1
|
Turer BY, Sanlier N. Relationship of Curcumin with Aging and Alzheimer and Parkinson Disease, the Most Prevalent Age-Related Neurodegenerative Diseases: A Narrative Review. Nutr Rev 2024:nuae079. [PMID: 38916925 DOI: 10.1093/nutrit/nuae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
The elderly population is increasing worldwide every day. Age is a significant factor in the progression of neurological diseases, which can also cause cognitive decline and memory disorders. Inflammation and oxidative stress are primary drivers of senescence and disorders, particularly those associated with aging and neurodegenerative diseases. Bioactive phytochemicals are considered a promising therapeutic strategy in combating aging and age-related pathological conditions. One of the phytochemicals with diverse biological properties encompassing antioxidant, anti-inflammatory, antibacterial, antiviral, anticancer, antifungal, antidepressant, anti-allergic, and anti-aging properties is curcumin. Curcumin, a polyphenolic structure with a distinct orange hue and unique chemical properties, is derived from the roots of Curcuma longa, a member of the Zingiberaceae family, commonly known as turmeric. It has been noted that the incidence of neurodegenerative diseases is low in societies that consume curcumin widely. Therefore, this review investigates the effect of curcumin on aging and Alzheimer and Parkinson disease, which are the most prevalent age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Büşra Yurt Turer
- Department of Nutrition and Dietetics, Institute of Health Sciences, Ankara Medipol University, Ankara, 06050, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, 06050, Turkey
| |
Collapse
|
2
|
Meitern R, Hõrak P. Survival costs and benefits of reproduction: A register-based study in 20th century Estonia. Ann N Y Acad Sci 2024; 1535:137-148. [PMID: 38536396 DOI: 10.1111/nyas.15127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Patterns of individual variation in lifespan and senescence depend on the associations between parental survival and reproductive rates. We studied the associations between parity and survival among 579,271 Estonians born between 1905 and 1945 and in a cohort with a completed lifespan born in 1905-1927. For this cohort, selection for increased lifespan operated on both sexes, but it was stronger in men than in women. However, the median lifespan increased between the subsequent cohorts in women but stagnated in men. Selection for longer lifespan was caused by the below-average lifespan of individuals with no or single offspring. Despite a general positive selection for lifespan, survival costs of reproduction were also detected among a relatively small proportion of individuals with high parities, as mothers of two and fathers of two and three children had the highest median lifespans. Fathers of more than six children had better survival than fathers of few children in their reproductive age, but this association reversed after age 70. The reversal of this association between survival and parity at old age indicates that relative mortality risks between those with lower versus higher parities change across ages, as predicted by the antagonistic pleiotropy theory of aging.
Collapse
Affiliation(s)
| | - Peeter Hõrak
- Department of Zoology, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Stöger R, Choi M, Begum K, Leeman G, Emes RD, Melamed P, Bentley GR. Childhood environment influences epigenetic age and methylation concordance of a CpG clock locus in British-Bangladeshi migrants. Epigenetics 2023; 18:2153511. [PMID: 36495138 PMCID: PMC9980690 DOI: 10.1080/15592294.2022.2153511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Migration from one location to another often comes with a change in environmental conditions. Here, we analysed features of DNA methylation in young, adult British-Bangladeshi women who experienced different environments during their childhoods: a) migrants, who grew up in Bangladesh with exposure to comparatively higher pathogen loads and poorer health care, and b) second-generation British-Bangladeshis, born to Bangladeshi parents, who grew up in the UK. We used buccal DNA to estimate DNA methylation-based age (DNAm age) from 14 migrants and 11 second-generation migrants, aged 18-35 years. 'AgeAccel,' a measure of DNAm age, independent of chronological age, showed that the group of women who spent their childhood in Bangladesh had higher AgeAccel (P = 0.028), compared to their UK peers. Since epigenetic clocks have been proposed to be associated with maintenance processes of epigenetic systems, we evaluated the preference for concordant DNA methylation at the luteinizing hormone/choriogonadotropin receptor (LHCGR/LHR) locus, which harbours one of the CpGs contributing to Horvath's epigenetic clock. Measurements on both strands of individual, double-stranded DNA molecules indicate higher stability of DNA methylation states at this LHCGR/LHR locus in samples of women who grew up in Bangladesh. Together, our two independent analytical approaches imply that childhood environments may induce subtle changes that are detectable long after exposure occurred, which might reflect altered activity of the epigenetic maintenance system or a difference in the proportion of cell types in buccal tissue. This exploratory work supports our earlier findings that adverse childhood environments lead to phenotypic life history trade-offs.
Collapse
Affiliation(s)
- Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, UK
| | - Minseung Choi
- School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Gregory Leeman
- School of Biosciences, University of Nottingham, Nottingham, UK
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.,Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gillian R Bentley
- Department of Anthropology, Durham University, Durham, UK.,Wolfson Research Institute for Health and Wellbeing, Durham University, Durham, UK
| |
Collapse
|
4
|
Martínez-Magaña JJ, Krystal JH, Girgenti MJ, Núnez-Ríos DL, Nagamatsu ST, Andrade-Brito DE, Montalvo-Ortiz JL. Decoding the role of transcriptomic clocks in the human prefrontal cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.19.23288765. [PMID: 37163025 PMCID: PMC10168432 DOI: 10.1101/2023.04.19.23288765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Aging is a complex process with interindividual variability, which can be measured by aging biological clocks. Aging clocks are machine-learning algorithms guided by biological information and associated with mortality risk and a wide range of health outcomes. One of these aging clocks are transcriptomic clocks, which uses gene expression data to predict biological age; however, their functional role is unknown. Here, we profiled two transcriptomic clocks (RNAAgeCalc and knowledge-based deep neural network clock) in a large dataset of human postmortem prefrontal cortex (PFC) samples. We identified that deep-learning transcriptomic clock outperforms RNAAgeCalc to predict transcriptomic age in the human PFC. We identified associations of transcriptomic clocks with psychiatric-related traits. Further, we applied system biology algorithms to identify common gene networks among both clocks and performed pathways enrichment analyses to assess its functionality and prioritize genes involved in the aging processes. Identified gene networks showed enrichment for diseases of signal transduction by growth factor receptors and second messenger pathways. We also observed enrichment of genome-wide signals of mental and physical health outcomes and identified genes previously associated with human brain aging. Our findings suggest a link between transcriptomic aging and health disorders, including psychiatric traits. Further, it reveals functional genes within the human PFC that may play an important role in aging and health risk.
