1
|
Hasanabadi AJ, Beirami E, Kamaei M, Esfahani DE. Effect of imipramine on memory, adult neurogenesis, neuroinflammation, and mitochondrial biogenesis in a rat model of alzheimer's disease. Exp Gerontol 2024; 194:112517. [PMID: 38986856 DOI: 10.1016/j.exger.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and memory loss. Imipramine, a tricyclic antidepressant, has potent anti-inflammatory and antioxidant properties in the central nervous system. The aim of this study was to investigate the neuroprotective effects of imipramine on streptozotocin (STZ)-induced memory impairment. Male Wistar rats received an intracerebroventricular injection of STZ (3 mg/kg, 3 μl/ventricle) using the stereotaxic apparatus. The Morris water maze and passive avoidance tests were used to evaluate cognitive functions. 24 h after the STZ injection, imipramine was administered intraperitoneally at doses of 10 or 20 mg/kg for 14 consecutive days. The mRNA and protein levels of neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) were measured in the hippocampus using real-time PCR and ELISA techniques, respectively. In addition, real-time PCR was used to evaluate the mRNA levels of markers associated with neurogenesis (Nestin, DCX, and Ki67) and mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM). The results showed that imipramine, especially at a dose of 20 mg/kg, effectively improved STZ-induced memory impairment. This improvement was associated with an increase in neurogenesis and neurotrophic factors and a decrease in neuroinflammation and mitochondrial biogenesis dysfunction. Based on these results, imipramine appears to be a promising therapeutic option for improving cognitive functions in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mehdi Kamaei
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Delaram Eslimi Esfahani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
2
|
Wu X, Xu H, Zeng N, Li H, Yao G, Liu K, Yan C, Wu L. Luteolin alleviates depression-like behavior by modulating glycerophospholipid metabolism in the hippocampus and prefrontal cortex of LOD rats. CNS Neurosci Ther 2024; 30:e14455. [PMID: 37715585 PMCID: PMC10916417 DOI: 10.1111/cns.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Late-onset depression (LOD) is defined as primary depression that first manifests after the age of 65. Luteolin (LUT) is a natural flavonoid that has shown promising antidepressant effects and improvement in neurological function in previous studies. AIMS In this study, we utilized UPLC-MS/MS non-targeted metabolomics techniques, along with molecular docking technology and experimental validation, to explore the mechanism of LUT in treating LOD from a metabolomics perspective. RESULTS The behavioral results of our study demonstrate that LUT significantly ameliorated anxiety and depression-like behaviors while enhancing cognitive function in LOD rats. Metabolomic analysis revealed that the effects of LUT on LOD rats were primarily mediated through the glycerophospholipid metabolic pathway in the hippocampus and prefrontal cortex. The levels of key lipid metabolites, phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), in the glycerophospholipid metabolic pathway were significantly altered by LUT treatment, with PC and PE showing significant correlations with behavioral indices. Molecular docking analysis indicated that LUT had strong binding activity with phosphatidylserine synthase 1 (PTDSS1), phosphatidylserine synthase 2 (PTDSS2), and phosphatidylserine decarboxylase (PISD), which are involved in the transformation and synthesis of PC, PE, and PS. Lastly, our study explored the reasons for the opposing trends of PC, PE, and PS in the hippocampus and prefrontal cortex from the perspective of autophagy, which may be attributable to the bidirectional regulation of autophagy in distinct brain regions. CONCLUSIONS Our results revealed significant alterations in the glycerophospholipid metabolism pathways in both the hippocampus and prefrontal cortex of LOD rats. Moreover, LUT appears to regulate autophagy disorders by specifically modulating glycerophospholipid metabolism in different brain regions of LOD rats, consequently alleviating depression-like behavior in these animals.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Hanfang Xu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Ningxi Zeng
- Department of Rehabilitation Medicine, The People's Hospital of Longhua DistrictShenzhenChina
| | - Huizhen Li
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive DysfunctionJiangxi University of Chinese MedicineNanchangChina
| | - Gaolei Yao
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Kaige Liu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Can Yan
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Lili Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
3
|
Johnson NR, Wang ACJ, Coughlan C, Sillau S, Lucero E, Viltz L, Markham N, Allen C, Dhanasekaran AR, Chial HJ, Potter H. Imipramine and olanzapine block apoE4-catalyzed polymerization of Aβ and show evidence of improving Alzheimer’s disease cognition. Alzheimers Res Ther 2022; 14:88. [PMID: 35768831 PMCID: PMC9241285 DOI: 10.1186/s13195-022-01020-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023]
Abstract
Background The apolipoprotein E (APOE) ε4 allele confers the strongest risk for late-onset Alzheimer’s disease (AD) besides age itself, but the mechanisms underlying this risk are debated. One hypothesis supported by evidence from multiple labs is that apoE4 binds to the amyloid-β (Aβ) peptide and catalyzes its polymerization into neurotoxic oligomers and fibrils. Inhibiting this early step in the amyloid cascade may thereby reduce or prevent neurodegeneration and AD. Methods Using a design of experiments (DOE) approach, we developed a high-throughput assay to identify inhibitors of apoE4-catalyzed polymerization of Aβ into oligomers and fibrils. We used it to screen the NIH Clinical Collection of small molecule drugs tested previously in human clinical trials. We then evaluated the efficacy and cytotoxicity of the hit compounds in primary neuron models of apoE4-induced Aβ and phosphorylated tau aggregation. Finally, we performed retrospective analyses of the National Alzheimer’s Coordinating Center (NACC) clinical dataset, using Cox regression and Cox proportional hazards models to determine if the use of two FDA-approved hit compounds was associated with better cognitive scores (Mini-Mental State Exam), or improved AD clinical diagnosis, when compared with other medications of the same clinical indication. Results Our high-throughput screen identified eight blood-brain barrier (BBB)-permeable hit compounds that reduced apoE4-catalyzed Aβ oligomer and fibril formation in a dose-dependent manner. Five hit compounds were non-toxic toward cultured neurons and also reduced apoE4-promoted Aβ and tau neuropathology in a dose-dependent manner. Three of the five compounds were determined to be specific inhibitors of apoE4, whereas the other two compounds were Aβ or tau aggregation inhibitors. When prescribed to AD patients for their normal clinical indications, two of the apoE4 inhibitors, imipramine and olanzapine, but not other (non-hit) antipsychotic or antidepressant medications, were associated with improvements in cognition and clinical diagnosis, especially among APOE4 carriers. Conclusions The critical test of any proposed AD mechanism is whether it leads to effective treatments. Our high-throughput screen identified two promising FDA-approved drugs, imipramine and olanzapine, which have no structural, functional, or clinical similarities other than their shared ability to inhibit apoE4-catalyzed Aβ polymerization, thus identifying this mechanism as an essential contribution of apoE4 to AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01020-9.
