1
|
Xue R, Wu Q, Guo L, Ye D, Cao Q, Zhang M, Xian Y, Chen M, Yan K, Zheng J. Pyridostigmine attenuated high-fat-diet induced liver injury by the reduction of mitochondrial damage and oxidative stress via α7nAChR and M3AChR. J Biochem Mol Toxicol 2024; 38:e23671. [PMID: 38454809 DOI: 10.1002/jbt.23671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Obesity is a major cause of nonalcohol fatty liver disease (NAFLD), which is characterized by hepatic fibrosis, lipotoxicity, inflammation, and apoptosis. Previous studies have shown that an imbalance in the autonomic nervous system is closely related to the pathogenesis of NAFLD. In this study, we investigated the effects of pyridostigmine (PYR), a cholinesterase (AChE) inhibitor, on HFD-induced liver injury and explored the potential mechanisms involving mitochondrial damage and oxidative stress. A murine model of HFD-induced obesity was established using the C57BL/6 mice, and PYR (3 mg/kg/d) or placebo was administered for 20 weeks. PYR reduced the body weight and liver weight of the HFD-fed mice. Additionally, the serum levels of IL-6, TNF-α, cholesterol, and triglyceride were significantly lower in the PYR-treated versus the untreated mice, corresponding to a decrease in hepatic fibrosis, lipid accumulation, and apoptosis in the former. Furthermore, the mitochondrial morphology improved significantly in the PYR-treated group. Consistently, PYR upregulated ATP production and the mRNA level of the mitochondrial dynamic factors OPA1, Drp1 and Fis1, and the mitochondrial unfolded protein response (UPRmt) factors LONP1 and HSP60. Moreover, PYR treatment activated the Keap1/Nrf2 pathway and upregulated HO-1 and NQO-1, which mitigated oxidative injury as indicated by decreased 8-OHDG, MDA and H2 O2 levels, and increased SOD activity. Finally, PYR elevated acetylcholine (ACh) levels by inhibiting AChE, and upregulated the α7nAChR and M3AChR proteins in the HFD-fed mice. PYR alleviated obesity-induced hepatic injury in mice by mitigating mitochondrial damage and oxidative stress via α7nAChR and M3AChR.
Collapse
Affiliation(s)
- Runqing Xue
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Wu
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Lulu Guo
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Dan Ye
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Cao
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Meng Zhang
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Yushan Xian
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Minchun Chen
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Kangkang Yan
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Jie Zheng
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| |
Collapse
|
2
|
Khuanjing T, Maneechote C, Ongnok B, Prathumsap N, Arinno A, Chunchai T, Arunsak B, Chattipakorn SC, Chattipakorn N. Vagus nerve stimulation and acetylcholinesterase inhibitor donepezil provide cardioprotection against trastuzumab-induced cardiotoxicity in rats by attenuating mitochondrial dysfunction. Biochem Pharmacol 2023; 217:115836. [PMID: 37816466 DOI: 10.1016/j.bcp.2023.115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Trastuzumab (Trz) is a targeted anticancer drug for human epidermal growth factor receptor 2 (HER2)-positive tumors, as Trz-induced cardiotoxicity (TIC) is commonly observed in Trz-treated patients. Since cardiac autonomic modulation with electrical vagus nerve stimulation (VNS) and acetylcholinesterase (AChE) inhibitors exerts cardioprotection against various heart diseases, the comparative effects of electrical VNS and an AChE inhibitor (donepezil) on cardiac and mitochondrial functions and programmed cell death pathways in TIC are not known. VNS devices were implanted in thirty-two male Wistar rats and were divided into 4 groups: (i) Control-Sham (CSham), (ii) Trz-Sham (TSham), (iii) Trz-VNS (TVNS), and (iv) Trz-donepezil (TDPZ). Rats in the Trz-treated groups were intraperitoneally injected with Trz (4 mg/kg/day) for 7 days, while CSham rats were injected with NSS. VNS devices were activated in the TVNS rats during the 7-day Trz treatment, but not in the sham rats. Rats in the TDPZ group received donepezil orally (5 mg/kg/day) for 7 days. At the end, left ventricular (LV) function and heart rate variability were evaluated, and heart tissue was collected for biochemical and histological analysis. Trz rats showed LV dysfunction and cardiac sympathovagal imbalance. In addition, mitochondrial function and dynamics were impaired in TIC rats. Trz also increased cardiomyocyte death by inducing apoptosis, pyroptosis, and ferroptosis. Electrical VNS and donepezil had similar efficacy in alleviating cardiac mitochondrial dysfunction, dynamic imbalances, and cardiomyocyte death, leading to improved LV function. These findings suggested that parasympathetic activation via either VNS or an AChE inhibitor could be a promising therapeutic intervention against TIC.