Collapse
Affiliation(s)
- José J. Martínez-Magaña
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - John H. Krystal
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Psychiatry Service, VA Connecticut Health Care System, West Haven, CT, USA
| | - Matthew J. Girgenti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - Diana L. Núnez-Ríos
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - Sheila T. Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - Diego E. Andrade-Brito
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | | | - Janitza L. Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Psychiatry Service, VA Connecticut Health Care System, West Haven, CT, USA
| |
Collapse
|
5
|
Valge M, Meitern R, Hõrak P. Mothers of small-bodied children and fathers of vigorous sons live longer. Front Public Health 2023; 11:1057146. [PMID: 36761140 PMCID: PMC9905732 DOI: 10.3389/fpubh.2023.1057146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Life-history traits (traits directly related to survival and reproduction) co-evolve and materialize through physiology and behavior. Accordingly, lifespan can be hypothesized as a potentially informative marker of life-history speed that subsumes the impact of diverse morphometric and behavioral traits. We examined associations between parental longevity and various anthropometric traits in a sample of 4,000-11,000 Estonian children in the middle of the 20th century. The offspring phenotype was used as a proxy measure of parental genotype, so that covariation between offspring traits and parental longevity (defined as belonging to the 90th percentile of lifespan) could be used to characterize the aggregation between longevity and anthropometric traits. We predicted that larger linear dimensions of offspring associate with increased parental longevity and that testosterone-dependent traits associate with reduced paternal longevity. Twelve of 16 offspring traits were associated with mothers' longevity, while three traits (rate of sexual maturation of daughters and grip strength and lung capacity of sons) robustly predicted fathers' longevity. Contrary to predictions, mothers of children with small bodily dimensions lived longer, and paternal longevity was not linearly associated with their children's body size (or testosterone-related traits). Our study thus failed to find evidence that high somatic investment into brain and body growth clusters with a long lifespan across generations, and/or that such associations can be detected on the basis of inter-generational phenotypic correlations.
Collapse
|
6
|
Nutrient-Response Pathways in Healthspan and Lifespan Regulation. Cells 2022; 11:cells11091568. [PMID: 35563873 PMCID: PMC9102925 DOI: 10.3390/cells11091568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular, small invertebrate and vertebrate models are a driving force in biogerontology studies. Using various models, such as yeasts, appropriate tissue culture cells, Drosophila, the nematode Caenorhabditis elegans and the mouse, has tremendously increased our knowledge around the relationship between diet, nutrient-response signaling pathways and lifespan regulation. In recent years, combinatorial drug treatments combined with mutagenesis, high-throughput screens, as well as multi-omics approaches, have provided unprecedented insights in cellular metabolism, development, differentiation, and aging. Scientists are, therefore, moving towards characterizing the fine architecture and cross-talks of growth and stress pathways towards identifying possible interventions that could lead to healthy aging and the amelioration of age-related diseases in humans. In this short review, we briefly examine recently uncovered knowledge around nutrient-response pathways, such as the Insulin Growth Factor (IGF) and the mechanistic Target of Rapamycin signaling pathways, as well as specific GWAS and some EWAS studies on lifespan and age-related disease that have enhanced our current understanding within the aging and biogerontology fields. We discuss what is learned from the rich and diverse generated data, as well as challenges and next frontiers in these scientific disciplines.
Collapse
|
7
|
Gavrilova NS, Gavrilov LA. Protective Effects of Familial Longevity Decrease With Age and Become Negligible for Centenarians. J Gerontol A Biol Sci Med Sci 2022; 77:736-743. [PMID: 34929024 PMCID: PMC8974328 DOI: 10.1093/gerona/glab380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Indexed: 11/12/2022] Open
Abstract
It is known that biological relatives of long-lived individuals demonstrate lower mortality and longer life span compared to relatives of shorter-lived individuals, and at least part of this advantage is likely to be genetic. Less information, however, is available about effects of familial longevity on age-specific mortality trajectories. We compared mortality patterns after age 50 years for 10 045 siblings of US centenarians and 12 308 siblings of shorter-lived individuals (died at age 65 years). Similar comparisons were made for sons and daughters of longer-lived parents (both parents lived 80 years and more) and shorter-lived parents (both parents lived less than 80 years) within each group of siblings. Although relatives of longer-lived individuals have lower mortality at younger ages compared to relatives of shorter-lived individuals, this mortality advantage practically disappears by age 100 years. To validate this observation further, we analyzed the survival of 3 408 US centenarians born in 1890-1897 with known information on maternal and paternal life span. We found using the Cox proportional hazards model that both maternal and paternal longevity (life span 80+ years) is not significantly associated with survival after age 100 years. The results are compatible with the predictions of reliability theory of aging suggesting higher initial levels of system redundancy (reserves) in individuals with protective familial/genetic background and hence lower initial mortality. Heterogeneity hypothesis is another possible explanation for the observed phenomena.