Collapse
|
4
|
Espina JEC, Bagamasbad PD. Synergistic gene regulation by thyroid hormone and glucocorticoid in the hippocampus. VITAMINS AND HORMONES 2021; 118:35-81. [PMID: 35180933 DOI: 10.1016/bs.vh.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hippocampus is considered the center for learning and memory in the brain, and its development and function is greatly affected by the thyroid and stress axes. Thyroid hormone (TH) and glucocorticoids (GC) are known to have a synergistic effect on developmental programs across several vertebrate species, and their effects on hippocampal structure and function are well-documented. However, there are few studies that focus on the processes and genes that are cooperatively regulated by the two hormone axes. Cross-regulation of the thyroid and stress axes in the hippocampus occurs on multiple levels such that TH can regulate the expression of the GC receptor (GR) while GC can modulate tissue sensitivity to TH by controlling the expression of TH receptor (TR) and enzymes involved in TH biosynthesis. Thyroid hormone and GC are also known to synergistically regulate the transcription of genes associated with neuronal function and development. Synergistic gene regulation by TH and GC may occur through the direct, cooperative action of TR and GR on common target genes, or by indirect mechanisms involving gene regulatory cascades activated by TR and GR. In this chapter, we describe the known physiological effects and underlying molecular mechanisms of TH and GC synergistic gene regulation in the hippocampus.
Collapse
Affiliation(s)
- Jose Ezekiel C Espina
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
5
|
Yu Z, Li D, Zhai S, Xu H, Liu H, Ao M, Zhao C, Jin W, Yu L. Neuroprotective effects of macamide from maca ( Lepidium meyenii Walp.) on corticosterone-induced hippocampal impairments through its anti-inflammatory, neurotrophic, and synaptic protection properties. Food Funct 2021; 12:9211-9228. [PMID: 34606547 DOI: 10.1039/d1fo01720a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study aims to investigate the protective effects of N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide (M 18:3) on corticosterone-induced neurotoxicity. A neurotoxic model was established by subcutaneous injection of corticosterone (40 mg per kg bw) for 21 days. Depressive behaviors (the percentage of sucrose consumption, the immobility time in the forced swimming test, and the total distance in the open field test) were observed. The levels of the brain-derived neurotrophic factor, the contents of tumor necrosis factor-α and interleukin-6, and the numbers of positive cells of doublecortin and bromodeoxyuridine in the hippocampus were measured. The density of hippocampal neurons was calculated. The morphological changes of hippocampal neurons (the density of dendritic spines, the dendritic length, and the area and volume of dendritic cell bodies) were observed. The expression levels of synaptophysin, synapsin I, and postsynaptic density protein 95 were measured. Behavioral experiments showed that M 18:3 (5 and 25 mg per kg bw) could remarkably improve the depressive behaviors. The enzyme-linked immunosorbent assay showed that M 18:3 could considerably reduce hippocampal neuroinflammation and increase hippocampal neurotrophy. Nissl staining showed that M 18:3 could remarkably improve the corticosterone-induced decrease in the hippocampal neuron density. Immunofluorescence analysis showed that M 18:3 could considerably promote hippocampal neurogenesis. Golgi staining showed that M 18:3 could remarkably improve the corticosterone-induced changes in the hippocampal dendritic structure. Western blotting showed that M 18:3 could considerably increase the expression levels of synaptic-structure-related proteins in the hippocampus. In conclusion, the protective effects of M 18:3 may be attributed to the anti-inflammatory, neurotrophic, and synaptic protection properties.
Collapse
Affiliation(s)
- Zejun Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Ezhou Industrial Technology Research Institute, Huazhong University of Science and Technology, Ezhou, 436060, China
| | - Dong Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Ezhou Industrial Technology Research Institute, Huazhong University of Science and Technology, Ezhou, 436060, China
| | - Shengbing Zhai
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Ezhou Industrial Technology Research Institute, Huazhong University of Science and Technology, Ezhou, 436060, China
| | - Hang Xu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Ezhou Industrial Technology Research Institute, Huazhong University of Science and Technology, Ezhou, 436060, China
| | - Hao Liu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Ezhou Industrial Technology Research Institute, Huazhong University of Science and Technology, Ezhou, 436060, China
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Chunfang Zhao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Wenwen Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| |
Collapse
|
6
|
Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic Stress and Oxidative Stress as Common Factors of the Pathogenesis of Depression and Alzheimer's Disease: The Role of Antioxidants in Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10091439. [PMID: 34573069 PMCID: PMC8470444 DOI: 10.3390/antiox10091439] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a growing body of scientific research showing the link between depression and dementia in Alzheimer’s disease (AD). The chronic stress contributes to the formation of oxidative stress in the parts of the brain involved in the development of depression and AD. The scientific literature reports the significant role of antioxidants, which are highly effective in treating these diseases. In this review, we have summarized the relationship between chronic stress, oxidative stress, and the changes in the brain they cause occurring in the brain. Among all the compounds showing antioxidant properties, the most promising results in AD treatment were observed for Vitamin E, coenzyme Q10 (CoQ10), melatonin, polyphenols, curcumin, and selenium. In case of depression treatment, the greatest potential was observed in curcumin, zinc, selenium, vitamin E, and saffron.
Collapse
|
7
|
Chang J, Zhang Y, Shen N, Zhou J, Zhang H. MiR-129-5p prevents depressive-like behaviors by targeting MAPK1 to suppress inflammation. Exp Brain Res 2021; 239:3359-3370. [PMID: 34482419 DOI: 10.1007/s00221-021-06203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Depression is a complex etiological disease with limited effective treatments. Previous studies have indicated the involvement of miRNAs in the pathophysiology of mood disorders. In this study, we focused on the role and mechanisms of miR-129-5p in depression by successfully constructing mice models of depressive-like behavior via chronic unpredictable mild stress (CUMS) exposure. Herein, miR-129-5p expression was decreased in the hippocampus of CUMS mice model. Upregulation of miR-129-5p reduced depressive-like behaviors of CUMS mice, as revealed in sucrose preference test, novelty suppressed feeding test, forced swim test, tail suspension test, social interaction test. MiR-129-5p upregulation decreased the concentrations and protein levels of proinflammatory cytokines (IL-6, IL-1β and TNF-α), indicating the inhibitory role of miR-129-5p in inflammation. Furthermore, miR-129-5p was identified to target MAPK1. MAPK1 was negatively regulated by miR-129-5p, and silencing of MAPK1 attenuated depressive-like behaviors in CUMS mice. Moreover, MAPK1 downregulation decreased inflammation in the hippocampus of CUMS mice. Upregulation of MAPK1 reversed the suppressive effects of miR-129-5p upregulation on depressive-like behaviors and inflammation in CUMS mice. In conclusion, the current study identified that miR-129-5p reduces depressive-like behaviors and suppresses inflammation by targeting MAPK1 in CUMS mice, offering a novel molecular interpretation for depression prevention.