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Khuanjing T, Maneechote C, Ongnok B, Prathumsap N, Arinno A, Chunchai T, Arunsak B, Chattipakorn SC, Chattipakorn N. Acetylcholinesterase inhibition protects against trastuzumab-induced cardiotoxicity through reducing multiple programmed cell death pathways. Mol Med 2023; 29:123. [PMID: 37691124 PMCID: PMC10494358 DOI: 10.1186/s10020-023-00686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/12/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Trastuzumab (Trz)-induced cardiotoxicity (TIC) is one of the most common adverse effects of targeted anticancer agents. Although oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, and ferroptosis have been identified as potential mechanisms underlying TIC, the roles of pyroptosis and necroptosis under TIC have never been investigated. It has been shown that inhibition of acetylcholinesterase function by using donepezil exerts protective effects in various heart diseases. However, it remains unknown whether donepezil exerts anti-cardiotoxic effects in rats with TIC. We hypothesized that donepezil reduces mitochondrial dysfunction, inflammation, oxidative stress, and cardiomyocyte death, leading to improved left ventricular (LV) function in rats with TIC. METHODS Male Wistar rats were randomly assigned to be Control or Trz groups (Trz 4 mg/kg/day, 7 days, I.P.). Rats in Trz groups were assigned to be co-treated with either drinking water (Trz group) or donepezil 5 mg/kg/day (Trz + DPZ group) via oral gavage for 7 days. Cardiac function, heart rate variability (HRV), and biochemical parameters were evaluated. RESULTS Trz-treated rats had impaired LV function, HRV, mitochondrial function, and increased inflammation and oxidative stress, leading to apoptosis, ferroptosis, and pyroptosis. Donepezil co-treatment effectively decreased those adverse effects of TIC, resulting in improved LV function. An in vitro study revealed that the cytoprotective effects of donepezil were abolished by a muscarinic acetylcholine receptor (mAChR) antagonist. CONCLUSIONS Donepezil exerted cardioprotection against TIC via attenuating mitochondrial dysfunction, oxidative stress, inflammation, and cardiomyocyte death, leading to improved LV function through mAChR activation. This suggests that donepezil could be a novel intervention strategy in TIC.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
He X, Liu J, Zang WJ. Mitochondrial homeostasis and redox status in cardiovascular diseases: Protective role of the vagal system. Free Radic Biol Med 2022; 178:369-379. [PMID: 34906725 DOI: 10.1016/j.freeradbiomed.2021.12.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria participate in essential cellular functions, including energy production, metabolism, redox homeostasis regulation, intracellular Ca2+ handling, apoptosis, and cell fate determination. Disruption of mitochondrial homeostasis under pathological conditions results in mitochondrial reactive oxygen species (ROS) generation and energy insufficiency, which further disturb mitochondrial and cellular homeostasis in a deleterious loop. Mitochondrial redox status has therefore become a potential target for therapy against cardiovascular diseases. In this review, we highlight recent progress in determining the roles of mitochondrial processes in regulating mitochondrial redox status, including mitochondrial dynamics (fusion-fission pathways), mitochondrial cristae remodeling, mitophagy, biogenesis, and mitochondrion-organelle interactions (endoplasmic reticulum-mitochondrion interactions, nucleus-mitochondrion communication, and lipid droplet-mitochondrion interactions). The strategies that activate vagal system include direct vagal activation (electrical vagal stimulation and administration of vagal neurotransmitter acetylcholine) and pharmacological modulation (choline and cholinesterase inhibitors). The vagal system plays an important role in maintaining mitochondrial homeostasis and suppressing mitochondrial oxidative stress by promoting mitochondrial biogenesis and mitophagy, moderating mitochondrial fusion and fission, strengthening mitochondrial cristae stabilization, regulating mitochondrion-organelle interactions, and inhibiting mitochondrial Ca2+ overload. Therefore, enhancement of vagal activity can maintain mitochondrial homeostasis and represents a promising therapeutic strategy for cardiovascular diseases.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; University of Health and Rehabilitation Sciences, Qingdao, PR China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| |
Collapse
|
5
|