Collapse
Affiliation(s)
- Natalia S Gavrilova
- Academic Research Centers, NORC at the University of Chicago, Chicago, Illinois, USA
- Institute for Demographic Research, Federal Center of Theoretical and Applied Sociology, Russian Academy of Sciences, Moscow, Russia
| | - Leonid A Gavrilov
- Academic Research Centers, NORC at the University of Chicago, Chicago, Illinois, USA
- Institute for Demographic Research, Federal Center of Theoretical and Applied Sociology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Pseudotime Analysis Reveals Exponential Trends in DNA Methylation Aging with Mortality Associated Timescales. Cells 2022; 11:cells11050767. [PMID: 35269389 PMCID: PMC8909670 DOI: 10.3390/cells11050767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
The epigenetic trajectory of DNA methylation profiles has a nonlinear relationship with time, reflecting rapid changes in DNA methylation early in life that progressively slow with age. In this study, we use pseudotime analysis to determine the functional form of these trajectories. Unlike epigenetic clocks that constrain the functional form of methylation changes with time, pseudotime analysis orders samples along a path, based on similarities in a latent dimension, to provide an unbiased trajectory. We show that pseudotime analysis can be applied to DNA methylation in human blood and brain tissue and find that it is highly correlated with the epigenetic states described by the Epigenetic Pacemaker. Moreover, we show that the pseudotime trajectory can be modeled with respect to time, using a sum of two exponentials, with coefficients that are close to the timescales of human age-associated mortality. Thus, for the first time, we can identify age-associated molecular changes that appear to track the exponential dynamics of mortality risk.
Collapse
|
9
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
10
|
Dyakin VV, Dyakina-Fagnano NV, Mcintire LB, Uversky VN. Fundamental Clock of Biological Aging: Convergence of Molecular, Neurodegenerative, Cognitive and Psychiatric Pathways: Non-Equilibrium Thermodynamics Meet Psychology. Int J Mol Sci 2021; 23:ijms23010285. [PMID: 35008708 PMCID: PMC8745688 DOI: 10.3390/ijms23010285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 12/22/2021] [Indexed: 12/23/2022] Open
Abstract
In humans, age-associated degrading changes, widely observed in molecular and cellular processes underly the time-dependent decline in spatial navigation, time perception, cognitive and psychological abilities, and memory. Cross-talk of biological, cognitive, and psychological clocks provides an integrative contribution to healthy and advanced aging. At the molecular level, genome, proteome, and lipidome instability are widely recognized as the primary causal factors in aging. We narrow attention to the roles of protein aging linked to prevalent amino acids chirality, enzymatic and spontaneous (non-enzymatic) post-translational modifications (PTMs SP), and non-equilibrium phase transitions. The homochirality of protein synthesis, resulting in the steady-state non-equilibrium condition of protein structure, makes them prone to multiple types of enzymatic and spontaneous PTMs, including racemization and isomerization. Spontaneous racemization leads to the loss of the balanced prevalent chirality. Advanced biological aging related to irreversible PTMs SP has been associated with the nontrivial interplay between somatic (molecular aging) and mental (psychological aging) health conditions. Through stress response systems (SRS), the environmental and psychological stressors contribute to the age-associated “collapse” of protein homochirality. The role of prevalent protein chirality and entropy of protein folding in biological aging is mainly overlooked. In a more generalized context, the time-dependent shift from enzymatic to the non-enzymatic transformation of biochirality might represent an important and yet underappreciated hallmark of aging. We provide the experimental arguments in support of the racemization theory of aging.
Collapse
Affiliation(s)
- Victor V. Dyakin
- The Nathan S. Kline Institute for Psychiatric Research (NKI), 140 Old Orangeburg Road, Bldg, 35, Bld. 35. Rom 201-C, Orangeburg, NY 10962, USA
- Correspondence: ; Tel.: +1-845-548-96-94; Fax: +1-845-398-5510
| | - Nuka V. Dyakina-Fagnano
- Child, Adolescent and Young Adult Psychiatry, 36 Franklin Turnpike, Waldwick, NJ 07463, USA;
| | - Laura B. Mcintire
- Department of Pathology and Cell Biology, Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA;
| |
Collapse
|
11
|
Sebastiani P, Federico A, Morris M, Gurinovich A, Tanaka T, Chandler KB, Andersen SL, Denis G, Costello CE, Ferrucci L, Jennings L, Glass DJ, Monti S, Perls TT. Protein signatures of centenarians and their offspring suggest centenarians age slower than other humans. Aging Cell 2021; 20:e13290. [PMID: 33512769 PMCID: PMC7884029 DOI: 10.1111/acel.13290] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022] Open
Abstract
Using samples from the New England Centenarian Study (NECS), we sought to characterize the serum proteome of 77 centenarians, 82 centenarians' offspring, and 65 age-matched controls of the offspring (mean ages: 105, 80, and 79 years). We identified 1312 proteins that significantly differ between centenarians and their offspring and controls (FDR < 1%), and two different protein signatures that predict longer survival in centenarians and in younger people. By comparing the centenarian signature with 2 independent proteomic studies of aging, we replicated the association of 484 proteins of aging and we identified two serum protein signatures that are specific of extreme old age. The data suggest that centenarians acquire similar aging signatures as seen in younger cohorts that have short survival periods, suggesting that they do not escape normal aging markers, but rather acquire them much later than usual. For example, centenarian signatures are significantly enriched for senescence-associated secretory phenotypes, consistent with those seen with younger aged individuals, and from this finding, we provide a new list of serum proteins that can be used to measure cellular senescence. Protein co-expression network analysis suggests that a small number of biological drivers may regulate aging and extreme longevity, and that changes in gene regulation may be important to reach extreme old age. This centenarian study thus provides additional signatures that can be used to measure aging and provides specific circulating biomarkers of healthy aging and longevity, suggesting potential mechanisms that could help prolong health and support longevity.