Collapse
Affiliation(s)
- Jie Chang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| | - Yanhong Zhang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China.
| | - Nianhong Shen
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China.
| | - Jingquan Zhou
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| | - Huan Zhang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| |
Collapse
|
8
|
Gong YS, Hou FL, Guo J, Lin L, Zhu FY. Effects of alcohol intake on cognitive function and β-amyloid protein in APP/PS1 transgenic mice. Food Chem Toxicol 2021; 151:112105. [PMID: 33737111 DOI: 10.1016/j.fct.2021.112105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/08/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022]
Abstract
To investigate the effects of alcohol intake on cognitive function and β-amyloid protein (Aβ) in APP/PS1 double-transgenic mice with Alzheimer's disease (AD). Sixty APP/PS1 transgenic male mice were randomized into seven groups: control group, 0.5% alcohol group, 1% alcohol group, 2% alcohol group, 3% alcohol group, and 4% alcohol group, with 10 non-transgenic B6C3F1 mice of the same genetic background as the negative control group. All mice were pair-fed a liquid diet containing alcohol before assessment of learning and memory using the Y-maze test, and of Aβ content and related enzyme activity on them. Immunohistochemistry was used to detect the expression of Aβ1-42, Aβ1-40, and β-amyloid precursor protein (β-APP) in the cerebral cortex. 3%, and 4% alcohol intake significantly impaired the learning and memory abilities. 2%, 3%, and 4% alcohol groups indicated a remarkable change in Aβ1-42 content, α-secretase and γ-secretase activities in the hippocampus, and β-APP in the cortex; 3% and 4% alcohol groups showed a significant increase in Aβ1-42 content, β-site amyloid cleavage enzyme 1 (BACE1) activity, and a significant decrease in α-secretase activity in the hippocampus or cortex; 2% and 3% alcohol groups showed a significant increase in Aβ1-40 content in the hippocampus or cortex; and 2%, 3%, and 4% alcohol groups showed an increase in the expression of Aβ1-42, Aβ1-40, and β-APP in the cortex; 1% alcohol groups showed a significant decline in the levels of Aβ1-42, Aβ1-40, β-APP, and BACE1 activity in the hippocampus, and γ-secretase activity in the hippocampus and cortex, and 1% alcohol group showed a significant increase of α-secretase activity in the hippocampus. Besides, 0.5% alcohol showed statistically significant effects on the reduction of BACE1 and γ-secretase activities in the hippocampus. Long-term intake of high-dose alcohol can induce cognitive deficits and improve the activity of β-APP decomposition-related enzymes, increase Aβ content and deposition, and initiate AD progression, while long-term intake of low-dose alcohol can antagonize excessive production of Aβ and slow down AD progression.
Collapse
Affiliation(s)
- Yu-Shi Gong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China.
| | - Fang-Li Hou
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Juan Guo
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Lin Lin
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Fu-Yong Zhu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| |
Collapse
|
9
|
Patchouli alcohol protects against chronic unpredictable mild stress-induced depressant-like behavior through inhibiting excessive autophagy via activation of mTOR signaling pathway. Biomed Pharmacother 2020; 127:110115. [PMID: 32244196 DOI: 10.1016/j.biopha.2020.110115] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022] Open
Abstract
Patchouli alcohol (PA), a tricyclic sesquiterpene, is the major chemical component of patchouli oil. This study investigated the antidepressant-like effect and mechanism of PA in chronic unpredictable mild stress (CUMS). Our results showed that PA markedly attenuated CUMS-induced depressant-like behaviors, including an effective increase of sucrose preference and spontaneous exploratory capacity, as well as reduction of immobility time. In addition, PA markedly attenuated CUMS-induced mTOR, p70S6K, and 4E-BP-1 phosphorylation reduction in the hippocampus. Furthermore, PA reversed CUMS-induced increases in LC3-II and p62 levels and CUMS-induced decrease in PSD-95 and SYN-I levels. These results indicated that the antidepressant-like effect of PA was correlated with the activation of the mTOR signaling pathway. Moreover, behavioral experimental results showed that the antidepressant-like effect of PA was blocked by rapamycin (autophagy inducer and mTOR inhibitor) and chloroquine (autophagic flux inhibitor). These results suggest that PA exerted antidepressant-like effect in CUMS rats through inhibiting autophagy, repairing synapse, and restoring autophagic flux in the hippocampus by activating the mTOR signaling pathway. The results render PA a promising antidepressant agent worthy of further development into a pharmaceutical drug for the treatment of depression.
Collapse
|
10
|
Brzezińska A, Bourke J, Rivera-Hernández R, Tsolaki M, Woźniak J, Kaźmierski J. Depression in Dementia or Dementia in Depression? Systematic Review of Studies and Hypotheses. Curr Alzheimer Res 2020; 17:16-28. [DOI: 10.2174/1567205017666200217104114] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 01/21/2023]
Abstract
The majority of research works to date suggest that Major Depressive Disorder (MDD) is a
risk factor for dementia and may predispose to cognitive decline in both early and late onset variants.
The presence of depression may not, however, reflect the cause, rather, an effect: it may be a response to
cognitive impairment or alters the threshold at which cognitive impairment might manifest or be detected.
An alternative hypothesis is that depression may be part of a prodrome to Alzheimer’s Disease
(AD), suggesting a neurobiological association rather than one of psychological response alone. Genetic
polymorphisms may explain some of the variances in shared phenomenology between the diagnoses, the
instance, when the conditions arise comorbidly, the order in which they are detected that may depend on
individual cognitive and physical reserves, as well as the medical history and individual vulnerability.
This hypothesis is biologically sound but has not been systematically investigated to date. The current
review highlights how genetic variations are involved in the development of both AD and MDD, and the
risk conferred by these variations on the expression of these two disorders comorbidly is an important
consideration for future studies of pathoaetiological mechanisms and in the stratification of study samples
for randomised controlled trials.