Wu Q, Zhao M, He X, Xue R, Li D, Yu X, Wang S, Zang W. Acetylcholine reduces palmitate-induced cardiomyocyte apoptosis by promoting lipid droplet lipolysis and perilipin 5-mediated lipid droplet-mitochondria interaction. Cell Cycle 2021; 20:1890-1906. [PMID: 34424820 DOI: 10.1080/15384101.2021.1965734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Lipid droplets (LDs), which are neutral lipid storage organelles, are important for lipid metabolism and energy homeostasis. LD lipolysis and interactions with mitochondria are tightly coupled to cellular metabolism and may be potential targets to buffer the effects of excessive toxic lipid species levels. Acetylcholine (ACh), the major neurotransmitter of the vagus nerve, exhibits cardioprotective effects. However, limited research has focused on its effects on LD lipolysis and the LD-mitochondria association in fatty acid (FA) overload models. Here, we reveal that palmitate (PA) induces an increase in expression of the FA transport protein cluster of differentiation 36 (CD36) and LD formation; remarkably reduces the expression of lipases involved in triacylglycerol (TAG) lipolysis, such as adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL); impairs LD-mitochondria interaction; and decreases perilipin 5 (PLIN5) expression, resulting in LD accumulation and mitochondrial dysfunction, which ultimately lead to cardiomyocyte apoptosis. ACh significantly upregulates PLIN5 expression and improved LD lipolysis and the LD-mitochondria association. Moreover, ACh reduces CD36 expression, LD deposition and mitochondrial dysfunction, ultimately suppressing apoptosis in PA-treated neonatal rat ventricular cardiomyocytes (NRVCs). Knockdown of PLIN5, which plays a role in LD-mitochondria contact site formation, abolishes the protective effects of ACh in PA-treated NRVCs. Thus, ACh protects cardiomyocytes from PA-induced apoptosis, at least partly, by promoting LD lipolysis and activating LD-mitochondria interactions via PLIN5. These findings may aid in developing novel therapeutic approaches that target LD lipolysis and PLIN5-mediated LD-mitochondria interactions to prevent or alleviate lipotoxic cardiomyopathy.
Collapse
Affiliation(s)
- Qing Wu
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Ming Zhao
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Xi He
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Runqing Xue
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Dongling Li
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Xiaojiang Yu
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Shengpeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Weijin Zang
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
6
|
Yue C, Li M, Li J, Han X, Zhu H, Yu G, Cheng J. Medium-, long- and medium-chain-type structured lipids ameliorate high-fat diet-induced atherosclerosis by regulating inflammation, adipogenesis, and gut microbiota in ApoE -/- mice. Food Funct 2021; 11:5142-5155. [PMID: 32432606 DOI: 10.1039/d0fo01006e] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accumulating evidence has suggested that medium-, long-, and medium-chain (MLM) structured lipids have anti-obesity effects, but whether they can alleviate the development of atherosclerosis (AS) and affect the composition of the gut microbiota in high-fat diet-fed ApoE-/- mice has not been elucidated. The present study found that MLM structured lipid supplementation could significantly decrease obesity-related parameters compared with high-fat diet alone in ApoE-/- mice. Additionally, MLM structured lipids could significantly decrease the blood glucose and increase the serum total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) levels. Additionally, high-dose MLM structured lipids supplementation could reduce the area of atherosclerotic lesions and decrease the expression of VCAM-1, MCP-1 and CD68, which are related to inflammation in aortic tissue. Further analysis showed that MLM structured lipids could significantly reduce lipid accumulation in the adipose tissue of high-fat diet-fed ApoE-/- mice. The relative protein expression of SREBP-1, ACC, FAS, C/EBPα and PPARγ was decreased and the ratio of p-AMPK/AMPK was increased in epididymis white adipose tissue (eWAT) after MLM structured lipids treatment. Additionally, MLM structured lipids supplementation regulated the bacterial composition, including reducing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of short-chain fatty acid-producing bacteria (Blautia and Anaerotruncus), decreasing the relative abundance of [Ruminococcus] torques group, Ruminiclostridium 9, Catenibacterium and [Eubacterium] fissicatena group. Spearman's correlation analysis revealed significant correlations between changes in the gut microbiota and atherosclerosis-related indices. The results demonstrated that the alleviating effects of MLM structured lipids supplementation on AS in high-fat diet-fed ApoE-/- mice were closely related to reshaping the composition of the gut microbiota.