Collapse
Affiliation(s)
- Paola Sebastiani
- Institute for Clinical Research and Health Policy StudiesTufts Medical CenterBostonMAUSA
| | - Anthony Federico
- Bioinformatics ProgramBoston UniversityBostonMAUSA
- Division of Computational BiomedicineDepartment of MedicineBoston University School of MedicineBostonMAUSA
| | - Melody Morris
- Novartis Institutes for Biomedical ResearchCambridgeMAUSA
| | | | - Toshiko Tanaka
- Translational Gerontology BranchNational Institute on AgingBaltimoreMDUSA
| | - Kevin B. Chandler
- Translational Glycobiology InstituteDepartment of Translational MedicineFlorida International UniversityHerbert Wertheim College of MedicineMiamiFLUSA
| | - Stacy L. Andersen
- Geriatric SectionDepartment of MedicineBoston University School of Medicine and Boston Medical CenterBostonMAUSA
| | - Gerald Denis
- Department of MedicineBU‐BMC Cancer CenterBoston University School of MedicineBostonMAUSA
| | - Catherine E. Costello
- Department of BiochemistryCenter for Biomedical Mass SpectrometryBoston University School of MedicineBostonMAUSA
| | - Luigi Ferrucci
- Translational Gerontology BranchNational Institute on AgingBaltimoreMDUSA
| | - Lori Jennings
- Novartis Institutes for Biomedical ResearchCambridgeMAUSA
| | - David J. Glass
- Novartis Institutes for Biomedical ResearchCambridgeMAUSA
- Regeneron PharmaceuticalsTarrytownNYUSA
| | - Stefano Monti
- Bioinformatics ProgramBoston UniversityBostonMAUSA
- Division of Computational BiomedicineDepartment of MedicineBoston University School of MedicineBostonMAUSA
| | - Thomas T. Perls
- Geriatric SectionDepartment of MedicineBoston University School of Medicine and Boston Medical CenterBostonMAUSA
| |
Collapse
|
12
|
The role of curcumin in aging and senescence: Molecular mechanisms. Biomed Pharmacother 2021; 134:111119. [DOI: 10.1016/j.biopha.2020.111119] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
|
13
|
Rodríguez-Girondo M, van den Berg N, Hof MH, Beekman M, Slagboom E. Improved selection of participants in genetic longevity studies: family scores revisited. BMC Med Res Methodol 2021; 21:7. [PMID: 33407157 PMCID: PMC7789146 DOI: 10.1186/s12874-020-01193-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Although human longevity tends to cluster within families, genetic studies on longevity have had limited success in identifying longevity loci. One of the main causes of this limited success is the selection of participants. Studies generally include sporadically long-lived individuals, i.e. individuals with the longevity phenotype but without a genetic predisposition for longevity. The inclusion of these individuals causes phenotype heterogeneity which results in power reduction and bias. A way to avoid sporadically long-lived individuals and reduce sample heterogeneity is to include family history of longevity as selection criterion using a longevity family score. A main challenge when developing family scores are the large differences in family size, because of real differences in sibship sizes or because of missing data. METHODS We discussed the statistical properties of two existing longevity family scores: the Family Longevity Selection Score (FLoSS) and the Longevity Relatives Count (LRC) score and we evaluated their performance dealing with differential family size. We proposed a new longevity family score, the mLRC score, an extension of the LRC based on random effects modeling, which is robust for family size and missing values. The performance of the new mLRC as selection tool was evaluated in an intensive simulation study and illustrated in a large real dataset, the Historical Sample of the Netherlands (HSN). RESULTS Empirical scores such as the FLOSS and LRC cannot properly deal with differential family size and missing data. Our simulation study showed that mLRC is not affected by family size and provides more accurate selections of long-lived families. The analysis of 1105 sibships of the Historical Sample of the Netherlands showed that the selection of long-lived individuals based on the mLRC score predicts excess survival in the validation set better than the selection based on the LRC score . CONCLUSIONS Model-based score systems such as the mLRC score help to reduce heterogeneity in the selection of long-lived families. The power of future studies into the genetics of longevity can likely be improved and their bias reduced, by selecting long-lived cases using the mLRC.
Collapse
Affiliation(s)
- Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, section of Medical Statistics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands.
| | - Niels van den Berg
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Michel H Hof
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Marian Beekman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Eline Slagboom
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| |
Collapse
|
14
|
Khalid S, Rasheed U, Qamar U. GenF: A longevity predicting framework to aid public health sectors. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Statzer C, Ewald CY. The extracellular matrix phenome across species. Matrix Biol Plus 2020; 8:100039. [PMID: 33543035 PMCID: PMC7852310 DOI: 10.1016/j.mbplus.2020.100039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrices are essential for cellular and organismal function. Recent genome-wide and phenome-wide association studies started to reveal a broad spectrum of phenotypes associated with genetic variants. However, the phenome or spectrum of all phenotypes associated with genetic variants in extracellular matrix genes is unknown. Here, we analyzed over two million recorded genotype-to-phenotype relationships across multiple species to define their extracellular matrix phenomes. By using the previously defined matrisomes of humans, mice, zebrafish, Drosophila, and C. elegans, we found that the extracellular matrix phenome comprises of 3-10% of the entire phenome. Collagens (COL1A1, COL2A1) and fibrillin (FBN1) are each associated with >150 distinct phenotypes in humans, whereas collagen COL4A1, Wnt- and sonic hedgehog (shh) signaling are predominantly associated in other species. We determined the phenotypic fingerprints of matrisome genes and found that MSTN, CTSD, LAMB2, HSPG2, and COL11A2 and their corresponding orthologues have the most phenotypes across species. Out of the 42,551 unique matrisome genotype-to-phenotype relationships across the five species with defined matrisomes, we have constructed interaction networks to identify the underlying molecular components connecting with orthologues phenotypes and with novel phenotypes. Thus, our networks provide a framework to predict unassessed phenotypes and their potential underlying molecular interactions. These frameworks inform on matrisome genotype-to-phenotype relationships and potentially provide a sophisticated choice of biological model system to study human phenotypes and diseases.
