1
|
Nalepa M, Toczyłowska B, Owczarek A, Skweres A, Ziemińska E, Węgrzynowicz M. Striatum-enriched protein, arginase 2 localizes to medium spiny neurons and controls striatal metabolic profile. Neurochem Int 2025; 182:105907. [PMID: 39581474 DOI: 10.1016/j.neuint.2024.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Arginase 2 (Arg2) is the predominant arginase isoenzyme in the brain, however its distribution appears to be limited to selected, region-specific subpopulations of cells. Although striatum is highly enriched with Arg2, precise localization and function of striatal Arg2 have never been studied. Here, we confirm that Arg2 is the only arginase isoenzyme in the striatum, and, using genetic model of total Arg2 loss, we show that Arg2 in this region is fully responsible for arginase catalytic activity, and its loss doesn't induce compensatory activation of Arg1. We exhibit that Arg2 is present in medium spiny neurons (MSNs), striatum-specific projecting neurons, where it localizes in soma and neuronal processes, and is absent in astrocytes or microglia. Finally, analysis of NMR spectroscopy-measured metabolic profiles of striata of Arg2-null mice enabled to recognize two metabolites (NADH and malonic acid) to be significantly altered compared to control animals. Multivariate comparison of the data using orthogonal projections to latent structures discriminant analysis, allowed for discrimination between control and Arg2-null mice and identified metabolites that contributed the most to this between-group dissimilarity. Our study reveals for the first time the localization of Arg2 in MSNs and demonstrates significant role of this enzyme in regulating striatal metabolism. These findings may be especially interesting in the context of Huntington's disease (HD), a disorder that specifically affects MSNs and in which, with the use of mouse models, the onset of pathological phenotypes was recently shown to be preceded by progressive impairment of striatal Arg2, a phenomenon of an unknown significance for disease pathogenesis.
Collapse
Affiliation(s)
- Martyna Nalepa
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Toczyłowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Owczarek
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Skweres
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Ziemińska
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Węgrzynowicz
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Han X, Zhang B, Gong Q, Liu T, Wang C, Sun Y, Jia H, Pu Y, Hou Q, Yang X. The tolerable upper intake level of manganese alleviates Parkinson-like motor performance and neuronal loss by activating mitophagy. Free Radic Biol Med 2024; 225:665-676. [PMID: 39401732 DOI: 10.1016/j.freeradbiomed.2024.10.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Manganese (Mn2+) is among the indispensable trace elements required by the human body, but high-dose Mn2+ exposure can lead to Mn poisoning. Therefore, the tolerable upper intake level (UL) for Mn2+ has been established for normal individuals in different countries. However, whether the UL of Mn2+ is suitable for the patients of Parkinson's disease (PD) is unclear. Here, we found unexpectedly that the dietary UL of Mn2+ supplement enhanced mitophagy through the PINK1/Parkin-mediated ubiquitin-dependent pathway in MPTP- induced mice and cells. Mn2+ promoted mitochondrial biogenesis and dynamics, thereby increased the activity of the mitochondrial respiratory chain with restored mitochondrial function. Additionally, Mn2+ directly elevated the activity of mitochondrial superoxide dismutase (MnSOD), which contributed to the clearance of reactive oxygen species (ROS), restored dopaminergic and motor functions in the MPTP-induced PD mouse model. Similar results were also observed in SH-SY5Y cells, whereas knockdown parkin using siRNA or application of mitophagy inhibitors (Mdivi-1 or Cyclosporine A), abolished the neuroprotective effects of Mn2+. These findings demonstrate that the dietary UL of Mn2+ is protective for the MPTP-induced Parkinson-like lesions with the mechanisms involving the activation of mitophagy, suggesting potential intervention of PD by moderately increasing dietary Mn2+ intake.
Collapse
Affiliation(s)
- Xiao Han
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Bingge Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qichao Gong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tiansu Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China; School of Public Health, Guizhou Medical University, Guizhou, China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuguo Sun
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hongyi Jia
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Jinan University College of Pharmacy, Guangzhou, China
| | - Yinyan Pu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Department of Preventive Medicine, School of public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinghua Hou
- The Clinical Neuroscience Center, Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, China.
| | - Xifei Yang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| |
Collapse
|
3
|
Landau E. How a midwife became a neuroscientist to seek a cure for her son. Nature 2024:10.1038/d41586-024-02723-9. [PMID: 39164533 DOI: 10.1038/d41586-024-02723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
4
|
Wu J, Zhang Q, Ma M, Dong Y, Sun P, Gao M, Liu P, Wu X. Gray matter morphometric biomarkers for distinguishing manganese-exposed welders from healthy adults revealed by source-based morphometry. Neurotoxicology 2024; 103:222-229. [PMID: 38969182 DOI: 10.1016/j.neuro.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Chronic overexposure to manganese (Mn) may result in neurotoxicity, which is characterized by motor and cognitive dysfunctions. This study aimed to utilize multivariate source-based morphometry (SBM) to explore the biomarkers for distinguishing Mn-exposed welders from healthy controls (HCs). METHODS High-quality 3D T1-weighted MRI scans were obtained from 45 Mn-exposed full-time welders and 33 age-matched HCs in this study. After extracting gray matter structural covariation networks by SBM, multiple classic interaction linear models were applied to investigate distinct patterns in welders compared to HCs, and Z-transformed loading coefficients were compared between the two groups. A receiver operating characteristic (ROC) curve was used to identify potential biomarkers for distinguishing Mn-exposed welders from HCs. Additionally, we assessed the relationships between clinical features and gray matter volumes in the welders group. RESULTS A total of 78 subjects (45 welders, mean age 46.23±4.93 years; 33 HCs, mean age 45.55±3.40 years) were evaluated. SBM identified five components that differed between the groups. These components displayed lower loading weights in the basal ganglia, thalamus, default mode network (including the lingual gyrus and precuneus), and temporal lobe network (including the temporal pole and parahippocampus), as well as higher loading weights in the sensorimotor network (including the supplementary motor cortex). ROC analysis identified the highest classification power in the thalamic network. CONCLUSIONS Altered brain structures might be implicated in Mn overexposure-related disturbances in motivative modulation, cognitive control and information integration. These results encourage further studies that focus on the interaction mechanisms, including the basal ganglia network, thalamic network and default mode network. Our study identified potential neurobiological markers in Mn-exposed welders and illustrated the utility of a multivariate method of gray matter analysis.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaoying Zhang
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mingyue Ma
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Dong
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengfeng Sun
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Gao
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.
| | - Xiaoping Wu
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Pfalzer AC, Shiino S, Silverman J, Codreanu SG, Sherrod SD, McLean JA, Claassen DO. Alterations in Cerebrospinal Fluid Urea Occur in Late Manifest Huntington's Disease. J Huntingtons Dis 2024; 13:103-111. [PMID: 38461512 PMCID: PMC11238568 DOI: 10.3233/jhd-231511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Huntington's disease (HD) is a neurodegenerative disorder caused by expanded cytosine-adenine-guanine (CAG) repeats in the Huntingtin gene, resulting in the production of mutant huntingtin proteins (mHTT). Previous research has identified urea as a key metabolite elevated in HD animal models and postmortem tissues of HD patients. However, the relationship between disease course and urea elevations, along with the molecular mechanisms responsible for these disturbances remain unknown. Objective To better understand the molecular disturbances and timing of urea cycle metabolism across different stages in HD. Methods We completed a global metabolomic profile of cerebrospinal fluid (CSF) from individuals who were at several stages of disease: pre-manifest (PRE), manifest (MAN), and late manifest (LATE) HD participants, and compared to controls. Results Approximately 500 metabolites were significantly altered in PRE participants compared to controls, although no significant differences in CSF urea or urea metabolites were observed. CSF urea was significantly elevated in LATE participants only. There were no changes in the urea metabolites citrulline, ornithine, and arginine. Conclusions Overall, our study confirms that CSF elevations occur late in the HD course, and these changes may reflect accumulating deficits in cellular energy metabolism.
