such as; voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), Mitochondrial phosphate carrier (PiC), Spastic Paralegin (SPG7), disordered proteins, and F1Fo ATPase. However, genetic studies have cast out most of these candidates with only F1Fo ATPase currently under intense argument. Cyclophilin D (CyPD) remains the widely accepted positive regulator of the MPTP known to date, but no drug candidate has emerged as its inhibitor, raising concern issues for therapeutics. Thus, in this review, we discuss various models of MPTP reported with the hope of stimulating further research in this field. We went beyond the classical description of the MPTP to ascribe a 'two-edged sword property' to the pore for therapeutic function in human disease because its inhibition and activation have pharmacological relevance. We suggested putative proteins upstream to CyPD that can regulate its activity and prevent cell deaths in neurodegenerative disease and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ibrahim Damilare Boyenle
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdulquddus Kehinde Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdeen Tunde Ogunlana
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Aishat Folashade Adeyemo
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Olateju Balikis Akinola
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Leonard Ona Ehigie
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Adeola Folasade Ehigie
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
29
|
Park SS, Park HS, Kim CJ, Baek SS, Park SY, Anderson CP, Kim MK, Park IR, Kim TW. Combined effects of Aerobic exercise and 40Hz light flicker exposure on early cognitive impairments in Alzheimer's disease of 3xTg mice. J Appl Physiol (1985) 2022; 132:1054-1068. [PMID: 35201933 DOI: 10.1152/japplphysiol.00751.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative brain disease and the primary cause of dementia. At an early stage, AD is generally characterized by short-term memory impairment, owing to dysfunctions of the cortex and hippocampus. We previously reported that a combination of exercise and 40 Hz light flickering can protect against AD-related neuroinflammation, gamma oscillations, reduction in Aβ, and cognitive decline. Therefore, we sought to extend our previous findings to the 5-month-old 3xTg-AD mouse model to examine whether the same favorable effects occur in earlier stages of cognitive dysfunction. We investigated the effects of 12 weeks of exercise combined with 40-Hz light flickering on cognitive function by analyzing neuroinflammation, mitochondrial function, and neuroplasticity in the hippocampus in a 3xTg-AD mouse model. 5-month-old 3xTg-AD mice performed 12 weeks of exercise with 40-Hz light flickering administered independently and in combination. Spatial learning and memory, long-term memory, hippocampal Aβ, tau, neuroinflammation, pro-inflammatory cytokine expression, mitochondrial function, and neuroplasticity, were analyzed. Aβ and tau proteins levels were significantly reduced in the early stage of AD, resulting in protection against cognitive decline by reducing neuroinflammation and pro-inflammatory cytokines. Furthermore, mitochondrial function improved, apoptosis was reduced, and synapse-related protein expression increased. Overall, exercise with 40-Hz light flickering was significantly more effective than exercise or 40-Hz light flickering alone, and the improvement was comparable to the levels in the non-transgenic aged-match control group. Our results indicate a synergistic effect of exercise and 40-Hz light flickering on pathological improvements in the hippocampus during early AD associated cognitive impairment.
Collapse
Affiliation(s)
- Sang-Seo Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Hye-Sang Park
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Seung-Soo Baek
- Department of Exercise and Health Science, Sangmyung University, Seoul, Republic of Korea
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Cody Philip Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Myung-Ki Kim
- Division of Global Sport Studies, Korea University, Sejong, Republic of Korea
| | - Ik-Ryeul Park
- Department of Human Health care, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae-Woon Kim
- Department of Human Health care, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
30
|
Şahin S, Dege N. (E)-N-(3-chlorophenyl)-1-(5-nitro-2-(piperidin-1-yl)phenyl)methanimine: X-Ray, DFT, ADMET, Boiled-Egg Model, Druggability, Bioavailabilty, and Human Cyclophilin D (CypD) Inhibitory Activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Bandaru LJM, Ayyalasomayajula N, Murumulla L, Challa S. Mechanisms associated with the dysregulation of mitochondrial function due to lead exposure and possible implications on the development of Alzheimer's disease. Biometals 2022; 35:1-25. [PMID: 35048237 DOI: 10.1007/s10534-021-00360-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 01/17/2023]
Abstract
Lead (Pb) is a multimedia contaminant with various pathophysiological consequences, including cognitive decline and neural abnormalities. Recent findings have reported an association of Pb toxicity with Alzheimer's disease (AD). Studies have revealed that mitochondrial dysfunction is a pathological characteristic of AD. According to toxicology reports, Pb promotes mitochondrial oxidative stress by lowering complex III activity in the electron transport chain, boosting reactive oxygen species formation, and reducing the cell's antioxidant defence system. Here, we review recent advances in the role of mitochondria in Pb-induced AD pathology, as well as the mechanisms associated with the mitochondrial dysfunction, such as the depolarisation of the mitochondrial membrane potential, mitochondrial permeability transition pore opening; mitochondrial biogenesis, bioenergetics and mitochondrial dynamics alterations; and mitophagy and apoptosis. We also discuss possible therapeutic options for mitochondrial-targeted neurodegenerative disease (AD).