Collapse
Affiliation(s)
- Cyril Statzer
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Zürich CH-8603, Switzerland
| | - Collin Y. Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Zürich CH-8603, Switzerland
| |
Collapse
|
16
|
Yang F, Wang J, Yang Z, Ren Z, Zeng F. PANK2 p.A170fs:a novel pathogenetic mutation, compound with PANK2 p.R440P, causing pantothenate kinase Associated neurodegeneration in a Chinese family. Int J Neurosci 2020; 132:582-588. [PMID: 33043782 DOI: 10.1080/00207454.2020.1828883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Pantothenate kinase associated neurodegeneration (PKAN) is a severe autosomal recessive rare disease and characterized by iron accumulation in the basal ganglia. To investigate the pathogenesis of this disease in two sibling patients with PANK in a Chinese family, whole-exome variant detection and functional analysis were performed. MATERIALS AND METHODS Clinical and radiographic investigations were performed in the two brother patients. Whole exome sequencing (WES) was used in mutation detection, and the mutations were confirmed by Sanger sequencing. A longevity cohort genetic database was applied as Chinese urban controls. Bioinformatic analysis was performed to predict the pathogenicity. RESULTS Compound heterozygous mutations of PANK2 were detected in two sibling brothers with PKAN in a Chinese family: c.510_522del (p.A170fs) and c.1319G > C (p.R440P) in the transcript NM_153638. PANK2: c.510_522del (p.A170fs) was absent in public data and the Chinese urban controls. Bioinformatics analysis showed that the above two variants were pathogenicity. CONCLUSIONS We identified a rare compound heterozygous combination of PANK2 mutations found in a Chinese family in which two sibling brothers suffered from PKAN. PANK2 c.510_522del (p.A170fs) was the first reported to be a PKAN pathogenic variant.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China
| | - Juan Wang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China
| | - Ze Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P. R. China
| | - Zhaorui Ren
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
17
|
Osmak GJ, Sidko AR, Kiselev IS, Favorova OO. Age-Dependent Approach to Search for Genetic Variants Associated with Myocardial Infarction. Mol Biol 2020. [DOI: 10.1134/s0026893320040123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
MetaboAge DB: a repository of known ageing-related changes in the human metabolome. Biogerontology 2020; 21:763-771. [PMID: 32785805 PMCID: PMC7541382 DOI: 10.1007/s10522-020-09892-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Accumulating metabolomics data is starting to become extremely useful in understanding the ageing process, by providing a snapshot into the metabolic state of tissues and organs, at different ages. Molecular studies of such metabolic variations during “normal” ageing can hence guide lifestyle changes and/or medical interventions aimed at improving healthspan and perhaps even lifespan. In this work, we present MetaboAge, a freely accessible database which hosts ageing-related metabolite changes, occurring in healthy individuals. Data is automatically filtered and then manually curated from scientific articles reporting statistically significant associations of human metabolite variations or correlations with ageing. Up to date, MetaboAge contains 408 metabolites annotated with their biological and chemical information, and more than 1515 ageing-related variations, graphically represented on the website grouped by validation methods, sex and age-groups. The MetaboAge database aims to continually structure the expanding information from the field of metabolomics in relation to ageing, thus making it more accessible for further research in gerontology.
Collapse
|
19
|
Sathyan S, Verghese J. Genetics of frailty: A longevity perspective. Transl Res 2020; 221:83-96. [PMID: 32289255 PMCID: PMC7729977 DOI: 10.1016/j.trsl.2020.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Frailty is a complex late life phenotype characterized by cumulative declines in multiple physiological systems that increases the risk for disability and mortality. The biological changes associated with aging are risk factors for frailty as well as for complex diseases; whereas longevity is assumed to be an outcome of protective biological mechanisms. Understanding the interplay between biological alterations associated with aging and protective mechanisms associated with longevity in the context of frailty may help guide development of interventions to increase healthspan and promote successful aging. The complexity of these phenotypes and relatively low heritability in studies are the main roadblocks in deciphering genetic mechanisms of these age associated conditions. We review genetic research related to frailty, and discuss the possible intertwined biology of frailty and longevity.
Collapse
Affiliation(s)
- Sanish Sathyan
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
20
|
Berg N, Rodríguez‐Girondo M, Mandemakers K, Janssens AAPO, Beekman M, Slagboom PE. Longevity Relatives Count score identifies heritable longevity carriers and suggests case improvement in genetic studies. Aging Cell 2020; 19:e13139. [PMID: 32352215 PMCID: PMC7294789 DOI: 10.1111/acel.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 02/23/2020] [Indexed: 12/23/2022] Open
Abstract
Loci associated with longevity are likely to harbor genes coding for key players of molecular pathways involved in a lifelong decreased mortality and decreased/compressed morbidity. However, identifying such loci is challenging. One of the most plausible reasons is the uncertainty in defining long‐lived cases with the heritable longevity trait among long‐living phenocopies. To avoid phenocopies, family selection scores have been constructed, but these have not yet been adopted as state of the art in longevity research. Here, we aim to identify individuals with the heritable longevity trait by using current insights and a novel family score based on these insights. We use a unique dataset connecting living study participants to their deceased ancestors covering 37,825 persons from 1,326 five‐generational families, living between 1788 and 2019. Our main finding suggests that longevity is transmitted for at least two subsequent generations only when at least 20% of all relatives are long‐lived. This proves the importance of family data to avoid phenocopies in genetic studies.