Collapse
Affiliation(s)
- Agnieszka Brzezińska
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Julius Bourke
- Centre for Psychiatry, Wolfson Institute for Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London E14NS, United Kingdom
| | - Rayito Rivera-Hernández
- Department of Psychiatry, Psychology, Legal Medicine and History of Medicine, University of Salamanca, Salamanca, Spain
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece, “George Papanicolaou” Hospital, Thessaloniki, Greece
| | - Joanna Woźniak
- Central Clinical Hospital of Medical University of Lodz, Lodz, Poland
| | - Jakub Kaźmierski
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Coordinated transcriptional regulation by thyroid hormone and glucocorticoid interaction in adult mouse hippocampus-derived neuronal cells. PLoS One 2019; 14:e0220378. [PMID: 31348800 PMCID: PMC6660079 DOI: 10.1371/journal.pone.0220378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 12/04/2022] Open
Abstract
The hippocampus is a well-known target of thyroid hormone (TH; e.g., 3,5,3’-triiodothyronine—T3) and glucocorticoid (GC; e.g., corticosterone—CORT) action. Despite evidence that TH and GC play critical roles in neural development and function, few studies have identified genes and patterns of gene regulation influenced by the interaction of these hormones at a genome-wide scale. In this study we investigated gene regulation by T3, CORT, and T3 + CORT in the mouse hippocampus-derived cell line HT-22. We treated cells with T3, CORT, or T3 + CORT for 4 hr before cell harvest and RNA isolation for microarray analysis. We identified 9 genes regulated by T3, 432 genes by CORT, and 412 genes by T3 + CORT. Among the 432 CORT-regulated genes, there were 203 genes that exhibited an altered CORT response in the presence of T3, suggesting that T3 plays a significant role in modulating CORT-regulated genes. We also found 80 genes synergistically induced, and 73 genes synergistically repressed by T3 + CORT treatment. We performed in silico analysis using publicly available mouse neuronal chromatin immunoprecipitation-sequencing datasets and identified a considerable number of synergistically regulated genes with TH receptor and GC receptor peaks mapping within 1 kb of chromatin marks indicative of hormone-responsive enhancer regions. Functional annotation clustering of synergistically regulated genes reveal the relevance of proteasomal-dependent degradation, neuroprotective effect of growth hormones, and neuroinflammatory responses as key pathways to how TH and GC may coordinately influence learning and memory. Taken together, our transcriptome data represents a promising exploratory dataset for further study of common molecular mechanisms behind synergistic TH and GC gene regulation, and identify specific genes and their role in processes mediated by cross-talk between the thyroid and stress axes in a mammalian hippocampal model system.
Collapse
|
12
|
The internal link of serum steroid hormones levels in insomnia, depression, and Alzheimer's disease rats: Is there an effective way to distinguish among these three diseases based on potential biomarkers? J Sep Sci 2019; 42:1833-1841. [DOI: 10.1002/jssc.201801298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 11/07/2022]
|
13
|
Cavaliere F, Fornarelli A, Bertan F, Russo R, Marsal-Cots A, Morrone LA, Adornetto A, Corasaniti MT, Bano D, Bagetta G, Nicotera P. The tricyclic antidepressant clomipramine inhibits neuronal autophagic flux. Sci Rep 2019; 9:4881. [PMID: 30890728 PMCID: PMC6424961 DOI: 10.1038/s41598-019-40887-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/12/2019] [Indexed: 11/10/2022] Open
Abstract
Antidepressants are commonly prescribed psychotropic substances for the symptomatic treatment of mood disorders. Their primary mechanism of action is the modulation of neurotransmission and the consequent accumulation of monoamines, such as serotonin and noradrenaline. However, antidepressants have additional molecular targets that, through multiple signaling cascades, may ultimately alter essential cellular processes. In this regard, it was previously demonstrated that clomipramine, a widely used FDA-approved tricyclic antidepressant, interferes with the autophagic flux and severely compromises the viability of tumorigenic cells upon cytotoxic stress. Consistent with this line of evidence, we report here that clomipramine undermines autophagosome formation and cargo degradation in primary dissociated neurons. A similar pattern was observed in the frontal cortex and liver of treated mice, as well as in the nematode Caenorhabditis elegans exposed to clomipramine. Together, our findings indicate that clomipramine may negatively regulate the autophagic flux in various tissues, with potential metabolic and functional implications for the homeostatic maintenance of differentiated cells.
Collapse
Affiliation(s)
- Federica Cavaliere
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Fabio Bertan
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | |
Collapse
|
14
|
You R, Ho YS, Hung CHL, Liu Y, Huang CX, Chan HN, Ho SL, Lui SY, Li HW, Chang RCC. Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation. Part Fibre Toxicol 2018; 15:28. [PMID: 29970116 PMCID: PMC6029039 DOI: 10.1186/s12989-018-0263-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
Background Silica nanoparticles (SiO2-NPs) are naturally enriched and broadly utilized in the manufacturing industry. While previous studies have demonstrated toxicity in neuronal cell lines after SiO2-NPs exposure, the role of SiO2-NPs in neurodegeneration is largely unknown. Here, we evaluated the effects of SiO2-NPs-exposure on behavior, neuropathology, and synapse in young adult mice and primary cortical neuron cultures. Results Male C57BL/6 N mice (3 months old) were exposed to either vehicle (sterile PBS) or fluorescein isothiocyanate (FITC)-tagged SiO2-NPs (NP) using intranasal instillation. Behavioral tests were performed after 1 and 2 months of exposure. We observed decreased social activity at both time points as well as anxiety and cognitive impairment after 2 months in the NP-exposed mice. NP deposition was primarily detected in the medial prefrontal cortex and the hippocampus. Neurodegeneration-like pathological changes, including reduced Nissl staining, increased tau phosphorylation, and neuroinflammation, were also present in the brains of NP-exposed mice. Furthermore, we observed NP-induced impairment in exocytosis along with decreased synapsin I and increased synaptophysin expression in the synaptosome fractions isolated from the frontal cortex as well as primary neuronal cultures. Extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were also activated in the frontal cortex of NP-exposed mice. Moreover, inhibition of ERK activation prevented NP-mediated changes in exocytosis in cultured neurons, highlighting a key role in the changes induced by NP exposure. Conclusions Intranasal instillation of SiO2-NPs results in mood dysfunction and cognitive impairment in young adult mice and causes neurodegeneration-like pathology and synaptic changes via ERK activation. Electronic supplementary material The online version of this article (10.1186/s12989-018-0263-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ran You
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,Present address: Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Clara Hiu-Ling Hung
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Yan Liu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chun-Xia Huang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Hei-Nga Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - See-Lok Ho
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - Sheung-Yeung Lui
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China. .,School of Biomedical Sciences, Rm. L4-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
15
|
Li D, Huang Y, Cheng B, Su J, Zhou WX, Zhang YX. Streptozotocin Induces Mild Cognitive Impairment at Appropriate Doses in Mice as Determined by Long-Term Potentiation and the Morris Water Maze. J Alzheimers Dis 2018; 54:89-98. [PMID: 27472873 DOI: 10.3233/jad-150979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and effective therapeutic drugs in the clinic are still lacking. Ideally, AD progression could be stopped at an early stage, such as at the mild cognitive impairment (MCI) stage. MCI refers to the clinical condition between normal aging and dementia. Patients with MCI experience memory loss but do not meet the criteria for the diagnosis of clinically probable AD. However, few MCI animal models have been established. Here, we used in vivo long-term potentiation (LTP) recording and the Morris water maze (MWM) to evaluate the effects of intracerebroventricular injection of streptozotocin (ICV-STZ) in mice. We found a relationship between cognitive behavior and LTP in vivo and determined the appropriate doses of STZ for a putative MCI animal model. Animals that received≥150μg of STZ exhibited cognitive impairment in the MWM test, and few changes in behavior tests were observed in animals receiving less than 150μg of STZ. In vivo LTP recordings revealed that the induction of LTP decreased significantly in STZ-treated animals, even at the lowest dose (25μg/mouse), in a dose-dependent manner. Pathology analysis revealed STZ-induced neuron loss in a dose-dependent manner, both in the cortex and in the hippocampus, as evidenced by a significantly decreased neuronal number in the cohort treated with 75μg of STZ/mouse. Our study indicated that a low dose (25μg/mouse) of STZ impaired neural plasticity; at a higher dose of 75μg/mouse STZ, further LTP deficits were noted along with induced neuronal loss in both the cortex and the hippocampus, which could be considered a possible MCI or pre-MCI animal model; and finally, at 150μg/mouse STZ, dementia was induced, feasibly indicating a state of AD.