Collapse
Affiliation(s)
- Lakshmi Jaya Madhuri Bandaru
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Neelima Ayyalasomayajula
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India.
| |
Collapse
|
32
|
Sandberg AA, Manning E, Wilkins HM, Mazzarino R, Minckley T, Swerdlow RH, Patterson D, Qin Y, Linseman DA. Mitochondrial Targeting of Amyloid-β Protein Precursor Intracellular Domain Induces Hippocampal Cell Death via a Mechanism Distinct from Amyloid-β. J Alzheimers Dis 2022; 86:1727-1744. [PMID: 35253745 PMCID: PMC10084495 DOI: 10.3233/jad-215108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Amyloid-β (Aβ) is a principal cleavage product of amyloid-β protein precursor (AβPP) and is widely recognized as a key pathogenic player in Alzheimer's disease (AD). Yet, there is increasing evidence of a neurotoxic role for the AβPP intracellular domain (AICD) which has been proposed to occur through its nuclear function. Intriguingly, there is a γ-secretase resident at the mitochondria which could produce AICD locally. OBJECTIVE We examined the potential of AICD to induce neuronal apoptosis when targeted specifically to the mitochondria and compared its mechanism of neurotoxicity to that of Aβ. METHODS We utilized transient transfection of HT22 neuronal cells with bicistronic plasmids coding for DsRed and either empty vector (Ires), Aβ, AICD59, or mitochondrial-targeted AICD (mitoAICD) in combination with various inhibitors of pathways involved in apoptosis. RESULTS AICD induced significant neuronal apoptosis only when targeted to the mitochondria. Apoptosis required functional mitochondria as neither Aβ nor mitoAICD induced significant toxicity in cells devoid of mitochondrial DNA. Both glutathione and a Bax inhibitor protected HT22 cells from either peptide. However, inhibition of the mitochondrial permeability transition pore only protected from Aβ, while pan-caspase inhibitors uniquely rescued cells from mitoAICD. CONCLUSION Our results show that AICD displays a novel neurotoxic function when targeted to mitochondria. Moreover, mitoAICD induces apoptosis via a mechanism that is distinct from that of Aβ. These findings suggest that AICD produced locally at mitochondria via organelle-specific γ-secretase could act in a synergistic manner with Aβ to cause mitochondrial dysfunction and neuronal death in AD.
Collapse
Affiliation(s)
- Alexandra A. Sandberg
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Evan Manning
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Heather M. Wilkins
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, USA
| | - Randall Mazzarino
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Taylor Minckley
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, USA
| | - David Patterson
- Knoebel Institute for Healthy Aging and Eleanor Roosevelt Institute, University of Denver, 2155 E. Wesley Ave., Denver, CO, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Daniel A. Linseman
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
- Knoebel Institute for Healthy Aging and Eleanor Roosevelt Institute, University of Denver, 2155 E. Wesley Ave., Denver, CO, USA
| |
Collapse
|
33
|
Kim T, Morshed MN, Londhe AM, Lim JW, Lee HE, Cho S, Cho SJ, Hwang H, Lim SM, Lee JY, Lee J, Pae AN. The translocator protein ligands as mitochondrial functional modulators for the potential anti-Alzheimer agents. J Enzyme Inhib Med Chem 2021; 36:831-846. [PMID: 33752569 PMCID: PMC7996082 DOI: 10.1080/14756366.2021.1900158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/06/2022] Open
Abstract
Small molecule modulators of mitochondrial function have been attracted much attention in recent years due to their potential therapeutic applications for neurodegenerative diseases. The mitochondrial translocator protein (TSPO) is a promising target for such compounds, given its involvement in the formation of the mitochondrial permeability transition pore in response to mitochondrial stress. In this study, we performed a ligand-based pharmacophore design and virtual screening, and identified a potent hit compound, 7 (VH34) as a TSPO ligand. After validating its biological activity against amyloid-β (Aβ) induced mitochondrial dysfunction and in acute and transgenic Alzheimer's disease (AD) model mice, we developed a library of analogs, and we found two most active compounds, 31 and 44, which restored the mitochondrial membrane potential, ATP production, and cell viability under Aβ-induced mitochondrial toxicity. These compounds recovered learning and memory function in acute AD model mice with improved pharmacokinetic properties.