Collapse
Affiliation(s)
- Niels Berg
- Section of Molecular Epidemiology Department of Biomedical Data Sciences Leiden University Medical Center Leiden The Netherlands
- Radboud Group for Historical Demography and Family History Radboud University Nijmegen The Netherlands
| | - Mar Rodríguez‐Girondo
- Section of Medical Statistics Department of Biomedical Data Sciences Leiden University Medical Center Leiden The Netherlands
| | - Kees Mandemakers
- International Institute of Social History Amsterdam The Netherlands
| | | | - Marian Beekman
- Section of Molecular Epidemiology Department of Biomedical Data Sciences Leiden University Medical Center Leiden The Netherlands
| | - P. Eline Slagboom
- Section of Molecular Epidemiology Department of Biomedical Data Sciences Leiden University Medical Center Leiden The Netherlands
- Max Planck Institute for Biology of Ageing Cologne Germany
| |
Collapse
|
21
|
KLOTHO polymorphisms and age-related outcomes in community-dwelling older subjects: The São Paulo Ageing & Health (SPAH) Study. Sci Rep 2020; 10:8574. [PMID: 32444684 PMCID: PMC7244540 DOI: 10.1038/s41598-020-65441-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Defective KLOTHO gene expression in mice led to a syndrome resembling human ageing. This study evaluated three KLOTHO polymorphisms, namely G395A, C1818T, and C370S, in an elderly population (mean age of 73 years) and their associations with ageing-related outcomes (cardiovascular events, kidney function, osteoporosis, sarcopenia) and mortality. Estimated glomerular filtration rates (eGFR) was lower in subjects with 1818TT (P = 0.047) and 370SS (P = 0.046) genotypes. The 1818TT genotype (P = 0.006) and 1818T allele were associated with higher frequency of myocardial infarction (MI) (CC:1.7% vs. CT + TT:7.0%; P = 0.002). The 370SS genotype was associated with lower stroke frequency (P = 0.001). MI (OR 3.35 [95% CI: 1.29–8.74]) and stroke (OR 3.64 [95% CI: 1.48–8.97]) were associated with mortality. Regarding MI, logistic regression showed 1818T allele was a risk factor for death-related MI (OR 4.29 [95% CI: 1.60–11.52]; P = 0.003), while 370C was protective (OR 0.03 [95% CI: 0.01–0.08]; P < 0.001). Regarding stroke, the 395A and 370C alleles were protective factors (respectively: OR 0.28 [95% CI: 0.20–0.80]; P = 0.018; OR 0.10 [95% CI: 0.05–0.18]; P < 0.001). This is the first study to determine potential associations between common ageing-related outcomes/mortality and KLOTHO polymorphisms. The 1818T allele was a risk factor for MI-related death. The 395A and 370C alleles were protective factors for stroke-related death in elderly from community.
Collapse
|
22
|
Chung YW, Cha J, Han S, Chen Y, Gucek M, Cho HJ, Nakahira K, Choi AMK, Ryu JH, Yoon JH. Apolipoprotein E and Periostin Are Potential Biomarkers of Nasal Mucosal Inflammation. A Parallel Approach of In Vitro and In Vivo Secretomes. Am J Respir Cell Mol Biol 2020; 62:23-34. [PMID: 31194918 DOI: 10.1165/rcmb.2018-0248oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
No previously suggested biomarkers of nasal mucosal inflammation have been practically applied in clinical fields, and nasal epithelium-derived secreted proteins as biomarkers have not specifically been investigated. The goal of this study was to identify secreted proteins that dynamically change during the differentiation from basal cells to fully differentiated cells and examine whether nasal epithelium-derived proteins can be used as biomarkers of nasal mucosal inflammation, such as chronic rhinosinusitis. To achieve this goal, we analyzed two secretomes using the isobaric tag for relative and absolute quantification technique. From in vitro secretomes, we identified the proteins altered in apical secretions of primary human nasal epithelial cells according to the degree of differentiation; from in vivo secretomes, we identified the increased proteins in nasal lavage fluids obtained from patients 2 weeks after endoscopic sinus surgery for chronic sinusitis. We then used a parallel approach to identify specific biomarkers of nasal mucosal inflammation; first, we selected apolipoprotein E as a nasal epithelial cell-derived biomarker through screening proteins that were upregulated in both in vitro and in vivo secretomes, and verified highly secreted apolipoprotein E in nasal lavage fluids of the patients by Western blotting. Next, we selected periostin as an inflammatory mediator-inducible biomarker from in vivo secretomes, the secretion of which was not induced under in vitro culture conditions. We demonstrated that those two nasal epithelium-derived proteins are possible biomarkers of nasal mucosal inflammation.