Collapse
Affiliation(s)
- Anna C Pfalzer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shuhei Shiino
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Silverman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simona G Codreanu
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - Stacy D Sherrod
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Pepe G, Capocci L, Marracino F, Realini N, Lenzi P, Martinello K, Bovier TF, Bichell TJ, Scarselli P, Di Cicco C, Bowman AB, Digilio FA, Fucile S, Fornai F, Armirotti A, Parlato R, Di Pardo A, Maglione V. Treatment with THI, an inhibitor of sphingosine-1-phosphate lyase, modulates glycosphingolipid metabolism and results therapeutically effective in experimental models of Huntington's disease. Mol Ther 2023; 31:282-299. [PMID: 36116006 PMCID: PMC9840122 DOI: 10.1016/j.ymthe.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.
Collapse
Affiliation(s)
| | | | | | - Natalia Realini
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | | | - Tiziana Francesca Bovier
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; Department of Pediatrics Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York 10032, NY, USA
| | - Terry Jo Bichell
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | | | | | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Filomena A Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Sergio Fucile
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Physiology and Pharmacology, Sapienza Rome University, Rome 00185, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rosanna Parlato
- Division for Neurodegenerative Diseases, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim Heidelberg University, Mannheim 68167, Germany
| | | | | |
Collapse
|
7
|
Pfalzer AC, Yan Y, Kang H, Totten M, Silverman J, Bowman AB, Erikson K, Claassen DO. Alterations in metal homeostasis occur prior to canonical markers in Huntington disease. Sci Rep 2022; 12:10373. [PMID: 35725749 PMCID: PMC9209499 DOI: 10.1038/s41598-022-14169-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/02/2022] [Indexed: 12/05/2022] Open
Abstract
The importance of metal biology in neurodegenerative diseases such as Huntingtin Disease is well documented with evidence of direct interactions between metals such as copper, zinc, iron and manganese and mutant Huntingtin pathobiology. To date, it is unclear whether these interactions are observed in humans, how this impacts other metals, and how mutant Huntington alters homeostatic mechanisms governing levels of copper, zinc, iron and manganese in cerebrospinal fluid and blood in HD patients. Plasma and cerebrospinal fluid from control, pre-manifest, manifest and late manifest HD participants were collected as part of HD-Clarity. Levels of cerebrospinal fluid and plasma copper, zinc, iron and manganese were measured as well as levels of mutant Huntingtin and neurofilament in a sub-set of cerebrospinal fluid samples. We find that elevations in cerebrospinal fluid copper, manganese and zinc levels are altered early in disease prior to alterations in canonical biomarkers of HD although these changes are not present in plasma. We also evidence that CSF iron is elevated in manifest patients. The relationships between plasma and cerebrospinal fluid metal are altered based on disease stage. These findings demonstrate that there are alterations in metal biology selectively in the CSF which occur prior to changes in known canonical biomarkers of disease. Our work indicates that there are pathological changes related to alterations in metal biology in individuals without elevations in neurofilament and mutant Huntingtin.
Collapse
Affiliation(s)
- Anna C. Pfalzer
- grid.412807.80000 0004 1936 9916Department of Neurology, Vanderbilt University Medical Center, 1611 21st Avenue South, Suite 1532, Nashville, TN 37232 USA
| | - Yan Yan
- grid.412807.80000 0004 1936 9916Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN USA
| | - Hakmook Kang
- grid.412807.80000 0004 1936 9916Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN USA
| | - Melissa Totten
- grid.266860.c0000 0001 0671 255XDepartment of Nutrition, University of North Carolina-Greensboro, Greensboro, NC USA
| | - James Silverman
- grid.412807.80000 0004 1936 9916Department of Neurology, Vanderbilt University Medical Center, 1611 21st Avenue South, Suite 1532, Nashville, TN 37232 USA
| | - Aaron B. Bowman
- grid.169077.e0000 0004 1937 2197School of Health Sciences, Purdue University, West Lafayette, IN USA
| | - Keith Erikson
- grid.266860.c0000 0001 0671 255XDepartment of Nutrition, University of North Carolina-Greensboro, Greensboro, NC USA
| | - Daniel O. Claassen
- grid.412807.80000 0004 1936 9916Department of Neurology, Vanderbilt University Medical Center, 1611 21st Avenue South, Suite 1532, Nashville, TN 37232 USA
| |
Collapse
|
8
|
Firth G, Blower JE, Bartnicka JJ, Mishra A, Michaels AM, Rigby A, Darwesh A, Al-Salemee F, Blower PJ. Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics". RSC Chem Biol 2022; 3:495-518. [PMID: 35656481 PMCID: PMC9092424 DOI: 10.1039/d2cb00033d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Several specific metallic elements must be present in the human body to maintain health and function. Maintaining the correct quantity (from trace to bulk) and location at the cell and tissue level is essential. The study of the biological role of metals has become known as metallomics. While quantities of metals in cells and tissues can be readily measured in biopsy and autopsy samples by destructive analytical techniques, their trafficking and its role in health and disease are poorly understood. Molecular imaging with radionuclides - positron emission tomography (PET) and single photon emission computed tomography (SPECT) - is emerging as a means to non-invasively study the acute trafficking of essential metals between organs, non-invasively and in real time, in health and disease. PET scanners are increasingly widely available in hospitals, and methods for producing radionuclides of some of the key essential metals are developing fast. This review summarises recent developments in radionuclide imaging technology that permit such investigations, describes the radiological and physicochemical properties of key radioisotopes of essential trace metals and useful analogues, and introduces current and potential future applications in preclinical and clinical investigations to study the biology of essential trace metals in health and disease.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aishwarya Mishra
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aidan M Michaels
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Alex Rigby
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Afnan Darwesh
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| |
Collapse
|
9
|
Wilcox JM, Pfalzer AC, Tienda AA, Debbiche IF, Cox EC, Totten MS, Erikson KM, Harrison FE, Bowman AB. YAC128 mouse model of Huntington disease is protected against subtle chronic manganese (Mn)-induced behavioral and neuropathological changes. Neurotoxicology 2021; 87:94-105. [PMID: 34543681 PMCID: PMC8761387 DOI: 10.1016/j.neuro.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023]
Abstract
Manganese (Mn) is an essential micronutrient but excessive levels induce neurotoxic effects. Increasing evidence suggests a deficit of bioavailable Mn in Huntington disease (HD), an inherited neurodegenerative disease characterized by motor and cognitive disturbances. Previous studies have shown rescue of some molecular HD phenotypes by acute Mn exposure. This study simultaneously examined the potential for chronic Mn exposure to attenuate HD behavioral phenotypes, and for the HD genotype to offer protection against detrimental effects of chronic Mn exposure. In two independent studies a chronic Mn exposure paradigm was implemented in the YAC128 mouse model of HD and behavior was assessed at several timepoints. Study 1 exposed WT and YAC128 mice to twice weekly subcutaneous injections of 0, 5, 15, or 50 mg/kg MnCl[2] tetrahydrate from 12 to 32 weeks of age. A promising protective effect against motor coordination decline in 5 mg/kg MnCl[2] tetrahydrate-treated YAC128 mice was detected. Study 2 thus exposed WT and YAC128 mice to either 0 or 5 mg/kg MnCl[2] tetrahydrate from 12 to 52 weeks of age (with a partial randomized treatment crossover at 31 weeks). The same protective effect was not observed under these conditions at higher statistical power. We report subtle toxicological changes in exploratory behavior and total activity induced by chronic Mn exposure in WT mice only, despite similar total increases in brain Mn in WT and YAC128 mice. Further, chronic Mn treatment resulted in a 10-12 % decrease in striatal NeuN positive cell density in WT mice but not YAC128 mice, despite vehicle cell counts already being reduced compared to WT mice as expected for the HD genotype. The subtle changes observed in specific outcome measures, but not others, following long-term low-level Mn exposure in WT mice delineate the neurobehavioral and neuropathological effects at the threshold of chronic Mn toxicity. We conclude that these chronic low-dose Mn exposures do not significantly rescue behavioral HD phenotypes, but YAC2128 mice are protected against the subtle Mn-induced behavioral changes and decreased striatal neuron density observed in Mn-exposed WT mice.