Collapse
Affiliation(s)
- TaeHun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Mohammad N. Morshed
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
- Center for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Ashwini M. Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ji W. Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Ha E. Lee
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Pukyong National University, Pusan, Republic of Korea
| | - Sung J. Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Sang M. Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Jae Y. Lee
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul, Republic of Korea
| | - Ae N. Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
34
|
The Protective Effect of Ubiquinone against the Amyloid Peptide in Endothelial Cells Is Isoprenoid Chain Length-Dependent. Antioxidants (Basel) 2021; 10:antiox10111806. [PMID: 34829677 PMCID: PMC8615161 DOI: 10.3390/antiox10111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022] Open
Abstract
Vascular brain pathology constitutes a common feature in neurodegenerative diseases that could underlie their development. Indeed, vascular dysfunction acts synergistically with neurodegenerative changes to exacerbate the cognitive impairment found in Alzheimer’s disease. Different injuries such as hypertension, high glucose, atherosclerosis associated with oxidized low-density lipoprotein or inflammation induce NADPH oxidase activation, overproduction of reactive oxygen species, and apoptosis in endothelial cells. Since it has been shown that pretreatment of cultured endothelial cells with the lipophilic antioxidant coenzyme Q10 (CoQ10) displays a protective effect against the deleterious injuries caused by different agents, this study explores the cytoprotective role of different CoQs homologues against Aβ25–35-induced damage and demonstrates that only pretreatment with CoQ10 protects endothelial brain cells from Aβ25–35-induced damage. Herein, we show that CoQ10 constitutes the most effective ubiquinone in preventing NADPH oxidase activity and reducing both reactive oxygen species generation and the increase in free cytosolic Ca2+ induced by Aβ25–35, ultimately preventing apoptosis and necrosis. The specific cytoprotective effect of CoQ with a side chain of 10 isoprenoid units could be explained by the fact that CoQ10 is the only ubiquinone that significantly reduces the entry of Aβ25–35 into the mitochondria.
Collapse
|
35
|
Amodeo GF, Krilyuk N, Pavlov EV. Formation of High-Conductive C Subunit Channels upon Interaction with Cyclophilin D. Int J Mol Sci 2021; 22:ijms222011022. [PMID: 34681682 PMCID: PMC8538490 DOI: 10.3390/ijms222011022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/25/2022] Open
Abstract
The c subunit of the ATP synthase is an inner mitochondrial membrane (IMM) protein. Besides its role as the main component of the rotor of the ATP synthase, c subunit from mammalian mitochondria exhibits ion channel activity. In particular, c subunit may be involved in one of the pathways leading to the formation of the permeability transition pore (PTP) during mitochondrial permeability transition (PT), a phenomenon consisting of the permeabilization of the IMM due to high levels of calcium. Our previous study on the synthetic c subunit showed that high concentrations of calcium induce misfolding into cross-β oligomers that form low-conductance channels in model lipid bilayers of about 400 pS. Here, we studied the effect of cyclophilin D (CypD), a mitochondrial chaperone and major regulator of PTP, on the electrophysiological activity of the c subunit to evaluate its role in the functional properties of c subunit. Our study shows that in presence of CypD, c subunit exhibits a larger conductance, up to 4 nS, that could be related to its potential role in mitochondrial toxicity. Further, our results suggest that CypD is necessary for the formation of c subunit induced PTP but may not be an integral part of the pore.
Collapse
|
36
|
Şahin S, Dege N. Synthesis, characterization, X-ray, HOMO-LUMO, MEP, FT-IR, NLO, Hirshfeld surface, ADMET, boiled-egg model properties and molecular docking studies with human cyclophilin D (CypD) of a Schiff base compound: (E)-1-(5-nitro-2-(piperidin-1-yl)phenyl)-N-(3-nitrophenyl)methanimine. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
Milane L, Dolare S, Jahan T, Amiji M. Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102422. [PMID: 34175455 DOI: 10.1016/j.nano.2021.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
As mitochondria network together to act as the master sensors and effectors of apoptosis, ATP production, reactive oxygen species management, mitophagy/autophagy, and homeostasis; this organelle is an ideal target for pharmaceutical manipulation. Mitochondrial dysfunction contributes to many diseases, for example, β-amyloid has been shown to interfere with mitochondrial protein import and induce apoptosis in Alzheimer's Disease while some forms of Parkinson's Disease are associated with dysfunctional mitochondrial PINK1 and Parkin proteins. Mitochondrial medicine has applications in the treatment of an array of pathologies from cancer to cardiovascular disease. A challenge of mitochondrial medicine is directing therapies to a subcellular target. Nanotechnology based approaches combined with mitochondrial targeting strategies can greatly improve the clinical translation and effectiveness of mitochondrial medicine. This review discusses mitochondrial drug delivery approaches and applications of mitochondrial nanomedicines. Nanomedicine approaches have the potential to drive the success of mitochondrial therapies into the clinic.
