1
|
Vermani L, Winnberg JS, Liu W, Soller V, Sjödin T, Lindblad M, Lindblom A. A Haplotype GWAS in Syndromic Familial Colorectal Cancer. Int J Mol Sci 2025; 26:817. [PMID: 39859530 PMCID: PMC11765965 DOI: 10.3390/ijms26020817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
A previous genome-wide association study (GWAS) in colorectal cancer (CRC) patients with gastric and/or prostate cancer in their families suggested genetic loci with a shared risk for these three cancers. A second haplotype GWAS was undertaken in the same colorectal cancer patients and different controls with the aim of confirming the result and finding novel loci. The haplotype GWAS analysis involved 685 patients with colorectal cancer cases and 1642 healthy controls from Sweden. A logistic regression model was used with a sliding window haplotype approach. Whole-genome and exome sequencing datawere used to find candidate SNPs to be tested in a nested case-control study. In the analysis of 685 colorectal cancer cases and 1642 controls, all ten candidate loci from the previous study were confirmed. Fifty candidate loci were suggested with a p-value < 5 × 10-6 and odds ratios between 1.35-6.52. Two of the 50 loci, on 13q33.3 and 16q23.3, were the same as in the previous study. Whole-genome or exome data from 122 colorectal cancer patients was used to search for candidate variants in these 50 loci. A nested case-control study was performed to test genetic variants at 11 loci in a cohort of 827 familial colorectal cancer and a sub-cohort of 293 familial CRC cases with colorectal, gastric, and/or prostate cancer within their families and 1530 healthy controls. One SNP, rs115943733 on 10q11.21, reached statistical significance (OR = 3.26, p = 0.009). Seven SNPs in 4 loci had a higher OR in the smaller cohort compared to the larger study CRC cases. The results in this GWAS gave support for suggested loci with an increased shared risk of CRC, gastric, and/or prostate cancer. Further studies are needed to confirm the shared risk to be able to use this information in cancer prevention.
Collapse
Affiliation(s)
- Litika Vermani
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (V.S.); (T.S.)
| | - Johanna Samola Winnberg
- Division of Surgery, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (J.S.W.); (M.L.)
- Department of Upper Abdominal Diseases, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Wen Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (V.S.); (T.S.)
- Department of Neuroscience, Uppsala University, 75237 Uppsala, Sweden
| | - Veronika Soller
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (V.S.); (T.S.)
| | - Tilde Sjödin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (V.S.); (T.S.)
| | - Mats Lindblad
- Division of Surgery, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (J.S.W.); (M.L.)
- Department of Upper Abdominal Diseases, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (V.S.); (T.S.)
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
2
|
Wang K, Xu X, Shan Q, Ding R, Lyu Q, Huang L, Chen X, Han X, Yang Q, Sang X, Peng M, Hao M, Cao G. Integrated gut microbiota and serum metabolomics reveal the protective effect of oleanolic acid on liver and kidney-injured rats induced by Euphorbia pekinensis. Phytother Res 2024; 38:4877-4892. [PMID: 36426741 DOI: 10.1002/ptr.7673] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
Euphorbia pekinensis (EP) is a commonly used Chinese medicine treating edema with potential hepatorenal toxicity. However, its toxic mechanism and prevention are remained to be explored. Oleanolic acid (OA) is a triterpene acid with potential hepatorenal protective activities. We investigated the protective effect and potential mechanism of OA on EP-induced hepatorenal toxicity. In this study, rats were given total diterpenes from EP (TDEP, 16 mg/kg) combined with OA (10, 20, 40 mg/kg) by gavage for 4 weeks. The results showed that TDEP administration could lead to a 3-4-fold increasement in hepatorenal biochemical parameters with histopathological injuries, while OA treatment could ameliorate them in a dose-dependent manner. At microbial and metabolic levels, intestinal flora and host metabolism were perturbed after TDEP administration. The disturbance of bile acid metabolism was the most significant metabolic pathway, with secondary bile acids increasing while conjugated bile acids decreased. OA treatment can improve the disorder of intestinal flora and metabolic bile acid spectrum. Further correlation analysis screened out that Escherichia-Shigella, Phascolarctobacterium, Acetatifactor, and Akkermansia were closely related to the bile acid metabolic disorder. In conclusion, oleanolic acid could prevent hepatorenal toxicity induced by EP by regulating bile acids metabolic disorder via intestinal flora improvement.