Collapse
Affiliation(s)
- Jordyn M Wilcox
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Anna C Pfalzer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Adriana A Tienda
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ines F Debbiche
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Ellen C Cox
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Melissa S Totten
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, NC, United States
| | - Keith M Erikson
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, NC, United States
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
10
|
|
11
|
Budinger D, Barral S, Soo AKS, Kurian MA. The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol 2021; 20:956-968. [PMID: 34687639 DOI: 10.1016/s1474-4422(21)00238-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Manganese is an essential trace metal. The dysregulation of manganese seen in a broad spectrum of neurological disorders reflects its importance in brain development and key neurophysiological processes. Historically, the observation of acquired manganism in miners and people who misuse drugs provided early evidence of brain toxicity related to manganese exposure. The identification of inherited manganese transportopathies, which cause neurodevelopmental and neurodegenerative syndromes, further corroborates the neurotoxic potential of this element. Moreover, manganese dyshomoeostasis is also implicated in Parkinson's disease and other neurodegenerative conditions, such as Alzheimer's disease and Huntington's disease. Ongoing and future research will facilitate the development of better targeted therapeutical strategies than are currently available for manganese-associated neurological disorders.
Collapse
Affiliation(s)
- Dimitri Budinger
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Audrey K S Soo
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK; Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK; Department of Neurology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
12
|
Hashimoto M, Watanabe K, Miyoshi K, Koyanagi Y, Tadano J, Miyawaki I. Multiplatform metabolomic analysis of the R6/2 mouse model of Huntington's disease. FEBS Open Bio 2021; 11:2807-2818. [PMID: 34469070 PMCID: PMC8487039 DOI: 10.1002/2211-5463.13285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Huntington's disease (HD) is a progressive, neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. To investigate the metabolic alterations that occur in HD, here we examined plasma and whole-brain metabolomic profiles of the R6/2 mouse model of HD. Plasma and brain metabolomic analyses were conducted using capillary electrophoresis-mass spectrometry (CE-MS). In addition, liquid chromatography-mass spectrometry (LC-MS) was also applied to plasma metabolomic analyses, to cover the broad range of metabolites with various physical and chemical properties. Various metabolic alterations were identified in R6/2 mice. We report for the first time the perturbation of histidine metabolism in the brain of R6/2 mice, which was signaled by decreases in neuroprotective dipeptides and histamine metabolites, indicative of neurodegeneration and an altered histaminergic system. Other differential metabolites were related to arginine metabolism and cysteine and methionine metabolism, suggesting upregulation of the urea cycle, perturbation of energy homeostasis, and an increase in oxidative stress. In addition, remarkable changes in specific lipid classes are indicative of dysregulation of lipid metabolism. These findings provide a deeper insight into the metabolic alterations that occur in HD and provide a foundation for the future development of HD therapeutics.
Collapse
Affiliation(s)
- Masayo Hashimoto
- Preclinical Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| | - Kenichi Watanabe
- Preclinical Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| | - Kan Miyoshi
- Pharmacology Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| | - Yukako Koyanagi
- Pharmacology Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| | - Jun Tadano
- Preclinical Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| | - Izuru Miyawaki
- Preclinical Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| |
Collapse
|
13
|
Tinkov AA, Paoliello MMB, Mazilina AN, Skalny AV, Martins AC, Voskresenskaya ON, Aaseth J, Santamaria A, Notova SV, Tsatsakis A, Lee E, Bowman AB, Aschner M. Molecular Targets of Manganese-Induced Neurotoxicity: A Five-Year Update. Int J Mol Sci 2021; 22:4646. [PMID: 33925013 PMCID: PMC8124173 DOI: 10.3390/ijms22094646] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding of the immediate mechanisms of Mn-induced neurotoxicity is rapidly evolving. We seek to provide a summary of recent findings in the field, with an emphasis to clarify existing gaps and future research directions. We provide, here, a brief review of pertinent discoveries related to Mn-induced neurotoxicity research from the last five years. Significant progress was achieved in understanding the role of Mn transporters, such as SLC39A14, SLC39A8, and SLC30A10, in the regulation of systemic and brain manganese handling. Genetic analysis identified multiple metabolic pathways that could be considered as Mn neurotoxicity targets, including oxidative stress, endoplasmic reticulum stress, apoptosis, neuroinflammation, cell signaling pathways, and interference with neurotransmitter metabolism, to name a few. Recent findings have also demonstrated the impact of Mn exposure on transcriptional regulation of these pathways. There is a significant role of autophagy as a protective mechanism against cytotoxic Mn neurotoxicity, yet also a role for Mn to induce autophagic flux itself and autophagic dysfunction under conditions of decreased Mn bioavailability. This ambivalent role may be at the crossroad of mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis. Yet very recent evidence suggests Mn can have toxic impacts below the no observed adverse effect of Mn-induced mitochondrial dysfunction. The impact of Mn exposure on supramolecular complexes SNARE and NLRP3 inflammasome greatly contributes to Mn-induced synaptic dysfunction and neuroinflammation, respectively. The aforementioned effects might be at least partially mediated by the impact of Mn on α-synuclein accumulation. In addition to Mn-induced synaptic dysfunction, impaired neurotransmission is shown to be mediated by the effects of Mn on neurotransmitter systems and their complex interplay. Although multiple novel mechanisms have been highlighted, additional studies are required to identify the critical targets of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Monica M. B. Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, PR 86038-350, Brazil
| | - Aksana N. Mazilina
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Laboratory of Medical Elementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| | - Olga N. Voskresenskaya
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Jan Aaseth
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Mexico City 14269, Mexico;
| | - Svetlana V. Notova
- Institute of Bioelementology, Orenburg State University, 460018 Orenburg, Russia;
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Aristides Tsatsakis
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13 Heraklion, Greece
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA;
| | - Michael Aschner
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| |
Collapse
|
14
|
Tukker AM, Royal CD, Bowman AB, McAllister KA. The Impact of Environmental Factors on Monogenic Mendelian Diseases. Toxicol Sci 2021; 181:3-12. [PMID: 33677604 PMCID: PMC8599782 DOI: 10.1093/toxsci/kfab022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Environmental factors and gene-environment interactions modify the variable expressivity, progression, severity, and onset of some classic (monogenic) Mendelian-inherited genetic diseases. Cystic fibrosis, Huntington disease, Parkinson's disease, and sickle cell disease are examples of well-known Mendelian disorders that are influenced by exogenous exposures. Environmental factors may act by direct or indirect mechanisms to modify disease severity, timing, and presentation, including through epigenomic influences, protein misfolding, miRNA alterations, transporter activity, and mitochondrial effects. Because pathological features of early-onset Mendelian diseases can mimic later onset complex diseases, we propose that studies of environmental exposure vulnerabilities using monogenic model systems of rare Mendelian diseases have high potential to provide insight into complex disease phenotypes arising from multi-genetic/multi-toxicant interactions. Mendelian disorders can be modeled by homologous mutations in animal model systems with strong recapitulation of human disease etiology and natural history, providing an important advantage for study of these diseases. Monogenic high penetrant mutations are ideal for toxicant challenge studies with a wide variety of environmental stressors, because background genetic variability may be less able to alter the relatively strong phenotype driving disease-causing mutations. These models promote mechanistic understandings of gene-environment interactions and biological pathways relevant to both Mendelian and related sporadic complex disease outcomes by creating a sensitized background for relevant environmental risk factors. Additionally, rare disease communities are motivated research participants, creating the potential of strong research allies among rare Mendelian disease advocacy groups and disease registries and providing a variety of translational opportunities that are under-utilized in genetic or environmental health science.