Collapse
Affiliation(s)
- Lara Milane
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA.
| | - Saket Dolare
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| | - Tanjheela Jahan
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| | - Mansoor Amiji
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| |
Collapse
|
38
|
Liu W, Qaed E, Zhu HG, Dong MX, Tang Z. Non-energy mechanism of phosphocreatine on the protection of cell survival. Biomed Pharmacother 2021; 141:111839. [PMID: 34174505 DOI: 10.1016/j.biopha.2021.111839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
If mitochondrial energy availability or oxidative metabolism is altered, patients will suffer from insufficient energy supply Phosphocreatine (PCr) not only acts as an energy carrier, but also acts as an antioxidant and defensive agent to maintain the integrity and stability of the membrane, to maintain ATP homeostasis through regulating mitochondrial respiration. Meanwhile, PCr can enhance calcium balance and reduce morphological pathological changes, ultimately, PCr helps to reduce apoptosis. On the other aspect, the activities of ATP synthase and MitCK play a crucial role in the maintenance of cellular energy metabolic function. It is interesting to note, PCr not only rises the activities of ATP synthase as well as MitCK, but also promotes these two enzymatic reactions. Additionally, PCr can also inhibit mitochondrial permeability transition in a concentration-dependent manner, prevent ROS and CytC from spilling into the cytoplasm, thereby inhibit the release of proapoptotic factors caspase-3 and caspase-9, and eventually, effectively prevent LPS-induced apoptosis of cells. Understandably, PCr prevents the apoptosis caused by abnormal mitochondrial energy metabolism and has a protective role in a non-energy manner. Moreover, recent studies have shown that PCr protects cell survival through PI3K/Akt/eNOS, MAPK pathway, and inhibition of Ang II-induced NF-κB activation. Furthermore, PCr antagonizes oxidative stress through the activation of PI3K/Akt/GSK3b intracellular pathway, PI3K/AKT-PGC1α signaling pathway, while through the promotion of SIRT3 expression to maintain normal cell metabolism. Interestingly, PCr results in delaying the time to enter pathological metabolism through the delayed activation of AMPK pathway, which is different from previous studies, now we propose the hypothesis that the "miRNA-JAK2/STAT3 -CypD pathway" may take part in protecting cells from apoptosis, PCr may be further be involved in the dynamic relationship between CypD and STAT3. Furthermore, we believe that PCr and CypD would be the central link to maintain cell survival and maintain cell stability and mitochondrial repair under the mitochondrial dysfunction caused by oxidative stress. This review provides the modern progress knowledge and views on the molecular mechanism and molecular targets of PCr in a non-energy way.
Collapse
Affiliation(s)
- Wu Liu
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Han Guo Zhu
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Ma Xiao Dong
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - ZeYao Tang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China.
| |
Collapse
|
39
|
Elevating the Levels of Calcium Ions Exacerbate Alzheimer's Disease via Inducing the Production and Aggregation of β-Amyloid Protein and Phosphorylated Tau. Int J Mol Sci 2021; 22:ijms22115900. [PMID: 34072743 PMCID: PMC8198078 DOI: 10.3390/ijms22115900] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with a high incidence rate. The main pathological features of AD are β-amyloid plaques (APs), which are formed by β-amyloid protein (Aβ) deposition, and neurofibrillary tangles (NFTs), which are formed by the excessive phosphorylation of the tau protein. Although a series of studies have shown that the accumulation of metal ions, including calcium ions (Ca2+), can promote the formation of APs and NFTs, there is no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD. In view of this, the current review summarizes the mechanisms by which Ca2+ is transported into and out of cells and organelles, such as the cell, endoplasmic reticulum, mitochondrial and lysosomal membranes to affect the balance of intracellular Ca2+ levels. In addition, dyshomeostasis of Ca2+ plays an important role in modulating the pathogenesis of AD by influencing the production and aggregation of Aβ peptides and tau protein phosphorylation and the ways that disrupting the metabolic balance of Ca2+ can affect the learning ability and memory of people with AD. In addition, the effects of these mechanisms on the synaptic plasticity are also discussed. Finally, the molecular network through which Ca2+ regulates the pathogenesis of AD is introduced, providing a theoretical basis for improving the clinical treatment of AD.