Collapse
Affiliation(s)
- Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Ding
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Lyu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lichuang Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyi Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Kayama H, Takeda K. Regulation of intestinal epithelial homeostasis by mesenchymal cells. Inflamm Regen 2024; 44:42. [PMID: 39327633 PMCID: PMC11426228 DOI: 10.1186/s41232-024-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Olecka M, van Bömmel A, Best L, Haase M, Foerste S, Riege K, Dost T, Flor S, Witte OW, Franzenburg S, Groth M, von Eyss B, Kaleta C, Frahm C, Hoffmann S. Nonlinear DNA methylation trajectories in aging male mice. Nat Commun 2024; 15:3074. [PMID: 38594255 PMCID: PMC11004021 DOI: 10.1038/s41467-024-47316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Although DNA methylation data yields highly accurate age predictors, little is known about the dynamics of this quintessential epigenomic biomarker during lifespan. To narrow the gap, we investigate the methylation trajectories of male mouse colon at five different time points of aging. Our study indicates the existence of sudden hypermethylation events at specific stages of life. Precisely, we identify two epigenomic switches during early-to-midlife (3-9 months) and mid-to-late-life (15-24 months) transitions, separating the rodents' life into three stages. These nonlinear methylation dynamics predominantly affect genes associated with the nervous system and enrich in bivalently marked chromatin regions. Based on groups of nonlinearly modified loci, we construct a clock-like classifier STageR (STage of aging estimatoR) that accurately predicts murine epigenetic stage. We demonstrate the universality of our clock in an independent mouse cohort and with publicly available datasets.
Collapse
Affiliation(s)
- Maja Olecka
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Alena van Bömmel
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Lena Best
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Madlen Haase
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Silke Foerste
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Konstantin Riege
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Thomas Dost
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Stefano Flor
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Marco Groth
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Björn von Eyss
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Christiane Frahm
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Steve Hoffmann
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.
| |
Collapse
|
5
|
Calvier L, Alexander A, Marckx AT, Kounnas MZ, Durakoglugil M, Herz J. Safety of Anti-Reelin Therapeutic Approaches for Chronic Inflammatory Diseases. Cells 2024; 13:583. [PMID: 38607022 PMCID: PMC11011630 DOI: 10.3390/cells13070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Reelin, a large extracellular glycoprotein, plays critical roles in neuronal development and synaptic plasticity in the central nervous system (CNS). Recent studies have revealed non-neuronal functions of plasma Reelin in inflammation by promoting endothelial-leukocyte adhesion through its canonical pathway in endothelial cells (via ApoER2 acting on NF-κB), as well as in vascular tone regulation and thrombosis. In this study, we have investigated the safety and efficacy of selectively depleting plasma Reelin as a potential therapeutic strategy for chronic inflammatory diseases. We found that Reelin expression remains stable throughout adulthood and that peripheral anti-Reelin antibody treatment with CR-50 efficiently depletes plasma Reelin without affecting its levels or functionality within the CNS. Notably, this approach preserves essential neuronal functions and synaptic plasticity. Furthermore, in mice induced with experimental autoimmune encephalomyelitis (EAE), selective modulation of endothelial responses by anti-Reelin antibodies reduces pathological leukocyte infiltration without completely abolishing diapedesis. Finally, long-term Reelin depletion under metabolic stress induced by a Western diet did not negatively impact the heart, kidney, or liver, suggesting a favorable safety profile. These findings underscore the promising role of peripheral anti-Reelin therapeutic strategies for autoimmune diseases and conditions where endothelial function is compromised, offering a novel approach that may avoid the immunosuppressive side effects associated with conventional anti-inflammatory therapies.