Collapse
Affiliation(s)
- Chonghui Yue
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Ming Li
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Jing Li
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Xu Han
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Hongwei Zhu
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Guoping Yu
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Changjiang Road, Harbin 150036, China.
| |
Collapse
|
7
|
Yang Y, Zhao M, He X, Wu Q, Li DL, Zang WJ. Pyridostigmine Protects Against Diabetic Cardiomyopathy by Regulating Vagal Activity, Gut Microbiota, and Branched-Chain Amino Acid Catabolism in Diabetic Mice. Front Pharmacol 2021; 12:647481. [PMID: 34084135 PMCID: PMC8167056 DOI: 10.3389/fphar.2021.647481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The disruption of gut microbes is associated with diabetic cardiomyopathy, but the mechanism by which gut microbes affect cardiac damage remains unclear. We explored gut microbes and branched-chain amino acid (BCAA) metabolite catabolism in diabetic cardiomyopathy mice and investigated the cardioprotective effect of pyridostigmine. The experiments were conducted using a model of diabetic cardiomyopathy induced by a high-fat diet + streptozotocin in C57BL/6 mice. The results of high-throughput sequencing showed that diabetic cardiomyopathy mice exhibited decreased gut microbial diversity, altered abundance of the diabetes-related microbes, and increased abundance of the BCAA-producing microbes Clostridiales and Lachnospiraceae. In addition, diabetes downregulated tight junction proteins (ZO-1, occludin, and claudin-1) and increased intestinal permeability to impair the intestinal barrier. These impairments were accompanied by reduction in vagal activity that manifested as increased acetylcholinesterase levels, decreased acetylcholine levels, and heart rate variability, which eventually led to cardiac damage. Pyridostigmine enhanced vagal activity, restored gut microbiota homeostasis, decreased BCAA-producing microbe abundance, and improved the intestinal barrier to reduce circulating BCAA levels. Pyridostigmine also upregulated BCAT2 and PP2Cm and downregulated p-BCKDHA/BCKDHA and BCKDK to improve cardiac BCAA catabolism. Moreover, pyridostigmine alleviated abnormal mitochondrial structure; increased ATP production; decreased reactive oxygen species and mitochondria-related apoptosis; and attenuated cardiac dysfunction, hypertrophy, and fibrosis in diabetic cardiomyopathy mice. In conclusion, the gut microbiota, BCAA catabolism, and vagal activity were impaired in diabetic cardiomyopathy mice but were improved by pyridostigmine. These results provide novel insights for the development of a therapeutic strategy for diabetes-induced cardiac damage that targets gut microbes and BCAA catabolism.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dong-Ling Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
8
|
Xu X, Liu B, Yang J, Zou Y, Sun M, Li Z, Li L, Yang R, Zou L, Li G, Liu S, Li G, Liang S. Glucokinase in stellate ganglia cooperates with P2X3 receptor to develop cardiac sympathetic neuropathy in type 2 diabetes rats. Brain Res Bull 2020; 165:290-297. [PMID: 33091480 DOI: 10.1016/j.brainresbull.2020.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/19/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
Glucokinase (GCK) may be involved in inflammatory pathological changes, while the P2X3 receptor in the stellate ganglia (SG) is related to diabetic cardiac autonomic neuropathy. In this study, we explored the relationship between the upregulated GCK in SG and diabetic cardiac sympathy. The expression and location of GCK and P2X3 in SG of type 2 diabetes mellitus (T2DM) rats were assessed. Changes in cardiac function were determined by measuring blood pressure, sympathetic nerve activity, heart rate, and heart rate variability. P2X3 agonist-activated currents in isolated stellate ganglion neurons and cultured human embryonic kidney 293 (HEK293) cells were recorded using whole-cell patch clamp techniques. The upregulated expression of GCK in SG of T2DM rats was decreased after treatment with GCK short hairpin RNA (shRNA). GCK shRNA treatment also improved the blood pressure, sympathetic nerve activity, heart rate, and heart rate variability in T2DM rats. By contrast, the expression of P2X3 and tumor necrosis factor α (TNF-α) was lessened by GCK shRNA treatment. In addition, adenosine triphosphate (ATP)-activated currents in stellate ganglion neurons and HEK293 cells co-transfected with GCK and P2X3 receptor plasmids were reduced after GCK shRNA treatment. In T2DM rats, knockdown of GCK relieved the diabetic cardiac sympathy mediated by P2X3 receptor-involved upregulation of GCK in SG.