Collapse
|
16
|
Stachowicz K. The role of DSCAM in the regulation of synaptic plasticity: possible involvement in neuropsychiatric disorders. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Gong YS, Hu K, Yang LQ, Guo J, Gao YQ, Song FL, Hou FL, Liang CY. Comparative effects of EtOH consumption and thiamine deficiency on cognitive impairment, oxidative damage, and β-amyloid peptide overproduction in the brain. Free Radic Biol Med 2017; 108:163-173. [PMID: 28342849 DOI: 10.1016/j.freeradbiomed.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/28/2017] [Accepted: 03/17/2017] [Indexed: 02/08/2023]
Abstract
The effects of chronic EtOH consumption, associated or not with thiamine deficiency (TD), on cognitive impairment, oxidative damage, and β-amyloid (Aβ) peptide accumulation in the brain were investigated in male C57BL/6 mice. We established an alcoholic mouse model by feeding an EtOH liquid diet, a TD mouse model by feeding a thiamine-depleted liquid diet, and an EtOH treatment associated with TD mouse model by feeding a thiamine-depleted EtOH liquid diet for 7 weeks. The learning and memory functions of the mice were detected through the Y-maze test. Biochemical parameters were measured using corresponding commercial kits. The Aβ expression in the hippocampus was observed by immunohistochemical staining. Several results were obtained. First, EtOH significantly reduced cognitive function by significantly decreasing the Glu content in the hippocampus; increasing the AChE activity in the cortex; and reducing the thiamine level, and superoxide dismutase (SOD), glutathione peroxidase (GPx), and choline acetyltransferase (ChAT) activities in both the hippocampus and cortex. The treatment also increased the levels of malondialdehyde (MDA), protein carbonyl, 8-hydroxydeoxyguanosine (8-OHdG), and nitric oxide (NO) and the activities of total nitric oxide synthase (tNOS), inducible nitric oxide synthase (iNOS), and monoamine oxidase B (MAO-B). Furthermore, EtOH enhanced the expression levels of Aβ1-42 and Aβ1-40 in the hippocampus. Second, TD induced the same dysfunctions caused by EtOH in the biochemical parameters, except for learning ability, 8-OHdG content, and GPx, tNOS, and AChE activities in the cortex. Third, the modification of MDA, protein carbonyl and NO levels, and GPx, iNOS, ChAT, and MAO-B activities in the brain induced by chronic EtOH treatment associated with TD was greater than that induced by EtOH or TD alone. The synergistic effects of EtOH and TD on Aβ1-40 and Glu release, as well as on SOD activity, depended on their actions on the hippocampus or cortex. These findings suggest that chronic EtOH consumption can induce TD, cognitive impairment, Aβ accumulation, oxidative stress injury, and neurotransmitter metabolic abnormalities. Furthermore, the association of chronic EtOH consumption with TD causes dramatic brain dysfunctions with a severe effect on the brain.
Collapse
Affiliation(s)
- Yu-Shi Gong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Kun Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lu-Qi Yang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Juan Guo
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yong-Qing Gao
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Feng-Lin Song
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Fang-Li Hou
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Cui-Yi Liang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
18
|
Monoamine oxidase A upregulated by chronic intermittent hypoxia activates indoleamine 2,3-dioxygenase and neurodegeneration. PLoS One 2017; 12:e0177940. [PMID: 28599322 PMCID: PMC5466431 DOI: 10.1371/journal.pone.0177940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/05/2017] [Indexed: 12/02/2022] Open
Abstract
Co-morbid depression is prevalent in patients with obstructive sleep apnea. Here we report that monoamine oxidase A (MAO-A) plays pathogenic roles in the comorbidity. We found that chronic intermittent hypoxia significantly increased the MAO-A expression in the rat hippocampus and markedly decreased the dendritic length and spine density in the pyramidal neurons with less pre- and post-synaptic proteins. The MAO-A upregulation resulted in increased 5-hydroxyindoleacetic acid/serotonin ratio, oxidative stress, leading to NF-κB activation, inflammation and apoptosis. Also, the expression of cytokine-responsive indoleamine 2,3-dioxygenase-1 (IDO-1) was significantly augmented in hypoxia, resulting in increased kynurenine/tryptophan ratio and lowered serotonin level in the hippocampus. Moreover, depressive-like behaviors were observed in the hypoxic rat. Administration of M30, a brain-selective MAO-A inhibitor with iron-chelating properties, prior to hypoxic treatment prevented the aberrant changes in the hippocampus and depressive behavior. In human SH-SY5Y cells expressing MAO-A but not MAO-B, hypoxia significantly increased the MAO-A expression, which was blocked by M30 or clorgyline. Collectively, the MAO-A upregulation induced by chronic intermittent hypoxia plays significant pathogenic role in oxidative stress, inflammation and IDO-1 activation resulting in serotonin depletion and neurodegeneration.
Collapse
|
19
|
Gong YS, Guo J, Hu K, Gao YQ, Hou FL, Song FL, Liang CY. Chronic Ethanol Consumption and Thiamine Deficiency Modulate β-Amyloid Peptide Level and Oxidative Stress in the Brain. Alcohol Alcohol 2017; 52:159-164. [PMID: 28182200 DOI: 10.1093/alcalc/agw095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/08/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Yu-Shi Gong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Juan Guo
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Kun Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yong-Qing Gao
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Fang-Li Hou
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Feng-Lin Song
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Cui-Yi Liang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
20
|
M30 Antagonizes Indoleamine 2,3-Dioxygenase Activation and Neurodegeneration Induced by Corticosterone in the Hippocampus. PLoS One 2016; 11:e0166966. [PMID: 27870896 PMCID: PMC5117770 DOI: 10.1371/journal.pone.0166966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/06/2016] [Indexed: 12/27/2022] Open
Abstract
Monoamine oxidases (MAO), downstream targets of glucocorticoid, maintain the turnover and homeostasis of monoamine neurotransmitters; yet, its pathophysiological role in monoamine deficiency, oxidative stress and neuroinflammation remains controversial. Protective effects of M30, a brain selective MAO inhibitor with iron-chelating antioxidant properties, have been shown in models of neurodegenerative diseases. This study aims to examine the neuroprotective mechanism of M30 against depressive-like behavior induced by corticosterone (CORT). Sprague-Dawley rats were given CORT subcutaneous injections with or without concomitant M30 administration for two weeks. CORT-treated rats exhibited depressive-like behavior with significant elevated levels of MAO activities, serotonin turnover, oxidative stress, neuroinflammation and apoptosis in the hippocampus with significant losses of synaptic proteins when compared to the control. The expression and activity of cytokine-responsive indoleamine 2,3-dioxygenase (IDO-1), a catabolic enzyme of serotonin and tryptophan, was significantly increased in the CORT-treated group with lowered levels of serotonin. Besides, CORT markedly reduced dendritic length and spine density. Remarkably, M30 administration neutralized the aberrant changes in the hippocampus and prevented the induction of depressive-like behavior induced by CORT. Our results suggest that M30 is neuroprotective against CORT-induced depression targeting elevated MAO activities that cause oxidative stress and neuroinflammation, resulting in IDO-1 activation, serotonin deficiency and neurodegeneration.