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anna Alexander
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Austin T. Marckx
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Murat Durakoglugil
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Halvorson CS, Sánchez-Lafuente CL, Johnston JN, Kalynchuk LE, Caruncho HJ. Molecular Mechanisms of Reelin in the Enteric Nervous System and the Microbiota-Gut-Brain Axis: Implications for Depression and Antidepressant Therapy. Int J Mol Sci 2024; 25:814. [PMID: 38255890 PMCID: PMC10815176 DOI: 10.3390/ijms25020814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Current pharmacological treatments for depression fail to produce adequate remission in a significant proportion of patients. Increasingly, other systems, such as the microbiome-gut-brain axis, are being looked at as putative novel avenues for depression treatment. Dysbiosis and dysregulation along this axis are highly comorbid with the severity of depression symptoms. The endogenous extracellular matrix protein reelin is present in all intestinal layers as well as in myenteric and submucosal ganglia, and its receptors are also present in the gut. Reelin secretion from subepithelial myofibroblasts regulates cellular migration along the crypt-villus axis in the small intestine and colon. Reelin brain expression is downregulated in mood and psychotic disorders, and reelin injections have fast antidepressant-like effects in animal models of depression. This review seeks to discuss the roles of reelin in the gastrointestinal system and propose a putative role for reelin actions in the microbiota-gut-brain axis in the pathogenesis and treatment of depression, primarily reflecting on alterations in gut epithelial cell renewal and in the clustering of serotonin transporters.
Collapse
Affiliation(s)
- Ciara S. Halvorson
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Carla Liria Sánchez-Lafuente
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Jenessa N. Johnston
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa E. Kalynchuk
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Hector J. Caruncho
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| |
Collapse
|
7
|
Kurup S, Tan C, Kume T. Cardiac and intestinal tissue conduct developmental and reparative processes in response to lymphangiocrine signaling. Front Cell Dev Biol 2023; 11:1329770. [PMID: 38178871 PMCID: PMC10764504 DOI: 10.3389/fcell.2023.1329770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Lymphatic vessels conduct a diverse range of activities to sustain the integrity of surrounding tissue. Besides facilitating the movement of lymph and its associated factors, lymphatic vessels are capable of producing tissue-specific responses to changes within their microenvironment. Lymphatic endothelial cells (LECs) secrete paracrine signals that bind to neighboring cell-receptors, commencing an intracellular signaling cascade that preludes modifications to the organ tissue's structure and function. While the lymphangiocrine factors and the molecular and cellular mechanisms themselves are specific to the organ tissue, the crosstalk action between LECs and adjacent cells has been highlighted as a commonality in augmenting tissue regeneration within animal models of cardiac and intestinal disease. Lymphangiocrine secretions have been owed for subsequent improvements in organ function by optimizing the clearance of excess tissue fluid and immune cells and stimulating favorable tissue growth, whereas perturbations in lymphatic performance bring about the opposite. Newly published landmark studies have filled gaps in our understanding of cardiac and intestinal maintenance by revealing key players for lymphangiocrine processes. Here, we will expand upon those findings and review the nature of lymphangiocrine factors in the heart and intestine, emphasizing its involvement within an interconnected network that supports daily homeostasis and self-renewal following injury.
Collapse
Affiliation(s)
- Shreya Kurup
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Honors College, University of Illinois at Chicago, Chicago, IL, United States
| | - Can Tan
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tsutomu Kume
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Tesfaye M, Jaholkowski P, Hindley GFL, Shadrin AA, Rahman Z, Bahrami S, Lin A, Holen B, Parker N, Cheng W, Rødevand L, Frei O, Djurovic S, Dale AM, Smeland OB, O'Connell KS, Andreassen OA. Shared genetic architecture between irritable bowel syndrome and psychiatric disorders reveals molecular pathways of the gut-brain axis. Genome Med 2023; 15:60. [PMID: 37528461 PMCID: PMC10391890 DOI: 10.1186/s13073-023-01212-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) often co-occurs with psychiatric and gastrointestinal disorders. A recent genome-wide association study (GWAS) identified several genetic risk variants for IBS. However, most of the heritability remains unidentified, and the genetic overlap with psychiatric and somatic disorders is not quantified beyond genome-wide genetic correlations. Here, we characterize the genetic architecture of IBS, further, investigate its genetic overlap with psychiatric and gastrointestinal phenotypes, and identify novel genomic risk loci. METHODS Using GWAS summary statistics of IBS (53,400 cases and 433,201 controls), and psychiatric and gastrointestinal phenotypes, we performed bivariate casual mixture model analysis to characterize the genetic architecture and genetic overlap between these phenotypes. We leveraged identified genetic overlap to boost the discovery of genomic loci associated with IBS, and to identify specific shared loci associated with both IBS and psychiatric and gastrointestinal phenotypes, using the conditional/conjunctional false discovery rate (condFDR/conjFDR) framework. We used functional mapping and gene annotation (FUMA) for functional analyses. RESULTS IBS was highly polygenic with 12k trait-influencing variants. We found extensive polygenic overlap between IBS and psychiatric disorders and to a lesser extent with gastrointestinal diseases. We identified 132 independent IBS-associated loci (condFDR < 0.05) by conditioning on psychiatric disorders (n = 127) and gastrointestinal diseases (n = 24). Using conjFDR, 70 unique loci were shared between IBS and psychiatric disorders. Functional analyses of shared loci revealed enrichment for biological pathways of the nervous and immune systems. Genetic correlations and shared loci between psychiatric disorders and IBS subtypes were different. CONCLUSIONS We found extensive polygenic overlap of IBS and psychiatric and gastrointestinal phenotypes beyond what was revealed with genetic correlations. Leveraging the overlap, we discovered genetic loci associated with IBS which implicate a wide range of biological pathways beyond the gut-brain axis. Genetic differences may underlie the clinical subtype of IBS. These results increase our understanding of the pathophysiology of IBS which may form the basis for the development of individualized interventions.