Collapse
Affiliation(s)
- Anke M Tukker
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907-2051
| | - Charmaine D Royal
- Departments of African and African American Studies, Biology, Global Health, and Family Medicine and Community Health and Center on Genomics, Race, Identity, Difference, Duke University, Durham, North Carolina 27708
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907-2051
| | - Kimberly A McAllister
- Genes Environment and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
15
|
Horning KJ, Tang X, Thomas MG, Aschner M, Bowman AB. Identification of Three Small Molecules That Can Selectively Influence Cellular Manganese Levels in a Mouse Striatal Cell Model. Molecules 2021; 26:molecules26041175. [PMID: 33671818 PMCID: PMC7931103 DOI: 10.3390/molecules26041175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/03/2022] Open
Abstract
Manganese (Mn) is a biologically essential metal, critical as a cofactor for numerous enzymes such a glutamine synthetase and kinases such as ataxia-telangiectasia mutated (ATM). Similar to other essential metals such as iron and zinc, proper levels of Mn need to be achieved while simultaneously being careful to avoid excess levels of Mn that can be neurotoxic. A lifetime of occupational exposure to Mn can often lead to a Parkinsonian condition, also known as “manganism”, characterized by impaired gait, muscle spasms, and tremors. Despite the importance of its regulation, the mechanisms underlying the transport and homeostasis of Mn are poorly understood. Rather than taking a protein or gene-targeted approach, our lab recently took a high-throughput-screening approach to identify 41 small molecules that could significantly increase or decrease intracellular Mn in a neuronal cell model. Here, we report characterization of these small molecules, which we refer to as the “Mn toolbox”. We adapted a Fura-2-based assay for measuring Mn concentration and for measuring relative concentrations of other divalent metals: nickel, copper, cobalt, and zinc. Of these 41 small molecules, we report here the identification of three that selectively influence cellular Mn but do not influence the other divalent metals tested. The patterns of activity across divalent metals and the discovery of Mn-selective small molecules has potential pharmacological and scientific utility.
Collapse
Affiliation(s)
- Kyle J. Horning
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
| | - Xueqi Tang
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA; (X.T.); (M.G.T.)
| | - Morgan G. Thomas
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA; (X.T.); (M.G.T.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, New York, NY 10461, USA
- Correspondence: (M.A.); (A.B.B.)
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA; (X.T.); (M.G.T.)
- Correspondence: (M.A.); (A.B.B.)
| |
Collapse
|
16
|
Martins AC, Krum BN, Queirós L, Tinkov AA, Skalny AV, Bowman AB, Aschner M. Manganese in the Diet: Bioaccessibility, Adequate Intake, and Neurotoxicological Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12893-12903. [PMID: 32298096 DOI: 10.1021/acs.jafc.0c00641] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) is an essential element that participates in several biological processes. Mn serves as a cofactor for several enzymes, such as glutamine synthetase and oxidoreductases, that have an important role in the defense of the organisms against oxidative stress. The diet is the main source of Mn intake for humans, and adequate daily intake levels for this metal change with age. Moreover, in higher amounts, Mn may be toxic, mainly to the brain. Here, we provide an overview of Mn occurrence in food, addressing its bioaccessibility and discussing the dietary standard and recommended intake of Mn consumption. In addition, we review some mechanisms underlying Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Bárbara Nunes Krum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Post-Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Libânia Queirós
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Molecular of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexey A Tinkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Yaroslavl State University Yaroslavl, 150003, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg 460000, Russia
| | - Anatoly V Skalny
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Yaroslavl State University Yaroslavl, 150003, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| |
Collapse
|
17
|
Martins AC, Gubert P, Villas Boas GR, Paes MM, Santamaría A, Lee E, Tinkov AA, Bowman AB, Aschner M. Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Rev Neurother 2020; 20:1109-1121. [PMID: 32799578 PMCID: PMC7657997 DOI: 10.1080/14737175.2020.1807330] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion disease represent important public health concerns. Exposure to high levels of heavy metals such as manganese (Mn) may contribute to their development. AREAS COVERED In this critical review, we address the role of Mn in the etiology of neurodegenerative diseases and discuss emerging treatments of Mn overload, such as chelation therapy. In addition, we discuss natural and synthetic compounds under development as prospective therapeutics. Moreover, bioinformatic approaches to identify new potential targets and therapeutic substances to reverse the neurodegenerative diseases are discussed. EXPERT OPINION Here, the authors highlight the importance of better understanding the molecular mechanisms of toxicity associated with neurodegenerative diseases, and the role of Mn in these diseases. Additional emphasis should be directed to the discovery of new agents to treat Mn-induced diseases, since present day chelator therapies have limited bioavailability. Furthermore, the authors encourage the scientific community to develop research using libraries of compounds to screen those compounds that show efficacy in regulating brain Mn levels. In addition, bioinformatics may provide novel insight for pathways and clinical treatments associated with Mn-induced neurodegeneration, leading to a new direction in Mn toxicological research.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Priscila Gubert
- Department of Biochemistry, Laboratory of Immunopathology Keizo Asami, LIKA, Federal, University of Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Gustavo R Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Alexey A. Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
18
|
Yan DY, Xu B. The Role of Autophagy in Manganese-Induced Neurotoxicity. Front Neurosci 2020; 14:574750. [PMID: 33041767 PMCID: PMC7522436 DOI: 10.3389/fnins.2020.574750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Manganese (Mn), an essential micronutrient, acts as a cofactor for multiple enzymes. Epidemiological investigations have shown that an excessive level of Mn is an important environmental factor involved in neurotoxicity. Frequent pollution of air and water by Mn is a serious threat to the health of the population. Overexposure to Mn is particularly detrimental to the central nervous system, leading to symptoms similar to several neurological disorders. Many different mechanisms have been implicated in Mn-induced neurotoxicity, including oxidative/nitrosative stress, toxic protein aggregation, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, dysregulation of autophagy, and the apoptotic cascade, which together promote the progressive neurodegeneration of nerve cells. As a compensatory regulatory mechanism, autophagy plays dual roles in various biological activities under pathological stress conditions. Dysregulation of autophagy is involved in the development of neurodegenerative disorders, with recent emerging evidence indicating a strong, complex relationship between autophagy and Mn-induced neurotoxicity. This review discusses the connection between autophagy and Mn-induced neurotoxicity, especially alpha-synuclein oligomerization, ER stress, and aberrated protein S-nitrosylation, which will provide new insights to profoundly explore the precise mechanisms of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Dong-Ying Yan
- Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
19
|
Warren EB, Bryan MR, Morcillo P, Hardeman KN, Aschner M, Bowman AB. Manganese-induced Mitochondrial Dysfunction Is Not Detectable at Exposures Below the Acute Cytotoxic Threshold in Neuronal Cell Types. Toxicol Sci 2020; 176:446-459. [PMID: 32492146 PMCID: PMC7416316 DOI: 10.1093/toxsci/kfaa079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Manganese (Mn) is an essential metal, but excessive exposures have been well-documented to culminate in neurotoxicity. Curiously, the precise mechanisms of Mn neurotoxicity are still unknown. One hypothesis suggests that Mn exerts its toxicity by inhibiting mitochondrial function, which then (if exposure levels are high and long enough) leads to cell death. Here, we used a Huntington's disease cell model with known differential sensitivities to manganese-STHdhQ7/Q7 and STHdhQ111/Q111 cells-to examine the effects of acute Mn exposure on mitochondrial function. We determined toxicity thresholds for each cell line using both changes in cell number and caspase-3/7 activation. We used a range of acute Mn exposures (0-300 µM), both above and below the cytotoxic threshold, to evaluate mitochondria-associated metabolic balance, mitochondrial respiration, and substrate dependence. In both cell lines, we observed no effect on markers of mitochondrial function at subtoxic Mn exposures (below detectable levels of cell death), yet at supratoxic exposures (above detectable levels of cell death) mitochondrial function significantly declined. We validated these findings in primary striatal neurons. In cell lines, we further observed that subtoxic Mn concentrations do not affect glycolytic function or major intracellular metabolite quantities. These data suggest that in this system, Mn exposure impairs mitochondrial function only at concentrations coincident with or above the initiation of cell death and is not consistent with the hypothesis that mitochondrial dysfunction precedes or induces Mn cytotoxicity.
Collapse
Affiliation(s)
- Emily B Warren
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Miles R Bryan
- Departments of Pediatrics and Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Keisha N Hardeman
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Aaron B Bowman
- Departments of Pediatrics and Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
20
|
Pfalzer AC, Wilcox JM, Codreanu SG, Totten M, Bichell TJV, Halbesma T, Umashanker P, Yang KL, Parmalee NL, Sherrod SD, Erikson KM, Harrison FE, McLean JA, Aschner M, Bowman AB. Huntington's disease genotype suppresses global manganese-responsive processes in pre-manifest and manifest YAC128 mice. Metallomics 2020; 12:1118-1130. [PMID: 32421118 PMCID: PMC7773276 DOI: 10.1039/d0mt00081g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Manganese (Mn) is an essential micronutrient required for the proper function of several enzymes. Accumulating evidence demonstrates a selective decrease of bioavailable Mn in vulnerable cell types of Huntington's Disease (HD), an inherited progressive neurodegenerative disorder with no cure. Amelioration of underlying pathophysiology, such as alterations in Mn-dependent biology, may be therapeutic. We therefore sought to investigate global Mn-dependent and Mn-responsive biology following various Mn exposures in a mouse model of HD. YAC128 and wildtype (WT) littermate control mice received one of three different Mn exposure paradigms by subcutaneous injection of 50 mg kg-1 MnCl2·4(H2O) across two distinct HD disease stages. "Pre-manifest" (12-week old mice) mice received either a single (1 injection) or week-long (3 injections) exposure of Mn or vehicle (H2O) and were sacrificed at the pre-manifest stage. "Manifest" (32-week old) mice were sacrificed following either a week-long Mn or vehicle exposure during the manifest stage, or a 20-week-long chronic (2× weekly injections) exposure that began in the pre-manifest stage. Tissue Mn, mRNA, protein, and metabolites were measured in the striatum, the brain region most sensitive to neurodegeneration in HD. Across all Mn exposure paradigms, pre-manifest YAC128 mice exhibited a suppressed response to transcriptional and protein changes and manifest YAC128 mice showed a suppressed metabolic response, despite equivalent elevations in whole striatal Mn. We conclude that YAC128 mice respond differentially to Mn compared to WT as measured by global transcriptional, translational, and metabolomic changes, suggesting an impairment in Mn homeostasis across two different disease stages in YAC128 mice.
Collapse
Affiliation(s)
- Anna C Pfalzer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordyn M Wilcox
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA and Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - Melissa Totten
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, NC, USA
| | - Terry J V Bichell
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy Halbesma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Preethi Umashanker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kevin L Yang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy L Parmalee
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stacy D Sherrod
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - Keith M Erikson
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, NC, USA
| | - Fiona E Harrison
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA and Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B Bowman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA and School of Health Sciences, Purdue University, 550 Stadium Mall Drive - HAMP 1173A, West Lafayette, IN 47907-2051, USA.
| |
Collapse
|
21
|
Bryan MR, O'Brien MT, Nordham KD, Rose DIR, Foshage AM, Joshi P, Nitin R, Uhouse MA, Di Pardo A, Zhang Z, Maglione V, Aschner M, Bowman AB. Acute manganese treatment restores defective autophagic cargo loading in Huntington's disease cell lines. Hum Mol Genet 2020; 28:3825-3841. [PMID: 31600787 DOI: 10.1093/hmg/ddz209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
The molecular etiology linking the pathogenic mutations in the Huntingtin (Htt) gene with Huntington's disease (HD) is unknown. Prior work suggests a role for Htt in neuronal autophagic function and mutant HTT protein disrupts autophagic cargo loading. Reductions in the bioavailability of the essential metal manganese (Mn) are seen in models of HD. Excess cellular Mn impacts autophagic function, but the target and molecular basis of these changes are unknown. Thus, we sought to determine if changes in cellular Mn status impact autophagic processes in a wild-type or mutant Htt-dependent manner. We report that the HD genotype is associated with reduced Mn-induced autophagy and that acute Mn exposure increases autophagosome induction/formation. To determine if a deficit in bioavailable Mn is mechanistically linked to the autophagy-related HD cellular phenotypes, we examined autophagosomes by electron microscopy. We observed that a 24 h 100 uM Mn restoration treatment protocol attenuated an established HD 'cargo-recognition failure' in the STHdh HD model cells by increasing the percentage of filled autophagosomes. Mn restoration had no effect on HTT aggregate number, but a 72 h co-treatment with chloroquine (CQ) in GFP-72Q-expressing HEK293 cells increased the number of visible aggregates in a dose-dependent manner. As CQ prevents autophagic degradation this indicates that Mn restoration in HD cell models facilitates incorporation of aggregates into autophagosomes. Together, these findings suggest that defective Mn homeostasis in HD models is upstream of the impaired autophagic flux and provide proof-of-principle support for increasing bioavailable Mn in HD to restore autophagic function and promote aggregate clearance.