Collapse
|
21
|
Atorvastatin Protects from Aβ 1-40-Induced Cell Damage and Depressive-Like Behavior via ProBDNF Cleavage. Mol Neurobiol 2016; 54:6163-6173. [PMID: 27709490 DOI: 10.1007/s12035-016-0134-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
Intracerebroventricular (icv) amyloid-beta (Aβ)1-40 infusion to mice has been demonstrated to cause neurotoxicty and depressive-like behavior and it can be used to evaluate antidepressant and neuroprotective effect of drugs. Atorvastatin is a widely used statin that has demonstrated antidepressant-like effect in predictable animal behavioral models and neuroprotective effect against Aβ1-40 infusion. The purpose of this study was to determine the effect of in vivo atorvastatin treatment against Aβ1-40-induced changes in mood-related behaviors and biochemical parameters in ex vivo hippocampal slices from mice. Atorvastatin treatment (10 mg/kg, p.o., once a day for seven consecutive days) abolished depressive-like and anhedonic-like behaviors induced by Aβ1-40 (400 pmol/site, icv) infusion. Aβ1-40-induced hippocampal cell damage was reversed by atorvastatin treatment. Aβ1-40 infusion decreased glutamate uptake in hippocampal slices, and atorvastatin did not altered it. Glutamine synthetase activity was not altered by any treatment. Atorvastatin also increased hippocampal mature brain-derived neurotrophic factor (mBDNF)/precursor BDNF (proBDNF) ratio, suggesting an increase of proBDNF to mBDNF cleavage. Accordingly, increased tissue-type plasminogen activator (tPA) and p11 genic expression were observed in hippocampus of atorvastatin-treated mice. Atorvastatin displays antidepressant-like and neuroprotective effects against Aβ1-40-induced toxicity, and these effects may involve tPA- and p11-mediated cleavage of proBDNF to mBDNF.
Collapse
|
22
|
Liu SJ, Yang C, Zhang Y, Su RY, Chen JL, Jiao MM, Chen HF, Zheng N, Luo S, Chen YB, Quan SJ, Wang Q. Neuroprotective effect of β-asarone against Alzheimer's disease: regulation of synaptic plasticity by increased expression of SYP and GluR1. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1461-9. [PMID: 27143853 PMCID: PMC4841421 DOI: 10.2147/dddt.s93559] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim β-asarone, an active component of Acori graminei rhizome, has been reported to have neuroprotective effects in Alzheimer’s disease. As the underlying mechanism is not known, we investigated the neuroprotective effects of β-asarone in an APP/PS1 double transgenic mouse model and in NG108 cells. Materials and methods APPswe/PS1dE9 double transgenic male mice were randomly assigned to a model group, β-asarone treatment groups (21.2, 42.4, or 84.8 mg/kg/d), or donepezil treatment group (2 mg/kg/d). Donepezil treatment was a positive control, and background- and age-matched wild-type B6 mice were an external control group. β-asarone (95.6% purity) was dissolved in 0.8% Tween 80 and administered by gavage once daily for 2.5 months. Control and model animals received an equal volume of vehicle. After 2.5 months of treatment, behavior of all animals was evaluated in a Morris water maze. Expression of synaptophysin (SYP) and glutamatergic receptor 1 (G1uR1) in the hippocampus and cortex of the double transgenic mice was assayed by Western blotting. The antagonistic effects of β-asarone against amyloid-β peptide (Aβ) were investigated in vitro in the NG108-15 cell line. After 24 hours of incubation, cells were treated with 10 μm Aβ with or without β-asarone at different concentrations (6.25, 12.5, or 25 μM) for an additional 36 hours. The cytotoxicity of β-asarone was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay of cell viability, and cell morphology was evaluated by bright-field microscopy after 24 hours of treatment. The expression of SYP and GluR1 in cells was detected by Western blot assay in the hippocampus and brain cortex tissues of mice. Results β-asarone at a high dose reduced escape latency and upregulated SYP and GluR1 expression at both medium and high doses. Cell morphology evaluation showed that β-asarone treatment did not result in obvious cell surface spots and cytoplasmic granularity. β-asarone had a dose-dependent effect on cell proliferation. Conclusion β-asarone antagonized the Aβ neurotoxicity in vivo, improved the learning and memory ability of APP/PS1 mice, and increased the expression of SYP and GluR1 both in vivo and in vitro. Thus, β-asarone may be a potential drug for the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Si-Jun Liu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Cong Yang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yue Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Ru-Yu Su
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jun-Li Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Meng-Meng Jiao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Hui-Fang Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Na Zheng
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Si Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yun-Bo Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Shi-Jian Quan
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
23
|
Gong YS, Guo J, Hu K, Gao YQ, Xie BJ, Sun ZD, Yang EN, Hou FL. Ameliorative effect of lotus seedpod proanthocyanidins on cognitive impairment and brain aging induced by d-galactose. Exp Gerontol 2016; 74:21-8. [DOI: 10.1016/j.exger.2015.11.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/10/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022]
|
24
|
Ge JF, Xu YY, Qin G, Peng YN, Zhang CF, Liu XR, Liang LC, Wang ZZ, Chen FH. Depression-like Behavior Induced by Nesfatin-1 in Rats: Involvement of Increased Immune Activation and Imbalance of Synaptic Vesicle Proteins. Front Neurosci 2015; 9:429. [PMID: 26617482 PMCID: PMC4639614 DOI: 10.3389/fnins.2015.00429] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/22/2015] [Indexed: 11/13/2022] Open
Abstract
Depression is a multicausal disorder and has been associated with metabolism regulation and immuno-inflammatory reaction. The anorectic molecule nesfatin-1 has recently been characterized as a potential mood regulator, but its precise effect on depression and the possible mechanisms remain unknown, especially when given peripherally. In the present study, nesfatin-1 was intraperitoneally injected to the rats and the depression-like behavior and activity of the hypothalamic-pituitary-adrenal (HPA) axis were evaluated. The plasma concentrations of nesfatin-1, interleukin 6 (IL-6), and C-reactive protein (CRP); and the hypothalamic expression levels of nesfatin-1, synapsin I, and synaptotagmin I mRNA were evaluated in nesfatin-1 chronically treated rats. The results showed that both acute and chronic administration of nesfatin-1 increased immobility in the forced swimming test (FST), and resulted in the hyperactivity of HPA axis, as indicated by the increase of plasma corticosterone concentration and hypothalamic expression of corticotropin-releasing hormone (CRH) mRNA. Moreover, after chronic nesfatin-1 administration, the rats exhibited decreased activity and exploratory behavior in the open field test (OFT) and increased mRNA expression of synapsin I and synaptotagmin I in the hypothalamus. Furthermore, chronic administration of nesfatin-1 elevated plasma concentrations of IL-6 and CRP, which were positively correlated with despair behavior, plasma corticosterone level, and the hypothalamic mRNA expression of synapsin I and synaptotagmin I. These results indicated that exogenous nesfatin-1 could induce the immune-inflammatory activation, which might be a central hug linking the depression-like behavior and the imbalanced mRNA expression of synaptic vesicle proteins in the hypothalamus.