Collapse
Affiliation(s)
- Markos Tesfaye
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- NORMENT, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| | - Piotr Jaholkowski
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexey A Shadrin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Zillur Rahman
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Shahram Bahrami
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aihua Lin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Børge Holen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nadine Parker
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Olav B Smeland
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O'Connell
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
9
|
Alexander A, Herz J, Calvier L. Reelin through the years: From brain development to inflammation. Cell Rep 2023; 42:112669. [PMID: 37339050 PMCID: PMC10592530 DOI: 10.1016/j.celrep.2023.112669] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Reelin was originally identified as a regulator of neuronal migration and synaptic function, but its non-neuronal functions have received far less attention. Reelin participates in organ development and physiological functions in various tissues, but it is also dysregulated in some diseases. In the cardiovascular system, Reelin is abundant in the blood, where it contributes to platelet adhesion and coagulation, as well as vascular adhesion and permeability of leukocytes. It is a pro-inflammatory and pro-thrombotic factor with important implications for autoinflammatory and autoimmune diseases such as multiple sclerosis, Alzheimer's disease, arthritis, atherosclerosis, or cancer. Mechanistically, Reelin is a large secreted glycoprotein that binds to several membrane receptors, including ApoER2, VLDLR, integrins, and ephrins. Reelin signaling depends on the cell type but mostly involves phosphorylation of NF-κB, PI3K, AKT, or JAK/STAT. This review focuses on non-neuronal functions and the therapeutic potential of Reelin, while highlighting secretion, signaling, and functional similarities between cell types.
Collapse
Affiliation(s)
- Anna Alexander
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Calvier
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Battaglin F, Jayachandran P, Strelez C, Lenz A, Algaze S, Soni S, Lo JH, Yang Y, Millstein J, Zhang W, Roussos Torres ET, Shih JC, Mumenthaler SM, Neman J, Lenz HJ. Neurotransmitter signaling: a new frontier in colorectal cancer biology and treatment. Oncogene 2022; 41:4769-4778. [PMID: 36182970 PMCID: PMC10591256 DOI: 10.1038/s41388-022-02479-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022]
Abstract
The brain-gut axis, a bidirectional network between the central and enteric nervous system, plays a critical role in modulating the gastrointestinal tract function and homeostasis. Recently, increasing evidence suggests that neuronal signaling molecules can promote gastrointestinal cancers, however, the mechanisms remain unclear. Aberrant expression of neurotransmitter signaling genes in colorectal cancer supports the role of neurotransmitters to stimulate tumor growth and metastatic spread by promoting cell proliferation, migration, invasion, and angiogenesis. In addition, neurotransmitters can interact with immune and endothelial cells in the tumor microenvironment to promote inflammation and tumor progression. As such, pharmacological targeting of neurotransmitter signaling represent a promising novel anticancer approach. Here, we present an overview of the current evidence supporting the role of neurotransmitters in colorectal cancer biology and treatment.