Collapse
Affiliation(s)
- Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Baoe Liu
- Undergraduate Student of Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jingjian Yang
- Undergraduate Student of Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuting Zou
- Undergraduate Student of Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Minghao Sun
- Undergraduate Student of Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zijing Li
- Undergraduate Student of Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lifang Zou
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guodong Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
9
|
Li L, Yang J, Liu B, Zou Y, Sun M, Li Z, Yang R, Xu X, Zou L, Li G, Liu S, Li G, Liang S. P2Y12 shRNA normalizes inflammatory dysfunctional hepatic glucokinase activity in type 2 diabetic rats. Biomed Pharmacother 2020; 132:110803. [PMID: 33017768 DOI: 10.1016/j.biopha.2020.110803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Abstract
The celiac ganglion projects its postganglionic (including purinergic) fibers to the liver. P2Y12 receptor is one of the P2Y family members. We found that the expression levels of P2Y12 receptor in both celiac ganglia and liver were increased in type 2 diabetes mellitus (T2DM) rats which also displayed an enhanced activity of celiac sympathetic nerve discharge (SND). In addition, a marked decrease of hepatic glucokinase (GK) expression was accompanied by reduced hepatic glycogen synthesis in T2DM rats, whereas meanwhile the levels of NLRP3, active caspase-1, NF-κB, and interleukin-1β were elevated. All these abnormal alterations could be largely reversed after treatment of short hairpin RNA (shRNA) targeting P2Y12. Our results indicate that the silence of P2Y12 by shRNA may effectively correct the anomalous activity of celiac SND and improve the dysfunctional hepatic glucokinase by counteracting hepatocyte inflammation and likely pyroptosis due to activated NLRP3 inflammasome and caspase-1 signaling, thereby attenuating hyperglycemia in T2DM rats.
Collapse
Affiliation(s)
- Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China
| | - Jingjian Yang
- Undergraduate Student of Clinic Medicine Department, Medical School of Nanchang University, Nanchang, 330006, PR China
| | - Baoe Liu
- Undergraduate Student of Clinic Medicine Department, Medical School of Nanchang University, Nanchang, 330006, PR China
| | - Yuting Zou
- Undergraduate Student of Clinic Medicine Department, Medical School of Nanchang University, Nanchang, 330006, PR China
| | - Minghao Sun
- Undergraduate Student of Clinic Medicine Department, Medical School of Nanchang University, Nanchang, 330006, PR China
| | - Zijing Li
- Undergraduate Student of Clinic Medicine Department, Medical School of Nanchang University, Nanchang, 330006, PR China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China
| | - Lifang Zou
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China
| | - Guodong Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
10
|
Khuanjing T, Palee S, Chattipakorn SC, Chattipakorn N. The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: From cells to patient reports. Acta Physiol (Oxf) 2020; 228:e13396. [PMID: 31595611 DOI: 10.1111/apha.13396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/30/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases remain a major cause of morbidity and mortality worldwide. Cardiovascular diseases such as acute myocardial infarction, ischaemia/reperfusion injury and heart failure are associated with cardiac autonomic imbalance characterized by sympathetic overactivity and parasympathetic withdrawal from the heart. Increased parasympathetic activity by electrical vagal nerve stimulation has been shown to provide beneficial effects in the case of cardiovascular diseases in both animals and patients by improving autonomic function, cardiac remodelling and mitochondrial function. However, clinical limitations for electrical vagal nerve stimulation exist because of its invasive nature, costly equipment and limited clinical validation. Therefore, novel therapeutic approaches which moderate parasympathetic activities could be beneficial for in the case of cardiovascular disease. Acetylcholinesterase inhibitors inhibit acetylcholinesterase and hence increase cholinergic transmission. Recent studies have reported that acetylcholinesterase inhibitors improve autonomic function and cardiac function in cardiovascular disease models. Despite its potential clinical benefits for cardiovascular disease patients, the role of acetylcholinesterase inhibitors in acute myocardial infarction and heart failure remediation remains unclear. This article comprehensively reviews the effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure scenarios from in vitro and in vivo studies to clinical reports. The mechanisms involved are also discussed in this review.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
11
|
Xue RQ, Zhao M, Wu Q, Yang S, Cui YL, Yu XJ, Liu J, Zang WJ. Regulation of mitochondrial cristae remodelling by acetylcholine alleviates palmitate-induced cardiomyocyte hypertrophy. Free Radic Biol Med 2019; 145:103-117. [PMID: 31553938 DOI: 10.1016/j.freeradbiomed.2019.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/21/2019] [Indexed: 12/31/2022]
Abstract
Mitochondrial dysfunction is associated with obesity-induced cardiac remodelling. Recent research suggests that the cristae are the true bioenergetic components of cells. Acetylcholine (ACh), the major neurotransmitter of the vagus nerve, exerts cardio-protective effects against ischaemia. This study investigated the role of cristae remodelling in palmitate (PA)-induced neonatal rat cardiomyocyte hypertrophy and explored the beneficial effects of ACh. We found loose, fragmented and even lysed cristae in PA-treated neonatal cardiomyocytes along with declines in mitochondrial network and complex expression and overproduction of mitochondrial reactive oxygen species (ROS); these changes ultimately resulted in increased myocardial size. Overexpression of mitofilin by adenoviral infection partly improved cristae shape, mitochondrial network, and ATP content and attenuated cell hypertrophy. Interestingly, siRNA-mediated AMP-activated protein kinase (AMPK) silencing increased the number of cristae with a balloon-like morphology without disturbing mitofilin expression. Furthermore, AMPK knockdown abolished the effects of mitofilin overexpression on cristae remodelling and inhibited the interaction of mitofilin with sorting and assembly machinery 50 (Sam50) and coiled-coil helix coiled-coil helix domain-containing protein 3 (CHCHD3), two core components of the mitochondrial contact site and cristae organizing system (MICOS) complex. Intriguingly, ACh upregulated mitofilin expression and AMPK phosphorylation via the muscarinic ACh receptor (MAChR). Moreover, ACh enhanced protein-protein interactions between mitofilin and other components of the MICOS complex, thereby preventing PA-induced mitochondrial dysfunction and cardiomyocyte hypertrophy; however, these effects were abolished by AMPK silencing. Taken together, our data suggest that ACh improves cristae remodelling to defend against PA-induced myocardial hypertrophy, presumably by increasing mitofilin expression and activating AMPK to form the MICOS complex through MAChR. These results suggest new and promising therapeutic approaches targeting mitochondria to prevent lipotoxic cardiomyopathy.