Collapse
Affiliation(s)
- Jin-Fang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University Anhui, China
| | - Ya-Yun Xu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University Anhui, China
| | - Gan Qin
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University Anhui, China
| | - Yao-Nan Peng
- Department of Clinical Medicine, The Second Clinical College of Anhui Medical University Anhui, China
| | - Chao-Feng Zhang
- Department of Clinical Medicine, The Second Clinical College of Anhui Medical University Anhui, China
| | - Xing-Rui Liu
- Department of Clinical Medicine, The Second Clinical College of Anhui Medical University Anhui, China
| | - Li-Chuan Liang
- Department of Clinical Medicine, The Second Clinical College of Anhui Medical University Anhui, China
| | - Zhong-Zheng Wang
- Department of Clinical Medicine, The Second Clinical College of Anhui Medical University Anhui, China
| | - Fei-Hu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University Anhui, China
| |
Collapse
|
25
|
Melamine Alters Glutamatergic Synaptic Transmission of CA3-CA1 Synapses Presynaptically Through Autophagy Activation in the Rat Hippocampus. Neurotox Res 2015; 29:135-42. [PMID: 26530910 DOI: 10.1007/s12640-015-9570-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
Abstract
Melamine is an industrial chemical that can cause central nervous system disorders including excitotoxicity and cognitive impairment. Its illegal use in powdered baby formula was the focus of a milk scandal in China in 2008. One of our previous studies showed that melamine impaired glutamatergic transmission in rat hippocampal CA1 pyramidal cells. However, the underlying mechanism of action of melamine is unclear, and it is unknown if the CA3-CA1 pathway is directly involved. In the present study, a whole-cell patch-clamp technique was employed to investigate the effect of melamine on the hippocampal CA3-CA1 pathway in vitro. Both the evoked excitatory postsynaptic current (eEPSC) and the paired-pulse ratio (PPR) were recorded. Furthermore, we examined whether autophagy was involved in glutamatergic transmission alterations induced by melamine. Our data showed that melamine significantly increased the amplitude of eEPSCs in a dose-dependent manner. Inhibition of the N-methyl-D-aspartic acid receptor did not prevent the increase in eEPSC amplitude. In addition, the PPR was remarkably decreased by a melamine concentration of 5 × 10(-5) g/mL. It was found that autophagy could be activated by melamine and an autophagy inhibitor, 3-MA, prevented the melamine-induced increase in eEPSC amplitude. Overall, our results show that melamine presynaptically alters glutamatergic synaptic transmission of hippocampal CA3-CA1 synapses in vitro and this is likely associated with autophagy alteration.
Collapse
|
26
|
Gao S, Li W, Zou W, Zhang P, Tian Y, Xiao F, Gu H, Tang X. H2S protects PC12 cells against toxicity of corticosterone by modulation of BDNF-TrkB pathway. Acta Biochim Biophys Sin (Shanghai) 2015; 47:915-24. [PMID: 26423115 DOI: 10.1093/abbs/gmv098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/24/2015] [Indexed: 12/31/2022] Open
Abstract
Corticosterone, one of the glucocorticoids, is toxic to neurons and plays an important role in depressive-like behavior and depression. We previously showed that hydrogen sulfide (H2S), a novel physiological mediator, plays an inhibitory role in depression. However, the mechanism underlying H2S-triggered antidepressant-like role is not clearly known. Brain-derived neurotrophic factor (BDNF), a neurotrophic factor, plays a neuroprotective role that is mediated by its high-affinity tropomysin-related kinase B (TrkB) receptor. In this study, to investigate the underlying mechanism of H2S-induced antidepressant-like role, we explored whether H2S could protect neurons against corticosterone-mediated cyctotoxicity and whether this protective role of H2S was involved in the regulation of BDNF-TrkB pathway. Our data demonstrated that sodium hydrosulfide (NaHS), the donor of H2S, could prevent corticosterone-induced cytotoxicity, apoptosis, accumulation of intracellular reactive oxygen species (ROS) and loss of mitochondrial membrane potential (MMP) in PC12 cells. NaHS not only induced the up-regulation of BDNF but also prevented the down-regulation of BDNF by corticosterone. It was also found that blocking BDNF-TrkB pathway by K252a, an inhibitor of TrkB, abolished the protection of H2S against corticosterone-induced cytotoxicity, apoptosis, accumulation of ROS, and loss of MMP. These results suggest that H2S protects against the neurotoxicity of corticosterone by modulation of the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Shenglan Gao
- Institute of Neuroscience, Medical College, University of South China, Hengyang 42100, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China
| | - Wenting Li
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Wei Zou
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Ping Zhang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Ying Tian
- Department of Biochemistry, Medical College, University of South China, Hengyang 421001, China
| | - Fan Xiao
- Institute of Neuroscience, Medical College, University of South China, Hengyang 42100, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China
| | - Hongfeng Gu
- Institute of Neuroscience, Medical College, University of South China, Hengyang 42100, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China
| | - Xiaoqing Tang
- Institute of Neuroscience, Medical College, University of South China, Hengyang 42100, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
27
|
Jo WK, Zhang Y, Emrich HM, Dietrich DE. Glia in the cytokine-mediated onset of depression: fine tuning the immune response. Front Cell Neurosci 2015. [PMID: 26217190 PMCID: PMC4498101 DOI: 10.3389/fncel.2015.00268] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a mood disorder of multifactorial origin affecting millions of people worldwide. The alarming estimated rates of prevalence and relapse make it a global public health concern. Moreover, the current setback of available antidepressants in the clinical setting is discouraging. Therefore, efforts to eradicate depression should be directed towards understanding the pathomechanisms involved in the hope of finding cost-effective treatment alternatives. The pathophysiology of MDD comprises the breakdown of different pathways, including the hypothalamus-pituitary-adrenal (HPA) axis, the glutamatergic system, and monoaminergic neurotransmission, affecting cognition and emotional behavior. Inflammatory cytokines have been postulated to be the possible link and culprit in the disruption of these systems. In addition, evidence from different studies suggests that impairment of glial functions appears to be a major contributor as well. Thus, the intricate role between glia, namely microglia and astrocytes, and the central nervous system's (CNSs) immune response is briefly discussed, highlighting the kynurenine pathway as a pivotal player. Moreover, evaluations of different treatment strategies targeting the inflammatory response are considered. The immuno-modulatory properties of vitamin D receptor (VDR) suggest that vitamin D is an attractive and plausible candidate in spite of controversial findings. Further research investigating the role of VDR in mood disorders is warranted.