Collapse
Affiliation(s)
- Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Priya Jayachandran
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Annika Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandra Algaze
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yan Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Evanthia T Roussos Torres
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Josh Neman
- Department of Neurological Surgery, USC Brain Tumor Center, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Lactiplantibacillus plantarum attenuates 2,4,6-trinitrobenzenesulfonic acid-induced ulcerative colitis in rats by regulating the inflammatory response, T helper 17 immune response, and intestinal permeability. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Espinosa-Oliva AM, García-Miranda P, Alonso-Bellido IM, Carvajal AE, González-Rodríguez M, Carrillo-Jiménez A, Temblador AJ, Felices-Navarro M, García-Domínguez I, Roca-Ceballos MA, Vázquez-Carretero MD, García-Revilla J, Santiago M, Peral MJ, Venero JL, de Pablos RM. Galectin-3 Deletion Reduces LPS and Acute Colitis-Induced Pro-Inflammatory Microglial Activation in the Ventral Mesencephalon. Front Pharmacol 2021; 12:706439. [PMID: 34483912 PMCID: PMC8416309 DOI: 10.3389/fphar.2021.706439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease is a highly prevalent neurological disorder for which there is currently no cure. Therefore, the knowledge of risk factors as well as the development of new putative molecular targets is mandatory. In this sense, peripheral inflammation, especially the originated in the colon, is emerging as a predisposing factor for suffering this disease. We have largely studied the pleiotropic roles of galectin-3 in driving microglia-associated immune responses. However, studies aimed at elucidating the role of galectin-3 in peripheral inflammation in terms of microglia polarization are lacking. To achieve this, we have evaluated the effect of galectin-3 deletion in two different models of acute peripheral inflammation: intraperitoneal injection of lipopolysaccharide or gut inflammation induced by oral administration of dextran sodium sulfate. We found that under peripheral inflammation the number of microglial cells and the expression levels of pro-inflammatory mediators take place specifically in the dopaminergic system, thus supporting causative links between Parkinson’s disease and peripheral inflammation. Absence of galectin-3 highly reduced neuroinflammation in both models, suggesting an important central regulatory role of galectin-3 in driving microglial activation provoked by the peripheral inflammation. Thus, modulation of galectin-3 function emerges as a promising strategy to minimize undesired microglia polarization states.
Collapse
Affiliation(s)
- Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Pablo García-Miranda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Isabel María Alonso-Bellido
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Ana E Carvajal
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Melania González-Rodríguez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Alejandro Carrillo-Jiménez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Arturo J Temblador
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Manuel Felices-Navarro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Irene García-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - María Angustias Roca-Ceballos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | | | - Juan García-Revilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Marti Santiago
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - María J Peral
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - José Luis Venero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| |
Collapse
|
13
|
Reelin levels in inflammatory bowel disease: A case-control study. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.855197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Li X, Fan W, Yao A, Song H, Ge Y, Yan M, Shan Y, Zhang C, Li P, Jia L. Downregulation of reelin predicts poor prognosis for glioma. Biomark Med 2020; 14:651-663. [PMID: 32613843 DOI: 10.2217/bmm-2019-0609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: In the present study, we studied the relationship between RELN and prognosis in glioma. Materials & methods: Expression profiles and methylation data of RELN were obtained from bioinformatic datasets. Correlations between RELN and clinicopathological features and overall survival were respectively assessed using chi-square test and Kaplan-Meier analysis. Results: RELN was downregulated in glioma, and its downregulation correlated well with glioma malignancy and overall survival. Meanwhile, hypermethylation of RELN was significantly correlated with low RELN expression. Additionally, gene set enrichment analysis demonstrated that low expression of RELN correlated with many key cancer pathways, possibly highlighting the importance of RELN in carcinogenesis of brain. Conclusion: RELN may serve as a potential prognostic marker and promising target molecule for new therapy of glioma.