Collapse
Affiliation(s)
- Miles R Bryan
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Michael T O'Brien
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Kristen D Nordham
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Daniel I R Rose
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | | | - Piyush Joshi
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Rachana Nitin
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Michael A Uhouse
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | | | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aaron B Bowman
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry.,Department of Cell and Developmental Biology.,Vanderbilt Kennedy Center.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN, 37240, USA.,Purdue University, School of Health Sciences, West Lafayette, IN, 47907, USA
| |
Collapse
|
22
|
Soares ATG, da Silva AC, Tinkov AA, Khan H, Santamaría A, Skalnaya MG, Skalny AV, Tsatsakis A, Bowman AB, Aschner M, Ávila DS. The impact of manganese on neurotransmitter systems. J Trace Elem Med Biol 2020; 61:126554. [PMID: 32480053 PMCID: PMC7677177 DOI: 10.1016/j.jtemb.2020.126554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Manganese (Mn) is a metal ubiquitously present in nature and essential for many living organisms. As a trace element, it is required in small amounts for the proper functioning of several important enzymes, and reports of Mn deficiency are indeed rare. METHODS This mini-review will cover aspects of Mn toxicokinetics and its impact on brain neurotransmission, as well as its Janus-faced effects on humans and other animal's health. RESULTS The estimated safe upper limit of intracellular Mn for physiological function is in anarrow range of 20-53 μM.Therefore, intake of higher levels of Mn and the outcomes, especially to the nervous system, have been well documented. CONCLUSION The metal affects mostly the brain by accumulating in specific areas, altering cognitive functions and locomotion, thus severely impacting the health of the exposed organisms.
Collapse
Affiliation(s)
- Ana Thalita Gonçalves Soares
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa Campus Uruguaiana, RS, Brazil
| | - Aline Castro da Silva
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa Campus Uruguaiana, RS, Brazil
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Haroon Khan
- Department of pharmacy, Abdul Wali khan University Mardan 23200, Pakistan
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA. Mexico City, Mexico
| | | | - Anatoly V. Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa Campus Uruguaiana, RS, Brazil
| |
Collapse
|
23
|
Garabadu D, Agrawal N, Sharma A, Sharma S. Mitochondrial metabolism: a common link between neuroinflammation and neurodegeneration. Behav Pharmacol 2020; 30:642-652. [PMID: 31625975 DOI: 10.1097/fbp.0000000000000505] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurodegenerative disorders have been considered as a growing health concern for decades. Increasing risk of neurodegenerative disorders creates a socioeconomic burden to both patients and care givers. Mitochondria are organelle that are involved in both neuroinflammation and neurodegeneration. There are few reports on the effect of mitochondrial metabolism on the progress of neurodegeneration and neuroinflammation. Therefore, the present review summarizes the potential contribution of mitochondrial metabolic pathways in the pathogenesis of neuroinflammation and neurodegeneration. Mitochondrial pyruvate metabolism plays a critical role in the pathogenesis of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. However, there its potential contribution in other neurodegenerative disorders is as yet unproven. The mitochondrial pyruvate carrier and pyruvate dehydrogenase can modulate mitochondrial pyruvate metabolism to attenuate neuroinflammation and neurodegeneration. Further, it has been observed that the mitochondrial citric acid cycle can regulate the pathogenesis of neuroinflammation and neurodegeneration. Additional research should be undertaken to target tricarboxylic acid cycle enzymes to minimize the progress of neuroinflammation and neurodegeneration. It has also been observed that the mitochondrial urea cycle can potentially contribute to the progression of neurodegenerative disorders. Therefore, targeting this pathway may control the mitochondrial dysfunction-induced neuroinflammation and neurodegeneration. Furthermore, the mitochondrial malate-aspartate shuttle could be another target to control mitochondrial dysfunction-induced neuroinflammation and neurodegeneration in neurodegenerative disorders.
Collapse
Affiliation(s)
- Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | | | | |
Collapse
|
24
|
Pfalzer AC, Wages PA, Porter NA, Bowman AB. Striatal Cholesterol Precursors Are Altered with Age in Female Huntington's Disease Model Mice. J Huntingtons Dis 2020; 8:161-169. [PMID: 30958310 DOI: 10.3233/jhd-180321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cholesterol is necessary for proper neurodevelopment and neuronal health. The brain relies on neural and astrocytic de novo cholesterol synthesis. Huntington's disease presents with altered levels of cholesterol precursors however it is unknown when the disruption in this molecular pathway occurs and whether Manganese (Mn) may alter these metabolic alterations. OBJECTIVE To examine the effect of Mn exposure on cholesterol biosynthesis in pre-manifest and manifest Huntington's disease mice. METHODS 12-week (pre-manifest) male and female and 42-week old (manifest) female YAC128 and littermate control (WT) mice received 3 subcutaneous Mn or vehicle injections. Animals were sacrificed 24 hours after the final injection and striatum, cerebral cortex and cerebellum were collected to measure cholesterol and cholesterol precursors using LC/MS-MS. RESULTS Striatal desmosterol and cholesterol are increased in pre-manifest HD females compared to age-matched WT female mice. Striatal lanosterol, 8-DHC and desmosterol and cholesterol are reduced in manifest HD females compared to age-and sex-matched WT mice with minimal effects in the cortex and cerebellum. Mn treatment had no effect in the pre-manifest or manifest female brain except reduced lanosterol levels in the cortex of pre-manifest female mice. Neither Mn or HD altered brain cholesterol precursor levels in the pre-manifest HD or WT male mouse. CONCLUSIONS Cholesterol biosynthesis is impaired in early disease stage in female HD mice only and continues throughout disease. These alterations appear largely striatal-specific. Acute systemic exposure to Mn did not significantly alter cholesterol biosynthesis in the striatum at any disease stage.