Collapse
Affiliation(s)
- Wendy K Jo
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover Hannover, Germany
| | - Yuanyuan Zhang
- Clinic for Mental Health, Hannover Medical School Hannover, Germany
| | - Hinderk M Emrich
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover Hannover, Germany ; Clinic for Mental Health, Hannover Medical School Hannover, Germany
| | - Detlef E Dietrich
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover Hannover, Germany ; Clinic for Mental Health, Hannover Medical School Hannover, Germany ; Burghof-Klinik Rinteln, Germany
| |
Collapse
|
28
|
Xu ZP, Li L, Bao J, Wang ZH, Zeng J, Liu EJ, Li XG, Huang RX, Gao D, Li MZ, Zhang Y, Liu GP, Wang JZ. Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer's model. PLoS One 2014; 9:e108645. [PMID: 25268773 PMCID: PMC4182554 DOI: 10.1371/journal.pone.0108645] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/25/2014] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by profound synapse loss and impairments of learning and memory. Magnesium affects many biochemical mechanisms that are vital for neuronal properties and synaptic plasticity. Recent studies have demonstrated that the serum and brain magnesium levels are decreased in AD patients; however, the exact role of magnesium in AD pathogenesis remains unclear. Here, we found that the intraperitoneal administration of magnesium sulfate increased the brain magnesium levels and protected learning and memory capacities in streptozotocin-induced sporadic AD model rats. We also found that magnesium sulfate reversed impairments in long-term potentiation (LTP), dendritic abnormalities, and the impaired recruitment of synaptic proteins. Magnesium sulfate treatment also decreased tau hyperphosphorylation by increasing the inhibitory phosphorylation of GSK-3β at serine 9, thereby increasing the activity of Akt at Ser473 and PI3K at Tyr458/199, and improving insulin sensitivity. We conclude that magnesium treatment protects cognitive function and synaptic plasticity by inhibiting GSK-3β in sporadic AD model rats, which suggests a potential role for magnesium in AD therapy.
Collapse
Affiliation(s)
- Zhi-Peng Xu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Bao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Hao Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Zeng
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - En-Jie Liu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong-Xi Huang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Gao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Zhu Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Li Yuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong-Ping Liu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Protective effects of testosterone on presynaptic terminals against oligomeric β-amyloid peptide in primary culture of hippocampal neurons. BIOMED RESEARCH INTERNATIONAL 2014; 2014:103906. [PMID: 25045655 PMCID: PMC4086619 DOI: 10.1155/2014/103906] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022]
Abstract
Increasing lines of evidence support that testosterone may have neuroprotective effects. While observational studies reported an association between higher bioavailable testosterone or brain testosterone levels and reduced risk of Alzheimer's disease (AD), there is limited understanding of the underlying neuroprotective mechanisms. Previous studies demonstrated that testosterone could alleviate neurotoxicity induced by β-amyloid (Aβ), but these findings mainly focused on neuronal apoptosis. Since synaptic dysfunction and degeneration are early events during the pathogenesis of AD, we aim to investigate the effects of testosterone on oligomeric Aβ-induced synaptic changes. Our data suggested that exposure of primary cultured hippocampal neurons to oligomeric Aβ could reduce the length of neurites and decrease the expression of presynaptic proteins including synaptophysin, synaptotagmin, and synapsin-1. Aβ also disrupted synaptic vesicle recycling and protein folding machinery. Testosterone preserved the integrity of neurites and the expression of presynaptic proteins. It also attenuated Aβ-induced impairment of synaptic exocytosis. By using letrozole as an aromatase antagonist, we further demonstrated that the effects of testosterone on exocytosis were unlikely to be mediated through the estrogen receptor pathway. Furthermore, we showed that testosterone could attenuate Aβ-induced reduction of HSP70, which suggests a novel mechanism that links testosterone and its protective function on Aβ-induced synaptic damage. Taken together, our data provide further evidence on the beneficial effects of testosterone, which may be useful for future drug development for AD.
Collapse
|
30
|
Liu Z, Li X, Sun N, Xu Y, Meng Y, Yang C, Wang Y, Zhang K. Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder. PLoS One 2014; 9:e93388. [PMID: 24676134 PMCID: PMC3968145 DOI: 10.1371/journal.pone.0093388] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/04/2014] [Indexed: 12/22/2022] Open
Abstract
LncRNAs, which represent one of the most highly expressed classes of ncRNAs in the brain, are becoming increasingly interesting with regard to brain functions and disorders. However, changes in the expression of regulatory lncRNAs in Major Depressive Disorder (MDD) have not yet been reported. Using microarrays, we profiled the expression of 34834 lncRNAs and 39224 mRNAs in peripheral blood sampled from MDD patients as well as demographically-matched controls. Among these, we found that 2007 lncRNAs and 1667 mRNAs were differentially expressed, 17 of which were documented as depression-related gene in previous studies. Gene Ontology (GO) and pathway analyses indicated that the biological functions of differentially expressed mRNAs were related to fundamental metabolic processes and neurodevelopment diseases. To investigate the potential regulatory roles of the differentially expressed lncRNAs on the mRNAs, we also constructed co-expression networks composed of the lncRNAs and mRNAs, which shows significant correlated patterns of expression. In the MDD-derived network, there were a greater number of nodes and connections than that in the control-derived network. The lncRNAs located at chr10:874695-874794, chr10:75873456-75873642, and chr3:47048304-47048512 may be important factors regulating the expression of mRNAs as they have previously been reported associations with MDD. This study is the first to explore genome-wide lncRNA expression and co-expression with mRNA patterns in MDD using microarray technology. We identified circulating lncRNAs that are aberrantly expressed in MDD and the results suggest that lncRNAs may contribute to the molecular pathogenesis of MDD.
Collapse
Affiliation(s)
- Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xinrong Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yaqin Meng
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yanfang Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- * E-mail:
| |
Collapse
|