Collapse
Affiliation(s)
- Xueli Li
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wange Fan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Anhui Yao
- Department of Neurosurgery, The General Hospital of PLA, Beijing, China.,Department of Neurosurgery, 988th Hospital of Chinese People's Liberation Army, Zhengzhou, Henan Province, PR China
| | - Huiling Song
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunxiao Ge
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengyao Yan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yubo Shan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chujie Zhang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Pu Li
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Liyun Jia
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
15
|
Liang J, Li H, Chen J, He L, Du X, Zhou L, Xiong Q, Lai X, Yang Y, Huang S, Hou S. Dendrobium officinale polysaccharides alleviate colon tumorigenesis via restoring intestinal barrier function and enhancing anti-tumor immune response. Pharmacol Res 2019; 148:104417. [PMID: 31473343 DOI: 10.1016/j.phrs.2019.104417] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023]
Abstract
Intact epithelial barrier and mucosal immune system are crucial for maintaining intestinal homeostasis. Previous study indicated that Dendrobium officinale polysaccharides (DOPS) can regulate immune responses and inflammation to alleviate experimental colitis. However, it remains largely unknown whether DOPS can suppress AOM/DSS-induced colorectal cancer (CRC) model through its direct impact on intestinal barrier function and intestinal mucosal immunity. Here, we demonstrated the therapeutic action of DOPS for CRC model and further illustrated its underlying mechanisms. Treatment with 5-aminosalicylic acid (5-ASA) and DOPS significantly improved the clinical signs and symptoms of chronic colitis, relieve colon damage, suppress the formation and growth of colon tumor in CRC mice. Moreover, administration of DOPS effectively preserved the intestinal barrier function via reducing the loss of zonula occludens-1 (ZO-1) and occludin in adjacent tissues and carcinomatous tissues. Further studies demonstrated that DOPS improved the metabolic ability of tumor infiltrated CD8+ cytotoxic T lymphocytes (CTLs) and reduced the expression of PD-1 on CTLs to enhance the anti-tumor immune response in the tumor microenvironments (TME). Together, the conclusions indicated that DOPS restore intestinal barrier function and enhance intestinal anti-tumor immune response to suppress CRC, which may be a novel strategy for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jian Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Hailun Li
- Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, PR China
| | - Jianqiang Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, PR China
| | - Lian He
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, 510520, PR China
| | - Xianhua Du
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Qingping Xiong
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Xiaoping Lai
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
| | - Yiqi Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, PR China.
| | - Song Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Shaozhen Hou
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| |
Collapse
|
16
|
Liang Y, Zhang C, Dai DQ. Identification of differentially expressed genes regulated by methylation in colon cancer based on bioinformatics analysis. World J Gastroenterol 2019; 25:3392-3407. [PMID: 31341364 PMCID: PMC6639549 DOI: 10.3748/wjg.v25.i26.3392] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/09/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND DNA methylation, acknowledged as a key modification in the field of epigenetics, regulates gene expression at the transcriptional level. Aberrant methylation in DNA regulatory regions could upregulate oncogenes and downregulate tumor suppressor genes without changing the sequences. However, studies of methylation in the control of gene expression are still inadequate. In the present research, we performed bioinformatics analysis to clarify the function of methylation and supply candidate methylation-related biomarkers and drivers for colon cancer.
AIM To identify and analyze methylation-regulated differentially expressed genes (MeDEGs) in colon cancer by bioinformatics analysis.
METHODS We downloaded RNA expression profiles, Illumina Human Methylation 450K BeadChip data, and clinical data of colon cancer from The Cancer Genome Atlas project. MeDEGs were identified by analyzing the gene expression and methylation levels using the edgeR and limma package in R software. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed in the DAVID database and KEGG Orthology-Based Annotation System 3.0, respectively. We then conducted Kaplan–Meier survival analysis to explore the relationship between methylation and expression and prognosis. Gene set enrichment analysis (GSEA) and investigation of protein-protein interactions (PPI) were performed to clarify the function of prognosis-related genes.
RESULTS A total of 5 up-regulated and 81 down-regulated genes were identified as MeDEGs. GO and KEGG pathway analyses indicated that MeDEGs were enriched in multiple cancer-related terms. Furthermore, Kaplan–Meier survival analysis showed that the prognosis was negatively associated with the methylation status of glial cell-derived neurotrophic factor (GDNF) and reelin (RELN). In PPI networks, GDNF and RELN interact with neural cell adhesion molecule 1. Besides, GDNF can interact with GDNF family receptor alpha (GFRA1), GFRA2, GFRA3, and RET. RELN can interact with RAFAH1B1, disabled homolog 1, very low-density lipoprotein receptor, lipoprotein receptor-related protein 8, and NMDA 2B. Based on GSEA, hypermethylation of GDNF and RELN were both significantly associated with pathways including “RNA degradation,” “ribosome,” “mismatch repair,” “cell cycle” and “base excision repair.”