Collapse
Affiliation(s)
- Anna C Pfalzer
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Phillip A Wages
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Aaron B Bowman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,School of Health Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
25
|
Horning KJ, Joshi P, Nitin R, Balachandran RC, Yanko FM, Kim K, Christov P, Aschner M, Sulikowski GA, Weaver CD, Bowman AB. Identification of a selective manganese ionophore that enables nonlethal quantification of cellular manganese. J Biol Chem 2020; 295:3875-3890. [PMID: 32047113 PMCID: PMC7086026 DOI: 10.1074/jbc.ra119.009781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
Available assays for measuring cellular manganese (Mn) levels require cell lysis, restricting longitudinal experiments and multiplexed outcome measures. Conducting a screen of small molecules known to alter cellular Mn levels, we report here that one of these chemicals induces rapid Mn efflux. We describe this activity and the development and implementation of an assay centered on this small molecule, named manganese-extracting small molecule (MESM). Using inductively-coupled plasma-MS, we validated that this assay, termed here "manganese-extracting small molecule estimation route" (MESMER), can accurately assess Mn in mammalian cells. Furthermore, we found evidence that MESM acts as a Mn-selective ionophore, and we observed that it has increased rates of Mn membrane transport, reduced cytotoxicity, and increased selectivity for Mn over calcium compared with two established Mn ionophores, calcimycin (A23187) and ionomycin. Finally, we applied MESMER to test whether prior Mn exposures subsequently affect cellular Mn levels. We found that cells receiving continuous, elevated extracellular Mn accumulate less Mn than cells receiving equally-elevated Mn for the first time for 24 h, indicating a compensatory cellular homeostatic response. Use of the MESMER assay versus a comparable detergent lysis-based assay, cellular Fura-2 Mn extraction assay, reduced the number of cells and materials required for performing a similar but cell lethality-based experiment to 25% of the normally required sample size. We conclude that MESMER can accurately quantify cellular Mn levels in two independent cells lines through an ionophore-based mechanism, maintaining cell viability and enabling longitudinal assessment within the same cultures.
Collapse
Affiliation(s)
- Kyle J. Horning
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Piyush Joshi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Rachana Nitin
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Frank M. Yanko
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235
| | - Plamen Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212
| | - C. David Weaver
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212
| | - Aaron B. Bowman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232,School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, To whom correspondence should be addressed:
Purdue University, 550 Stadium Mall Dr., HAMP 1173A, West Lafayette, IN 47907-2051. E-mail:
| |
Collapse
|
26
|
Manganese Acts upon Insulin/IGF Receptors to Phosphorylate AKT and Increase Glucose Uptake in Huntington's Disease Cells. Mol Neurobiol 2019; 57:1570-1593. [PMID: 31797328 DOI: 10.1007/s12035-019-01824-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
Perturbations in insulin/IGF signaling and manganese (Mn2+) uptake and signaling have been separately reported in Huntington's disease (HD) models. Insulin/IGF supplementation ameliorates HD phenotypes via upregulation of AKT, a known Mn2+-responsive kinase. Limited evidence both in vivo and in purified biochemical systems suggest Mn2+ enhances insulin/IGF receptor (IR/IGFR), an upstream tyrosine kinase of AKT. Conversely, Mn2+ deficiency impairs insulin release and associated glucose tolerance in vivo. Here, we test the hypothesis that Mn2+-dependent AKT signaling is predominantly mediated by direct Mn2+ activation of the insulin/IGF receptors, and HD-related impairments in insulin/IGF signaling are due to HD genotype-associated deficits in Mn2+ bioavailability. We examined the combined effects of IGF-1 and/or Mn2+ treatments on AKT signaling in multiple HD cellular models. Mn2+ treatment potentiates p-IGFR/IR-dependent AKT phosphorylation under physiological (1 nM) or saturating (10 nM) concentrations of IGF-1 directly at the level of intracellular activation of IGFR/IR. Using a multi-pharmacological approach, we find that > 70-80% of Mn2+-associated AKT signaling across rodent and human neuronal cell models is specifically dependent on IR/IGFR, versus other signaling pathways upstream of AKT activation. Mn2+-induced p-IGFR and p-AKT were diminished in HD cell models, and, consistent with our hypothesis, were rescued by co-treatment of Mn2+ and IGF-1. Lastly, Mn2+-induced IGF signaling can modulate HD-relevant biological processes, as the reduced glucose uptake in HD STHdh cells was partially reversed by Mn2+ supplementation. Our data demonstrate that Mn2+ supplementation increases peak IGFR/IR-induced p-AKT likely via direct effects on IGFR/IR, consistent with its role as a cofactor, and suggests reduced Mn2+ bioavailability contributes to impaired IGF signaling and glucose uptake in HD models.
Collapse
|
27
|
Ke T, Sidoryk-Wegrzynowicz M, Pajarillo E, Rizor A, Soares FAA, Lee E, Aschner M. Role of Astrocytes in Manganese Neurotoxicity Revisited. Neurochem Res 2019; 44:2449-2459. [PMID: 31571097 PMCID: PMC7757856 DOI: 10.1007/s11064-019-02881-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Manganese (Mn) overexposure is a public health concern due to its widespread industrial usage and the risk for environmental contamination. The clinical symptoms of Mn neurotoxicity, or manganism, share several pathological features of Parkinson's disease (PD). Biologically, Mn is an essential trace element, and Mn in the brain is preferentially localized in astrocytes. This review summarizes the role of astrocytes in Mn-induced neurotoxicity, specifically on the role of neurotransmitter recycling, neuroinflammation, and genetics. Mn overexposure can dysregulate astrocytic cycling of glutamine (Gln) and glutamate (Glu), which is the basis for Mn-induced excitotoxic neuronal injury. In addition, reactive astrocytes are important mediators of Mn-induced neuronal damage by potentiating neuroinflammation. Genetic studies, including those with Caenorhabditis elegans (C. elegans) have uncovered several genes associated with Mn neurotoxicity. Though we have yet to fully understand the role of astrocytes in the pathologic changes characteristic of manganism, significant strides have been made over the last two decades in deciphering the role of astrocytes in Mn-induced neurotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Marta Sidoryk-Wegrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Félix Alexandre Antunes Soares
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA.
| |
Collapse
|
28
|
Huntington's disease associated resistance to Mn neurotoxicity is neurodevelopmental stage and neuronal lineage dependent. Neurotoxicology 2019; 75:148-157. [PMID: 31545971 DOI: 10.1016/j.neuro.2019.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Manganese (Mn) is essential for neuronal health but neurotoxic in excess. Mn levels vary across brain regions and neurodevelopment. While Mn requirements during infanthood and childhood are significantly higher than in adulthood, the relative vulnerability to excess extracellular Mn across human neuronal developmental time and between distinct neural lineages is unknown. Neurological disease is associated with changes in brain Mn homeostasis and pathology associated with Mn neurotoxicity is not uniform across brain regions. For example, mutations associated with Huntington's disease (HD) decrease Mn bioavailability and increase resistance to Mn cytotoxicity in human and mouse striatal neuronal progenitors. Here, we sought to compare the differences in Mn cytotoxicity between control and HD human-induced pluripotent stem cells (hiPSCs)-derived neuroprogenitor cells (NPCs) and maturing neurons. We hypothesized that there would be differences in Mn sensitivity between lineages and developmental stages. However, we found that the different NPC lineage specific media substantially influenced Mn cytotoxicity in the hiPSC derived human NPCs and did so consistently even in a non-human cell line. This limited the ability to determine which human neuronal sub-types were more sensitive to Mn. Nonetheless, we compared within neuronal subtypes and developmental stage the sensitivity to Mn cytotoxicity between control and HD patient derived neuronal lineages. Consistent with studies in other striatal model systems the HD genotype was associated with resistance to Mn cytotoxicity in human striatal NPCs. In addition, we report an HD genotype-dependent resistance to Mn cytotoxicity in cortical NPCs and hiPSCs. Unexpectedly, the HD genotype conferred increased sensitivity to Mn in early post-mitotic midbrain neurons but had no effect on Mn sensitivity in midbrain NPCs or post-mitotic cortical neurons. Overall, our data suggest that sensitivity to Mn cytotoxicity is influenced by HD genotype in a human neuronal lineage type and stage of development dependent manner.