Collapse
Affiliation(s)
- Run-Qing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Qing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Si Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Yan-Ling Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Jiankang Liu
- Frontier Institute of Science and Technol, and Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| |
Collapse
|
12
|
Wang J, Li D, Wang P, Hu X, Chen F. Ginger prevents obesity through regulation of energy metabolism and activation of browning in high-fat diet-induced obese mice. J Nutr Biochem 2019; 70:105-115. [PMID: 31200315 DOI: 10.1016/j.jnutbio.2019.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Numerous natural herbs have been proven as safe anti-obesity resources. Ginger, one of the most widely consumed spices, has shown beneficial effects against obesity and related metabolic disorders. The present study aimed to examine whether the antiobesity effect of ginger is associated with energy metabolism. Mice were maintained on either a normal control diet or a high-fat diet (HFD) with or without 500 mg/kg (w/w) ginger supplementation. After 16 weeks, ginger supplementation alleviated the HFD-induced increases in body weight, fat accumulation, and levels of serum glucose, triglyceride and cholesterol. Indirect calorimetry showed that ginger administration significantly increased the respiratory exchange ratio (RER) and heat production in both diet models. Furthermore, ginger administration corrected the HFD-induced changes in concentrations of intermediates in glycolysis and the TCA cycle. Moreover, ginger enhanced brown adipose tissue function and activated white adipose tissue browning by altering the gene expression and protein levels of some brown and beige adipocyte-selective markers. Additionally, stimulation of the browning program by ginger may be partly regulated by the sirtuin-1 (SIRT1)/AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway. Taken together, these results indicate that dietary ginger prevents body weight gain by remodeling whole-body energy metabolism and inducing browning of white adipose tissue (WAT). Thus, ginger is an edible plant that plays a role in the therapeutic treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Pan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
Yang Y, Zhao M, Yu XJ, Liu LZ, He X, Deng J, Zang WJ. Pyridostigmine regulates glucose metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in diabetic mice. Am J Physiol Endocrinol Metab 2019; 317:E312-E326. [PMID: 31211620 DOI: 10.1152/ajpendo.00569.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetic patients are more susceptible to myocardial ischemia damage than nondiabetic patients, with worse clinical outcomes and greater mortality. The mechanism may be related to glucose metabolism, mitochondrial homeostasis, and oxidative stress. Pyridostigmine may improve vagal activity to protect cardiac function in cardiovascular diseases. Researchers have not determined whether pyridostigmine regulates glucose metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in diabetic mice. In the present study, autonomic imbalance, myocardial damage, mitochondrial dysfunction, and oxidative stress were exacerbated in isoproterenol-stimulated diabetic mice, revealing the myocardial vulnerability of diabetic mice to injury compared with mice with diabetes or exposed to isoproterenol alone. Compared with normal mice, the expression of glucose transporters (GLUT)1/4 phosphofructokinase (PFK) FB3, and pyruvate kinase isoform (PKM) was decreased in diabetic mice, but increased in isoproterenol-stimulated normal mice. Following exposure to isoproterenol, the expression of (GLUT)1/4 phosphofructokinase (PFK) FB3, and PKM decreased in diabetic mice compared with normal mice. The downregulation of SIRT3/AMPK and IRS-1/Akt in isoproterenol-stimulated diabetic mice was exacerbated compared with that in diabetic mice or isoproterenol-stimulated normal mice. Pyridostigmine improved vagus activity, increased GLUT1/4, PFKFB3, and PKM expression, and ameliorated mitochondrial dysfunction and oxidative stress to reduce myocardial damage in isoproterenol-stimulated diabetic mice. Based on these results, it was found that pyridostigmine may reduce myocardial vulnerability to injury via the SIRT3/AMPK and IRS-1/Akt pathways in diabetic mice with isoproterenol-induced myocardial damage. This study may provide a potential therapeutic target for myocardial damage in diabetic patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Long-Zhu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Juan Deng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| |
Collapse
|
14
|
Zhu G, Dai B, Chen Z, He L, Guo J, Dan Y, Liang S, Li G. Effects of chronic lead exposure on the sympathoexcitatory response associated with the P2X7 receptor in rat superior cervical ganglia. Auton Neurosci 2019; 219:33-41. [DOI: 10.1016/j.autneu.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/01/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022]