Collapse
Affiliation(s)
- Youn Wook Chung
- The Airway Mucus Institute.,Global Research Laboratory for Allergic Airway Disease.,Severance Biomedical Science Institute
| | - Jimin Cha
- Severance Biomedical Science Institute.,Brain Korea 21 PLUS Project for Medical Science, and
| | - Seunghan Han
- Severance Biomedical Science Institute.,Brain Korea 21 PLUS Project for Medical Science, and
| | - Yong Chen
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Hyung-Ju Cho
- The Airway Mucus Institute.,Global Research Laboratory for Allergic Airway Disease.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Ji-Hwan Ryu
- Severance Biomedical Science Institute.,Brain Korea 21 PLUS Project for Medical Science, and
| | - Joo-Heon Yoon
- The Airway Mucus Institute.,Global Research Laboratory for Allergic Airway Disease.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Kooman JP, Stenvinkel P, Shiels PG. Fabry Disease: A New Model of Premature Ageing? Nephron Clin Pract 2019; 144:1-4. [PMID: 31563917 DOI: 10.1159/000503290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jeroen P Kooman
- Maastricht University Medical Center, Department of Internal Medicine, Division of Nephrology, Maastricht, The Netherlands,
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
24
|
Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1718-1744. [PMID: 31109447 PMCID: PMC7295568 DOI: 10.1016/j.bbadis.2018.08.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Here we summarize the latest data on genetic and epigenetic contributions to human aging and longevity. Whereas environmental and lifestyle factors are important at younger ages, the contribution of genetics appears more important in reaching extreme old age. Genome-wide studies have implicated ~57 gene loci in lifespan. Epigenomic changes during aging profoundly affect cellular function and stress resistance. Dysregulation of transcriptional and chromatin networks is likely a crucial component of aging. Large-scale bioinformatic analyses have revealed involvement of numerous interaction networks. As the young well-differentiated cell replicates into eventual senescence there is drift in the highly regulated chromatin marks towards an entropic middle-ground between repressed and active, such that genes that were previously inactive "leak". There is a breakdown in chromatin connectivity such that topologically associated domains and their insulators weaken, and well-defined blocks of constitutive heterochromatin give way to generalized, senescence-associated heterochromatin, foci. Together, these phenomena contribute to aging.
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia; Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Bradley J Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Timothy A Donlon
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Departments of Cell & Molecular Biology and Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States.
| |
Collapse
|
25
|
Kyriazis M. Ageing Throughout History: The Evolution of Human Lifespan. J Mol Evol 2019; 88:57-65. [PMID: 31197416 DOI: 10.1007/s00239-019-09896-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
It is not surprising that one of the most complex phenomena in nature is that of ageing. It does not only bear biological interest, but it is also associated with cultural, psychological, social and even philosophical issues. It is therefore to be expected that a great deal of research is being performed in order to study the evolution of ageing and, more specifically, the evolution of human ageing. Historical aspects of this evolution will be discussed. Evidence from a variety of sources shows that the human lifespan is increasing, and may well continue to increase to levels that are difficult to predict. In addition, the most important theories about ageing based on evolutionary principles will be examined. Examples are mutation accumulation, antagonistic pleiotropy and the disposable soma theory. Finally, a section about future evolution of human ageing, based upon newly emerging research, will shed some light and provide speculative-provocative ideas about the future of ageing in humans.
Collapse
|
26
|
Belloy ME, Napolioni V, Greicius MD. A Quarter Century of APOE and Alzheimer's Disease: Progress to Date and the Path Forward. Neuron 2019; 101:820-838. [PMID: 30844401 PMCID: PMC6407643 DOI: 10.1016/j.neuron.2019.01.056] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/08/2019] [Accepted: 01/27/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is considered a polygenic disorder. This view is clouded, however, by lingering uncertainty over how to treat the quasi "monogenic" role of apolipoprotein E (APOE). The APOE4 allele is not only the strongest genetic risk factor for AD, it also affects risk for cardiovascular disease, stroke, and other neurodegenerative disorders. This review, based mostly on data from human studies, ranges across a variety of APOE-related pathologies, touching on evolutionary genetics and risk mitigation by ethnicity and sex. The authors also address one of the most fundamental question pertaining to APOE4 and AD: does APOE4 increase AD risk via a loss or gain of function? The answer will be of the utmost importance in guiding future research in AD.
Collapse
Affiliation(s)
- Michaël E Belloy
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA
| | - Valerio Napolioni
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
27
|
Zenin A, Tsepilov Y, Sharapov S, Getmantsev E, Menshikov LI, Fedichev PO, Aulchenko Y. Identification of 12 genetic loci associated with human healthspan. Commun Biol 2019; 2:41. [PMID: 30729179 PMCID: PMC6353874 DOI: 10.1038/s42003-019-0290-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023] Open
Abstract
Aging populations face diminishing quality of life due to increased disease and morbidity. These challenges call for longevity research to focus on understanding the pathways controlling healthspan. We use the data from the UK Biobank (UKB) cohort and observe that the risks of major chronic diseases increased exponentially and double every eight years, i.e., at a rate compatible with the Gompertz mortality law. Assuming that aging drives the acceleration in morbidity rates, we build a risk model to predict the age at the end of healthspan depending on age, gender, and genetic background. Using the sub-population of 300,447 British individuals as a discovery cohort, we identify 12 loci associated with healthspan at the whole-genome significance level. We find strong genetic correlations between healthspan and all-cause mortality, life-history, and lifestyle traits. We thereby conclude that the healthspan offers a promising new way to interrogate the genetics of human longevity.