Collapse
|
40
|
Modesti L, Danese A, Angela Maria Vitto V, Ramaccini D, Aguiari G, Gafà R, Lanza G, Giorgi C, Pinton P. Mitochondrial Ca 2+ Signaling in Health, Disease and Therapy. Cells 2021; 10:cells10061317. [PMID: 34070562 PMCID: PMC8230075 DOI: 10.3390/cells10061317] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The divalent cation calcium (Ca2+) is considered one of the main second messengers inside cells and acts as the most prominent signal in a plethora of biological processes. Its homeostasis is guaranteed by an intricate and complex system of channels, pumps, and exchangers. In this context, by regulating cellular Ca2+ levels, mitochondria control both the uptake and release of Ca2+. Therefore, at the mitochondrial level, Ca2+ plays a dual role, participating in both vital physiological processes (ATP production and regulation of mitochondrial metabolism) and pathophysiological processes (cell death, cancer progression and metastasis). Hence, it is not surprising that alterations in mitochondrial Ca2+ (mCa2+) pathways or mutations in Ca2+ transporters affect the activities and functions of the entire cell. Indeed, it is widely recognized that dysregulation of mCa2+ signaling leads to various pathological scenarios, including cancer, neurological defects and cardiovascular diseases (CVDs). This review summarizes the current knowledge on the regulation of mCa2+ homeostasis, the related mechanisms and the significance of this regulation in physiology and human diseases. We also highlight strategies aimed at remedying mCa2+ dysregulation as promising therapeutical approaches.
Collapse
Affiliation(s)
- Lorenzo Modesti
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Veronica Angela Maria Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Daniela Ramaccini
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (R.G.); (G.L.)
| | - Giovanni Lanza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (R.G.); (G.L.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
- Correspondence: ; Tel.: +39-0532-455802
| |
Collapse
|
41
|
Wang NN, Xu HH, Zhou W, Yang HX, Wang J, Ma ZC, Gao Y. Aconitine attenuates mitochondrial dysfunction of cardiomyocytes via promoting deacetylation of cyclophilin-D mediated by sirtuin-3. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113765. [PMID: 33418031 DOI: 10.1016/j.jep.2020.113765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconite is a processed product of seminal root of perennial herbaceous plant Aconitum Carmichaclii Debx. of Ranunculaceae. It has the effects of warming and tonifying heart yang and restoring yang to save from collapse. Aconitine is the main effective constituent of aconite and used to prevent and treat heart disease. However, how aconitine exerts myocardial protection is still poorly understood. AIM OF THE STUDY The present study aimed to investigate the effects of aconitine on mitochondrial dysfunction and explore its mechanism of action. MATERIALS AND METHODS The model of myocardial injury was induced by Angiotensin II (Ang II) (1 × 10-6 mol L-1), and H9c2 cells were incubated with different concentrations of aconitine. The effect of aconitine on mitochondrial was determined by flow cytometry, transmission electron microscopy, luciferase, Seahorse technique and Western blot. The effects of aconitine on sirtuin-3 (Sirt3) activity and Cyclophilin D (CypD) acetylation were detected by immunofluorescence, RT-PCR and co-immunoprecipitation. RESULTS We demonstrate that aconitine alleviates the energy metabolic dysfunction of H9c2 cells by activating Sirt3 to deacetylate CypD and inhibiting mitochondrial permeability transition pore (mPTP) opening. In cardiomyocytes, aconitine significantly reduced mitochondrial fragmentation, inhibited acetylation of CypD, suppressed the mPTP opening, mitigated mitochondrial OXPHOS disorders, and improved the synthesis ability of ATP. In contrast, Sirt3 deficiency abolished the effects of aconitine on mPTP and OXPHOS, indicating that aconitine improves mitochondrial function by activating Sirt3. CONCLUSIONS These results showed that aconitine attenuated the energy metabolism disorder by promoting Sirt3 expression and reducing CypD-mediated mPTP excess openness, rescuing mitochondrial function. Improve mitochondrial function may be a therapeutic approach for treating heart disease, which will generate fresh insight into the cardioprotective of aconitine.