|
15
|
Xue RQ, Yu XJ, Zhao M, Xu M, Wu Q, Cui YL, Yang S, Li DL, Zang WJ. Pyridostigmine alleviates cardiac dysfunction via improving mitochondrial cristae shape in a mouse model of metabolic syndrome. Free Radic Biol Med 2019; 134:119-132. [PMID: 30633969 DOI: 10.1016/j.freeradbiomed.2019.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023]
Abstract
Insulin resistance and autonomic imbalance are important pathological processes in metabolic syndrome-induced cardiac remodeling. Recent studies determined that disruption of mitochondrial cristae shape is associated with myocardial ischemia; however, the change in cristae shape in metabolic syndrome-induced cardiac remodeling remains unclear. This study determined the effect of pyridostigmine (PYR), which reversibly inhibits cholinesterase to improve autonomic imbalance, on high-fat diet (HFD)-induced cardiac insulin resistance and explored the potential effect on the shape of mitochondrial cristae. Feeding of a HFD for 22 weeks led to an irregular and even lysed cristae structure in cardiac mitochondria, which contributed to decreased mitochondrial content and ATP production and increased oxygen species production, ultimately impairing insulin signaling and lipid metabolism. Interestingly, PYR enhanced vagal activity by increasing acetylcholine production and exerted mito-protective effects by activating the LKB1/AMPK/ACC signal pathway. Specifically, PYR upregulated OPA1 and Mfn1/2 expression, promoted the formation of the mitofilin/CHCHD3/Sam50 complex, and decreased p-Drp1 and Fis1 expression, resulting in tight and parallel cristae and increasing cardiac mitochondrial complex subunit expression and ATP generation as well as decreasing release of cytochrome C from mitochondria and oxidative damage. Furthermore, PYR improved glucose and insulin tolerance and insulin-stimulated Akt phosphorylation, decreased lipid toxicity, and ultimately ameliorated HFD-induced cardiac remodeling and dysfunction. In conclusion, PYR prevented cardiac and insulin insensitivity and remodeling by stimulating vagal activity to regulate mitochondrial cristae shape and function in HFD-induced metabolic syndrome in mice. These results provide novel insights for the development of a therapeutic strategy for obesity-induced cardiac dysfunction that targets mitochondrial cristae.
Collapse
Affiliation(s)
- Run-Qing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Man Xu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Qing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Yan-Ling Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Si Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Dong-Ling Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China.
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China.
| |
Collapse
|
16
|
Cholinergic drugs ameliorate endothelial dysfunction by decreasing O-GlcNAcylation via M3 AChR-AMPK-ER stress signaling. Life Sci 2019; 222:1-12. [PMID: 30786250 DOI: 10.1016/j.lfs.2019.02.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 01/22/2023]
Abstract
AIMS Obesity is associated with increased cardiovascular morbidity and mortality. It is accompanied by augmented O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins via increasing hexosamine biosynthetic pathway (HBP) flux. However, the changes and regulation of the O-GlcNAc levels induced by obesity are unclear. MAIN METHODS High fat diet (HFD) model was induced obesity in mice with or without the cholinergic drug pyridostigmine (PYR, 3 mg/kg/d) for 22 weeks and in vitro human umbilical vein endothelial cells (HUVECs) was treated with high glucose (HG, 30 mM) with or without acetylcholine (ACh). KEY FINDINGS PYR significantly reduced body weight, blood glucose, and O-GlcNAcylation levels and attenuated vascular endothelial cells detachment in HFD-fed mice. HG addition induced endoplasmic reticulum (ER) stress and increased O-GlcNAcylation levels and apoptosis in HUVECs in a time-dependent manner. Additionally, HG decreased levels of phosphorylated AMP-activated protein kinase (AMPK). Interestingly, ACh significantly blocked damage to HUVECs induced by HG. Furthermore, the effects of ACh on HG-induced ER stress, O-GlcNAcylation, and apoptosis were prevented by treating HUVECs with 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, a selective M3 AChR antagonist) or compound C (Comp C, an AMPK inhibitor). Treatment with 5-aminoimidazole-4-carboxamide ribose (AICAR, an AMPK activator), 4-phenyl butyric acid (4-PBA, an ER stress inhibitor), and 6-diazo-5-oxonorleucine (DON, a GFAT antagonist) reproduced a similar effect with ACh. SIGNIFICANCE Activation of cholinergic signaling ameliorated endothelium damage, reduced levels of ER stress, O-GlcNAcylation, and apoptosis in mice and HUVECs under obese conditions, which may function through M3 AChR-AMPK signaling.