Collapse
Affiliation(s)
- Aleksandr Zenin
- Gero LLC, Novokuznetskaya street 24/2, Moscow, Russia 119017
| | - Yakov Tsepilov
- Novosibirsk State University, Pirogova 2, Novosibirsk, Russia 630090
- Institute of Cytology and Genetics SB RAS, Lavrentyeva ave. 10, Novosibirsk, Russia 630090
| | - Sodbo Sharapov
- Novosibirsk State University, Pirogova 2, Novosibirsk, Russia 630090
- Institute of Cytology and Genetics SB RAS, Lavrentyeva ave. 10, Novosibirsk, Russia 630090
| | | | - L. I. Menshikov
- Gero LLC, Novokuznetskaya street 24/2, Moscow, Russia 119017
- National Research Center “Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow, Russia 123182
| | - Peter O. Fedichev
- Gero LLC, Novokuznetskaya street 24/2, Moscow, Russia 119017
- Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudny, Moscow Russia 141700
| | - Yurii Aulchenko
- Novosibirsk State University, Pirogova 2, Novosibirsk, Russia 630090
- Institute of Cytology and Genetics SB RAS, Lavrentyeva ave. 10, Novosibirsk, Russia 630090
- PolyOmica, Het Vlaggeschip 61, 5237PA ‘s-Hertogenbosch, The Netherlands
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, Scotland EH8 9AG UK
| |
Collapse
|
28
|
van den Berg N, Rodríguez-Girondo M, van Dijk IK, Mourits RJ, Mandemakers K, Janssens AAPO, Beekman M, Smith KR, Slagboom PE. Longevity defined as top 10% survivors and beyond is transmitted as a quantitative genetic trait. Nat Commun 2019; 10:35. [PMID: 30617297 PMCID: PMC6323124 DOI: 10.1038/s41467-018-07925-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 11/30/2022] Open
Abstract
Survival to extreme ages clusters within families. However, identifying genetic loci conferring longevity and low morbidity in such longevous families is challenging. There is debate concerning the survival percentile that best isolates the genetic component in longevity. Here, we use three-generational mortality data from two large datasets, UPDB (US) and LINKS (Netherlands). We study 20,360 unselected families containing index persons, their parents, siblings, spouses, and children, comprising 314,819 individuals. Our analyses provide strong evidence that longevity is transmitted as a quantitative genetic trait among survivors up to the top 10% of their birth cohort. We subsequently show a survival advantage, mounting to 31%, for individuals with top 10% surviving first and second-degree relatives in both databases and across generations, even in the presence of non-longevous parents. To guide future genetic studies, we suggest to base case selection on top 10% survivors of their birth cohort with equally long-lived family members.
Collapse
Affiliation(s)
- Niels van den Berg
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Family and Consumer Studies, Population Sciences, Huntsman Cancer Institute, University of Utah, 225 S. 1400 E. Rm 228, Salt Lake City, UT, USA.
- Radboud Group for Historical Demography and Family History, Radboud University, Erasmusplein 1, 6525 HT, Nijmegen, The Netherlands.
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Section of Medical Statistics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ingrid K van Dijk
- Radboud Group for Historical Demography and Family History, Radboud University, Erasmusplein 1, 6525 HT, Nijmegen, The Netherlands
| | - Rick J Mourits
- Radboud Group for Historical Demography and Family History, Radboud University, Erasmusplein 1, 6525 HT, Nijmegen, The Netherlands
| | - Kees Mandemakers
- International Institute of Social History, Cruquiusweg 31, 1019 AT, Amsterdam, The Netherlands
| | - Angelique A P O Janssens
- Radboud Group for Historical Demography and Family History, Radboud University, Erasmusplein 1, 6525 HT, Nijmegen, The Netherlands
| | - Marian Beekman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ken R Smith
- Department of Family and Consumer Studies, Population Sciences, Huntsman Cancer Institute, University of Utah, 225 S. 1400 E. Rm 228, Salt Lake City, UT, USA
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| |
Collapse
|
29
|
Deak T, Savage LM. Preface: Setting the stage for understanding alcohol effects in late aging: A special issue including both human and rodent studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:xiii-xxv. [PMID: 31733669 PMCID: PMC6998208 DOI: 10.1016/s0074-7742(19)30116-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is widely recognized that people worldwide are living longer than in previous decades, with formidable projections regarding the expansion of elderly age groups in the decades to come. Older individuals are also sustaining higher levels of alcohol consumption later in life, and binge drinking remains a prevalent pastime in a significant proportion of aged individuals. Older people are more sensitive to neurobehavioral effects of alcohol, and as individuals age, the cumulative impact of lifetime alcohol intake begins to emerge. This brief review provides a perspective on the emerging field of how alcohol interacts with the aging brain and sets the stage for understanding the relationship between alcohol and overall brain health. In doing so, we introduce a set of articles collected in this book series (all chapters available on PubMed) which spans human epidemiology and clinical outcomes, along with a series of neurobehavioral studies in preclinical (rodent) models. Because both natural aging as well as alcohol use and abuse include tell-tale signs of neuroinflammation (heightened expression of neuroimmune genes, activation of inflammatory signaling pathways, and signs of glial activation), particular emphasis is placed on the role of neuroinflammation in both aging- and alcohol-related alterations in neurobehavioral function, with special emphasis on the spectrum of cognitive dysfunction ranging from mild cognitive impairment to Alzheimer's associated brain pathology.
Collapse
Affiliation(s)
- Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States.
| | - Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
30
|
Abstract
Longer human lives have led to a global burden of late-life disease. However, some older people experience little ill health, a trait that should be extended to the general population. Interventions into lifestyle, including increased exercise and reduction in food intake and obesity, can help to maintain healthspan. Altered gut microbiota, removal of senescent cells, blood factors obtained from young individuals and drugs can all improve late-life health in animals. Application to humans will require better biomarkers of disease risk and responses to interventions, closer alignment of work in animals and humans, and increased use of electronic health records, biobank resources and cohort studies.
Collapse
|