Collapse
Affiliation(s)
- Ning-Ning Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Huan-Hua Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei Zhou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hong-Xing Yang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zeng-Chun Ma
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
42
|
Wang J, Ding Y, Zhuang L, Wang Z, Xiao W, Zhu J. Ginkgolide B‑induced AMPK pathway activation protects astrocytes by regulating endoplasmic reticulum stress, oxidative stress and energy metabolism induced by Aβ1‑42. Mol Med Rep 2021; 23:457. [PMID: 33880582 PMCID: PMC8072312 DOI: 10.3892/mmr.2021.12096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Ginkgolide B (GB), the diterpenoid lactone compound isolated from the extracts of Ginkgo biloba leaves, significantly improves cognitive impairment, but its potential pharmacological effect on astrocytes induced by β-amyloid (Aβ)1-42 remains to be elucidated. The present study aimed to investigate the protective effect and mechanism of GB on astrocytes with Aβ1-42-induced apoptosis in Alzheimer's disease (AD). Astrocytes obtained from Sprague Dawley rats were randomly divided into control, Aβ, GB and GB + compound C groups. Cell viability and apoptosis were analyzed using Cell Counting Kit-8 and flow cytometry assays, respectively. Protein and mRNA expression levels were analyzed using western blotting and reverse transcription-quantitative PCR, respectively. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), reactive oxygen species (ROS) and ATP were determined using the corresponding commercial kits. The findings revealed that GB attenuated Aβ1-42-induced apoptosis and the 5′ adenosine monophosphate- activated protein kinase (AMPK) inhibitor compound C reversed the protective effects of GB. In addition, GB reversed Aβ1-42-induced oxidative damage and energy metabolism disorders, including decreases in the levels of SOD, GSH-Px and ATP and increased the levels of MDA and ROS in astrocytes, while compound C reversed the anti-oxidative effect and the involvement of GB in maintaining energy metabolism in astrocytes. Finally, GB decreased the expression levels of the endoplasmic reticulum stress (ERS) proteins and the apoptotic protein CHOP and increased both mRNA and protein expression of the components of the energy metabolism-related AMPK/peroxisome proliferator-activated receptor γ coactivator 1α/peroxisome proliferator-activated receptor α and anti-oxidation-related nuclear respiratory factor 2/heme oxygenase 1/NAD(P)H dehydrogenase (quinone 1) pathways and downregulated the expression of β-secretase 1. However, compound C could antagonize these effects. In conclusion, the findings demonstrated that GB protected against Aβ1-42-induced apoptosis by inhibiting ERS, oxidative stress, energy metabolism disorders and Aβ1-42 production probably by activating AMPK signaling pathways. The findings provided an innovative insight into the treatment using GB as a therapeutic in Aβ1-42-related AD.
Collapse
Affiliation(s)
- Jing Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Linwu Zhuang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, P.R. China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, P.R. China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| |
Collapse
|
43
|
Jin X, Guo JL, Wang L, Zhong X, Yao WF, Gao H, Liu MY. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. Eur J Med Chem 2021; 218:113401. [PMID: 33831779 DOI: 10.1016/j.ejmech.2021.113401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by neuronal loss and cognitive impairment that harshly affect the elderly individuals. Currently, the available anti-AD pharmacological approaches are purely symptomatic to alleviate AD symptoms, and the curative effects of novel anti-AD drugs focused on Aβ target are disappointing. Hence, there is a tremendous need to adjust AD therapeutic targets and discover novel anti-AD agents. In AD, mitochondrial dysfunction gradually triggers neuronal death from different aspects and worsens the occurrence and progress of AD. Consequently, it has been proposed that the intervention of impaired mitochondria represents an attractive breakthrough point for AD treatments. Due to chemical diversity, poly-pharmacological activities, few adverse effects and multiple targeting, natural products (NPs) have been identified as a valuable treasure for drug discovery and development. Multiple lines of studies have scientifically proven that NPs display ameliorative benefits in AD treatment in relation to mitochondrial dysfunction. This review surveys the complicated implications for mitochondrial dysregulation and AD, and then summarizes the potentials of NPs and their underlying molecular mechanisms against AD via reducing or improving mitochondrial dysfunction. It is expected that this work may open the window to speed up the development of innovative anti-AD drugs originated from NPs and improve upcoming AD therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jia-Ling Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
44
|
Eshraghi M, Adlimoghaddam A, Mahmoodzadeh A, Sharifzad F, Yasavoli-Sharahi H, Lorzadeh S, Albensi BC, Ghavami S. Alzheimer's Disease Pathogenesis: Role of Autophagy and Mitophagy Focusing in Microglia. Int J Mol Sci 2021; 22:3330. [PMID: 33805142 PMCID: PMC8036323 DOI: 10.3390/ijms22073330] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurological disorder, and currently, there is no cure for it. Several pathologic alterations have been described in the brain of AD patients, but the ultimate causative mechanisms of AD are still elusive. The classic hallmarks of AD, including amyloid plaques (Aβ) and tau tangles (tau), are the most studied features of AD. Unfortunately, all the efforts targeting these pathologies have failed to show the desired efficacy in AD patients so far. Neuroinflammation and impaired autophagy are two other main known pathologies in AD. It has been reported that these pathologies exist in AD brain long before the emergence of any clinical manifestation of AD. Microglia are the main inflammatory cells in the brain and are considered by many researchers as the next hope for finding a viable therapeutic target in AD. Interestingly, it appears that the autophagy and mitophagy are also changed in these cells in AD. Inside the cells, autophagy and inflammation interact in a bidirectional manner. In the current review, we briefly discussed an overview on autophagy and mitophagy in AD and then provided a comprehensive discussion on the role of these pathways in microglia and their involvement in AD pathogenesis.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA;
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Aida Adlimoghaddam
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; (A.A.); (B.C.A.)