Collapse
|
17
|
Liu L, Zhao M, Yu X, Zang W. Pharmacological Modulation of Vagal Nerve Activity in Cardiovascular Diseases. Neurosci Bull 2019; 35:156-166. [PMID: 30218283 PMCID: PMC6357265 DOI: 10.1007/s12264-018-0286-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/13/2018] [Indexed: 01/17/2023] Open
Abstract
Cardiovascular diseases are life-threatening illnesses with high morbidity and mortality. Suppressed vagal (parasympathetic) activity and increased sympathetic activity are involved in these diseases. Currently, pharmacological interventions primarily aim to inhibit over-excitation of sympathetic nerves, while vagal modulation has been largely neglected. Many studies have demonstrated that increased vagal activity reduces cardiovascular risk factors in both animal models and human patients. Therefore, the improvement of vagal activity may be an alternate approach for the treatment of cardiovascular diseases. However, drugs used for vagus nerve activation in cardiovascular diseases are limited in the clinic. In this review, we provide an overview of the potential drug targets for modulating vagal nerve activation, including muscarinic, and β-adrenergic receptors. In addition, vagomimetic drugs (such as choline, acetylcholine, and pyridostigmine) and the mechanism underlying their cardiovascular protective effects are also discussed.
Collapse
Affiliation(s)
- Longzhu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaojiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
18
|
Guo J, Sheng X, Dan Y, Xu Y, Zhang Y, Ji H, Wang J, Xu Z, Che H, Li G, Liang S, Li G. Involvement of P2Y 12 receptor of stellate ganglion in diabetic cardiovascular autonomic neuropathy. Purinergic Signal 2018; 14:345-357. [PMID: 30084083 DOI: 10.1007/s11302-018-9616-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
Diabetes as a chronic epidemic disease with obvious symptom of hyperglycemia is seriously affecting human health globally due to the diverse diabetic complications. Diabetic cardiovascular autonomic neuropathy (DCAN) is a common complication of both type 1 and type 2 diabetes and incurs high morbidity and mortality. However, the underlying mechanism for DCAN is unclear. It is well known that purinergic signaling is involved in the regulation of cardiovascular function. In this study, we examined whether the P2Y12 receptor could mediate DCAN-induced sympathetic reflexes. Our results revealed that the abnormal changes of blood pressure, heart rate, heart rate variability, and sympathetic nerve discharge were improved in diabetic rats treated with P2Y12 short hairpin RNA (shRNA). Meanwhile, the expression of P2Y12 receptor, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and connexin 43 (Cx43) in stellate ganglia (SG) was decreased in P2Y12 shRNA-treated diabetic rats. In addition, knocking down the P2Y12 receptor also inhibited the activation of p38 MARK in the SG of diabetic rats. Taken together, these findings demonstrated that P2Y12 receptor in the SG may participate in developing diabetic autonomic neuropathy, suggesting that the P2Y12 receptor could be a potential therapeutic target for the treatment of DCAN.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Xuan Sheng
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Yu Dan
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Yurong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Yuanruohan Zhang
- Queen Mary School, Medical College of Nanchang University, Nanchang, 330006, China
| | - Huihong Ji
- Department of the First Clinical, Medical College of Nanchang University, Nanchang, 330006, China
| | - Jiayue Wang
- Department of the First Clinical, Medical College of Nanchang University, Nanchang, 330006, China
| | - Zixi Xu
- Department of the First Clinical, Medical College of Nanchang University, Nanchang, 330006, China
| | - Hongyu Che
- Queen Mary School, Medical College of Nanchang University, Nanchang, 330006, China
| | - Guodong Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|