Collapse
|
29
|
Krystofova J, Pathipati P, Russ J, Sheldon A, Ferriero D. The Arginase Pathway in Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2019; 40:437-450. [PMID: 30995639 PMCID: PMC6784534 DOI: 10.1159/000496467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Brain damage after hypoxia-ischemia (HI) occurs in an age-dependent manner. Neuroprotective strategies assumed to be effective in adults might have deleterious effects in the immature brain. In order to create effective therapies, the complex pathophysiology of HI in the developing brain requires exploring new mechanisms. Critical determinants of neuronal survival after HI are the extent of vascular dysfunction, inflammation, and oxidative stress, followed later by tissue repair. The key enzyme of these processes in the human body is arginase (ARG) that acts via the bioavailability of nitric oxide, and the synthesis of polyamines and proline. ARG is expressed throughout the brain in different cells. However, little is known about the effect of ARG in pathophysiological states of the brain, especially hypoxia-ischemia. Here, we summarize the role of ARG during neurodevelopment as well as in various brain pathologies.
Collapse
Affiliation(s)
- Jana Krystofova
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA,
| | - Praneeti Pathipati
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Russ
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Donna Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
30
|
Fernandes J, Chandler JD, Liu KH, Uppal K, Go YM, Jones DP. Putrescine as indicator of manganese neurotoxicity: Dose-response study in human SH-SY5Y cells. Food Chem Toxicol 2018; 116:272-280. [PMID: 29684492 PMCID: PMC6008158 DOI: 10.1016/j.fct.2018.04.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/31/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
Abstract
Disrupted polyamine metabolism with elevated putrescine is associated with neuronal dysfunction. Manganese (Mn) is an essential nutrient that causes neurotoxicity in excess, but methods to evaluate biochemical responses to high Mn are limited. No information is available on dose-response effects of Mn on putrescine abundance and related polyamine metabolism. The present research was to test the hypothesis that Mn causes putrescine accumulation over a physiologically adequate to toxic concentration range in a neuronal cell line. We used human SH-SY5Y neuroblastoma cells treated with MnCl2 under conditions that resulted in cell death or no cell death after 48 h. Putrescine and other metabolites were analyzed by liquid chromatography-ultra high-resolution mass spectrometry. Putrescine-related pathway changes were identified with metabolome-wide association study (MWAS). Results show that Mn caused a dose-dependent increase in putrescine over a non-toxic to toxic concentration range. MWAS of putrescine showed positive correlations with the polyamine metabolite N8-acetylspermidine, methionine-related precursors, and arginine-associated urea cycle metabolites, while putrescine was negatively correlated with γ-aminobutyric acid (GABA)-related and succinate-related metabolites (P < 0.001, FDR < 0.01). These data suggest that measurement of putrescine and correlated metabolites may be useful to study effects of Mn intake in the high adequate to UL range.
Collapse
Affiliation(s)
- Jolyn Fernandes
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Joshua D Chandler
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
31
|
Pfalzer AC, Bowman AB. Relationships Between Essential Manganese Biology and Manganese Toxicity in Neurological Disease. Curr Environ Health Rep 2017; 4:223-228. [PMID: 28417441 PMCID: PMC5515274 DOI: 10.1007/s40572-017-0136-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Manganese (Mn) is critical for neurodevelopment but also has been implicated in the pathophysiology of several neurological diseases. We discuss how Mn requirements intersect with Mn biology and toxicity, and how these requirements may be altered in neurological disease. Furthermore, we discuss the emerging evidence that the level of Mn associated with optimal overall efficiency for Mn biology does not necessarily coincide with optimal cognitive outcomes. RECENT FINDINGS Studies have linked Mn exposures with urea cycle metabolism and autophagy, with evidence that exposures typically neurotoxic may be able to correct deficiencies in these processes at least short term. The line between Mn-dependent biology and toxicity is thus blurred. Further, new work suggests that Mn exposures correlating to optimal cognitive scores in children are associated with cognitive decline in adults. This review explores relationships between Mn-dependent neurobiology and Mn-dependent neurotoxicity. We propose the hypothesis that Mn levels/exposures that are toxic to some biological processes are beneficial for other biological processes and influenced by developmental stage and disease state.
Collapse
Affiliation(s)
- Anna C Pfalzer
- Departments of Pediatrics, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Aaron B Bowman
- Departments of Pediatrics, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA.
- Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt Brain Institute, Kennedy Center for Research and Human Development, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
32
|
Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, Rokad D, Zenitsky G, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology 2017; 64:204-218. [PMID: 28539244 DOI: 10.1016/j.neuro.2017.05.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Abstract
Chronic manganese (Mn) exposure induces neurotoxicity, which is characterized by Parkinsonian symptoms resulting from impairment in the extrapyramidal motor system of the basal ganglia. Mitochondrial dysfunction and oxidative stress are considered key pathophysiological features of Mn neurotoxicity. Recent evidence suggests astrocytes as a major target of Mn neurotoxicity since Mn accumulates predominantly in astrocytes. However, the primary mechanisms underlying Mn-induced astroglial dysfunction and its role in metal neurotoxicity are not completely understood. In this study, we examined the interrelationship between mitochondrial dysfunction and astrocytic inflammation in Mn neurotoxicity. We first evaluated whether Mn exposure alters mitochondrial bioenergetics in cultured astrocytes. Metabolic activity assessed by MTS assay revealed an IC50 of 92.68μM Mn at 24h in primary mouse astrocytes (PMAs) and 50.46μM in the human astrocytic U373 cell line. Mn treatment reduced mitochondrial mass, indicative of impaired mitochondrial function and biogenesis, which was substantiated by the significant reduction in mRNA of mitofusin-2, a protein that serves as a ubiquitination target for mitophagy. Furthermore, Mn increased mitochondrial circularity indicating augmented mitochondrial fission. Seahorse analysis of bioenergetics status in Mn-treated astrocytes revealed that Mn significantly impaired the basal mitochondrial oxygen consumption rate as well as the ATP-linked respiration rate. The effect of Mn on mitochondrial energy deficits was further supported by a reduction in ATP production. Mn-exposed primary astrocytes also exhibited a severely quiescent energy phenotype, which was substantiated by the inability of oligomycin to increase the extracellular acidification rate. Since astrocytes regulate immune functions in the CNS, we also evaluated whether Mn modulates astrocytic inflammation. Mn exposure in astrocytes not only stimulated the release of proinflammatory cytokines, but also exacerbated the inflammatory response induced by aggregated α-synuclein. The novel mitochondria-targeted antioxidant, mito-apocynin, significantly attenuated Mn-induced inflammatory gene expression, further supporting the role of mitochondria dysfunction and oxidative stress in mediating astrogliosis. Lastly, intranasal delivery of Mn in vivo elevated GFAP and depressed TH levels in the olfactory bulbs, clearly supporting the involvement of astrocytes in Mn-induced dopaminergic neurotoxicity. Collectively, our study demonstrates that Mn drives proinflammatory events in astrocytes by impairing mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Emir Malovic
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Dilshan S Harischandra
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Hilary A Ngwa
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Anamitra Ghosh
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Colleen Hogan
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Dharmin Rokad
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Gary Zenitsky
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|