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Farzaneh Sharifzad
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (F.S.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (F.S.); (H.Y.-S.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Benedict C. Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; (A.A.); (B.C.A.)
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| |
Collapse
|
45
|
Jia K, Du H. Mitochondrial Permeability Transition: A Pore Intertwines Brain Aging and Alzheimer's Disease. Cells 2021; 10:649. [PMID: 33804048 PMCID: PMC8001058 DOI: 10.3390/cells10030649] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022] Open
Abstract
Advanced age is the greatest risk factor for aging-related brain disorders including Alzheimer's disease (AD). However, the detailed mechanisms that mechanistically link aging and AD remain elusive. In recent years, a mitochondrial hypothesis of brain aging and AD has been accentuated. Mitochondrial permeability transition pore (mPTP) is a mitochondrial response to intramitochondrial and intracellular stresses. mPTP overactivation has been implicated in mitochondrial dysfunction in aging and AD brains. This review summarizes the up-to-date progress in the study of mPTP in aging and AD and attempts to establish a link between brain aging and AD from a perspective of mPTP-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kun Jia
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA;
| | - Heng Du
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA;
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
46
|
Hemmerová E, Špringer T, Krištofiková Z, Homola J. Ionic Environment Affects Biomolecular Interactions of Amyloid-β: SPR Biosensor Study. Int J Mol Sci 2020; 21:E9727. [PMID: 33419257 PMCID: PMC7766583 DOI: 10.3390/ijms21249727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
In early stages of Alzheimer's disease (AD), amyloid beta (Aβ) accumulates in the mitochondrial matrix and interacts with mitochondrial proteins, such as cyclophilin D (cypD) and 17β-hydroxysteroid dehydrogenase 10 (17β-HSD10). Multiple processes associated with AD such as increased production or oligomerization of Aβ affect these interactions and disbalance the equilibrium between the biomolecules, which contributes to mitochondrial dysfunction. Here, we investigate the effect of the ionic environment on the interactions of Aβ (Aβ1-40, Aβ1-42) with cypD and 17β-HSD10 using a surface plasmon resonance (SPR) biosensor. We show that changes in concentrations of K+ and Mg2+ significantly affect the interactions and may increase the binding efficiency between the biomolecules by up to 35% and 65% for the interactions with Aβ1-40 and Aβ1-42, respectively, in comparison with the physiological state. We also demonstrate that while the binding of Aβ1-40 to cypD and 17β-HSD10 takes place preferentially around the physiological concentrations of ions, decreased concentrations of K+ and increased concentrations of Mg2+ promote the interaction of both mitochondrial proteins with Aβ1-42. These results suggest that the ionic environment represents an important factor that should be considered in the investigation of biomolecular interactions taking place in the mitochondrial matrix under physiological as well as AD-associated conditions.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| | - Tomáš Špringer
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| | - Zdeňka Krištofiková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic;
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| |
Collapse
|
47
|
Amodeo GF, Pavlov EV. Amyloid β, α-synuclein and the c subunit of the ATP synthase: Can these peptides reveal an amyloidogenic pathway of the permeability transition pore? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183531. [PMID: 33309700 DOI: 10.1016/j.bbamem.2020.183531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 01/29/2023]
Abstract
Mitochondrial Permeability Transition (PT) is a phenomenon of increased permeability of the inner mitochondrial membrane in response to high levels of Ca2+ and/or reactive oxygen species (ROS) in the matrix. PT occurs upon the opening of a pore, namely the permeability transition pore (PTP), which dissipates the membrane potential uncoupling the respiratory chain. mPT activation and PTP formation can occur through multiple molecular pathways. The specific focus of this review is to discuss the possible molecular mechanisms of PTP that involve the participation of mitochondrially targeted amyloid peptides Aβ, α-synuclein and c subunit of the ATP synthase (ATPase). As activators of PTP, amyloid peptides are uniquely different from other activators because they are capable of forming channels in lipid bilayers. This property rises the possibility that in this permeabilization pathway the formation of the channel involves the direct participation of peptides, making it uniquely different from other PTP induction mechanisms. In this pathway, a critical step of PTP activation involves the import of amyloidogenic peptides from the cytosol into the matrix. In the matrix these peptides, which would fold into α-helical structure in native conditions, interact with cyclophilin D (CypD) and upon stimulation by elevated ROS and/or the Ca2+ spontaneously misfold into β-sheet ion conducting pores, causing PTP opening.