CONCLUSION Aberrant DNA methylation plays an important role in colon cancer progression. MeDEGs that are associated with the overall survival of patients may be potential targets in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Liang
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Cheng Zhang
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
17
|
Song L, Xie W, Liu Z, Guo D, Zhao D, Qiao X, Wang L, Zhou H, Cui W, Jiang Y, Li Y, Xu Y, Tang L. Oral delivery of a Lactococcus lactis strain secreting bovine lactoferricin-lactoferrampin alleviates the development of acute colitis in mice. Appl Microbiol Biotechnol 2019; 103:6169-6186. [PMID: 31165225 DOI: 10.1007/s00253-019-09898-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Ulcerative colitis (UC) is a chronic relapsing disease. Treatment of UC would benefit from specific targeting of therapeutics to the intestine. Previous studies have demonstrated that bovine lactoferricin and lactoferrampin have bactericidal, anti-inflammatory, and immunomodulatory effects. Here, we investigated whether oral administration of a bovine lactoferricin-lactoferrampin (LFCA)-encoding Lactococcus lactis (LL-LFCA) strain could alleviate experimental colitis. LFCA derived from LL-LFCA inhibited the growth of Escherichia coli and Staphylococcus aureus in vitro. In mice, administration of LL-LFCA decreased the disease activity index and attenuated dextran sulfate sodium (DSS)-induced body weight loss and colon shortening. LL-LFCA treatment also ameliorated DSS-induced colon damage, inhibited inflammatory cell infiltration, significantly decreased myeloperoxidase activity, and ameliorated DSS-induced disruption of intestinal permeability and tight junctions. In addition, 16S rDNA sequencing showed that LL-LFCA reversed DSS-induced gut dysbiosis. The production of proinflammatory mediators in serum and the colon was also reduced by administration of LL-LFCA. In vitro, LFCA derived from LL-LFCA decreased the messenger RNA expression of proinflammatory factors. The underlying mechanisms may involve inhibition of the nuclear factor kappa B (NF-κB) pathway. The results demonstrate that LL-LFCA ameliorates DSS-induced intestinal injury in mice, suggesting that LL-LFCA might be an effective drug for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Liying Song
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Zhihang Liu
- Bio-pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Dian Guo
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China. .,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China. .,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.
| |
Collapse
|
18
|
Small and large intestine express a truncated Dab1 isoform that assembles in cell-cell junctions and co-localizes with proteins involved in endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1231-1241. [PMID: 29470947 DOI: 10.1016/j.bbamem.2018.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Abstract
Disabled-1 (Dab1) is an essential intracellular adaptor protein in the reelin pathway. Our previous studies in mice intestine showed that Dab1 transmits the reelin signal to cytosolic signalling pathways. Here, we determine the Dab1 isoform expressed in rodent small and large intestine, its subcellular location and co-localization with clathrin, caveolin-1 and N-Wasp. PCR and sequencing analysis reveal that rodent small and large intestine express a Dab1 isoform that misses three (Y198, Y200 and Y220) of the five tyrosine phosphorylation sites present in brain Dab1 isoform (canonical) and contains nuclear localization and export signals. Western blot assays show that both, crypts, which shelter progenitor cells, and enterocytes express the same Dab1 isoform, suggesting that epithelial cell differentiation does not regulate intestinal generation of alternatively spliced Dab1 variants. They also reveal that the canonical and the intestinal Dab1 isoforms differ in their total degree of phosphorylation. Immunostaining assays show that in enterocytes Dab1 localizes at the apical and lateral membranes, apical vesicles, close to adherens junctions and desmosomes, as well as in the nucleus; co-localizes with clathrin and with N-Wasp but not with caveolin-1, and in Caco-2 cells Dab1 localizes at cell-to-cell junctions by a Ca2+-dependent process. In conclusion, the results indicate that in rodent intestine a truncated Dab1 variant transmits the reelin signal and may play a role in clathrin-mediated apical endocytosis and in the control of cell-to-cell junction assembly. A function of intestinal Dab1 variant as a nucleocytoplasmic shuttling protein is also inferred from its sequence and nuclear location.
Collapse
|