Collapse
Affiliation(s)
- Giuseppe F Amodeo
- Department of Molecular Pathobiology, New York University, United States of America.
| | - Evgeny V Pavlov
- Department of Molecular Pathobiology, New York University, United States of America.
| |
Collapse
|
48
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
49
|
Zhang Z, Sheng H, Liao L, Xu C, Zhang A, Yang Y, Zhao L, Duan L, Chen H, Zhang B. Mesenchymal Stem Cell-Conditioned Medium Improves Mitochondrial Dysfunction and Suppresses Apoptosis in Okadaic Acid-Treated SH-SY5Y Cells by Extracellular Vesicle Mitochondrial Transfer. J Alzheimers Dis 2020; 78:1161-1176. [PMID: 33104031 DOI: 10.3233/jad-200686] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mesenchymal stem cells-conditioned medium (MSC-CM) provides a promising cell-free therapy for Alzheimer's disease (AD) mainly due to the paracrine of MSCs, but the precise mechanisms remain unclear. Studies suggests that mitochondrial dysfunction precedes the accumulation of amyloid-β plaques and neurofibrillary tangles, and involves in the onset and development of AD. OBJECTIVE In the present study, we evaluated the protective effects and explored the related-mitochondrial mechanisms of human umbilical cord derived MSC-CM (hucMSC-CM) in an AD model in vitro. METHODS To this end, an AD cellular model was firstly established by okadaic acid (OA)-treated SH-SY5Y cells, and then treated by hucMSC-CM to assess the oxidative stress, mitochondrial function, apoptosis, AD-related genes, and signaling pathways. RESULTS hucMSC-CM significantly deceased tau phosphorylated at Thr181 (p181-tau) level, which was increased in AD. hucMSC-CM also alleviated intracellular and mitochondrial oxidative stress in OA-treated SH-SY5Y cells. In addition, hucMSC-CM suppressed apoptosis and improved mitochondrial function in OA-treated SH-SY5Y cells. Flow cytometric analysis indicated that hucMSC-CM exerted the protective effects relying on or partly extracellular vesicle (EV) mitochondrial transfer from hucMSCs to OA-treated SH-SY5Y cells. Moreover, RNA sequencing data further demonstrated that hucMSC-CM regulated many AD-related genes, signaling pathways and mitochondrial function. CONCLUSION These results indicated that MSC-CM or MSC-EVs containing abundant mitochondria may provide a novel potential therapeutic approach for AD.
Collapse
Affiliation(s)
- Zhihua Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Hongxia Sheng
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Li Liao
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Chen Xu
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Ang Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Yang Yang
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Long Zhao
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Lian Duan
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| |
Collapse
|
50
|
Chadha S, Behl T, Sehgal A, Kumar A, Bungau S. Exploring the role of mitochondrial proteins as molecular target in Alzheimer's disease. Mitochondrion 2020; 56:62-72. [PMID: 33221353 DOI: 10.1016/j.mito.2020.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Brain is a fully differentiated organ and is sensitive towards oxidative damage of various compounds including lipids, proteins, and DNA that occurs during process of normal aging and is mainly due to its high energy metabolism and reduced activity of anti-oxidative defense mechanism. Mitochondria are dynamic ATP-generating organelles which constitutes cellular functions such as regulation of intracellular calcium, bio-energetic processes, and reduction-oxidation of cells. Such functioning is negatively affected due to the presence of amyloid β peptide (Aβ) which is involved in pathogenesis of Alzheimer disease (AD). Aβ interacts with mitochondria and leads to mitochondrial dysfunction. Mitochondrial dysfunction, abnormal interactions, oxidative stress, and mis-folding of synaptic proteins inside nervous system are explored and regarded as primary or initial features in insurgence of pathology (AD and other neurological disease). The major histopathological hallmarks of AD are characterized by presence of these hallmarks intracellularly, its further progression and exacerbation which leads to excessive accumulation of oligomeric as well as fibrillar-β-amyloid peptides (present extracellularly) and accumulation of neurofibrillary tangles intracellularly. The current review will focus on alterations and variation in mitochondria/mitochondrial DNA (mtDNA) and the rationale for involvement of related abnormalities in pathogenesis of AD.
Collapse
Affiliation(s)
- Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Romania
| |
Collapse
|