1
|
Liu Z, Yan F, Zhang H, Wang L, Zhao Y, Zhao H, Li C, Dai J, Yu B, Xiong H, Zhang J. Zingerone attenuates concanavalin A-induced acute liver injury by restricting inflammatory responses. Int Immunopharmacol 2024; 142:113198. [PMID: 39305891 DOI: 10.1016/j.intimp.2024.113198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Autoimmune hepatitis (AIH), an immune-mediated liver injury, plays an important role in the development and pathogenesis of several liver diseases. However, therapeutic alternatives for the treatment of AIH remain limited. Zingerone (ZIN) is a natural non-toxic phenolic compound extracted from ginger that possesses various pharmacological activities. Thus, this study aimed to investigate the effect of ZIN on AIH using a mouse model of acute liver injury induced by concanavalin A (Con A). To establish liver injury, C57BL/6J mice were intraperitoneally administered ZIN, followed by 20 mg/kg Con A after 3 h. Thereafter, the liver and serum were collected for analysis. The results revealed that ZIN pretreatment significantly suppressed the elevation of liver injury markers induced by Con A exposure and improved the survival of mice. Additionally, ZIN significantly ameliorated liver histopathological injury, hepatocyte apoptosis, and oxidative stress. Notably, ZIN inhibited hepatic M1 macrophage polarization and decreased the expression of M1 macrophage-associated pro-inflammatory genes and cytokines, including interleukin-1β (IL-1β), IL-12, IL-6, and tumor necrosis factor-α (TNF-α). Western blotting analysis indicated that ZIN inhibited the phosphorylation of extracellular receptor kin, c-Jun N-terminal kinase, and p65 in vitro. Taken together, these results suggest that ZIN exerts a protective effect in the Con A-induced acute liver injury model by inhibiting M1 macrophage polarization and suppressing NF-κB, mitogen-activated protein kinase, and interferon regulatory factor signaling pathways. This highlights the possibility of using ZIN as a safe drug for the treatment of liver injury and provides a novel therapeutic direction for clinical studies on liver diseases.
Collapse
Affiliation(s)
- Zhihong Liu
- School of Basic Medicine, Shandong First Medical University, Jinan 271016, China; Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Lin Wang
- Cheeloo College of Medicine, Shandong University, Jinan 250000, Shandong, China
| | - Yuxuan Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Hongru Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Bin Yu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China.
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China.
| |
Collapse
|
2
|
Hong S, Kim K, Shim YR, Park J, Choi SE, Min H, Lee S, Song JJ, Kang SJ, Jeong WI, Seong RH, Kim S. A non-catalytic role of IPMK is required for PLCγ1 activation in T cell receptor signaling by stabilizing the PLCγ1-Sam68 complex. Cell Commun Signal 2024; 22:526. [PMID: 39478550 PMCID: PMC11524019 DOI: 10.1186/s12964-024-01907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Phospholipase C gamma 1 (PLCγ1) is an important mediator of the T cell receptor (TCR) and growth factor signaling. PLCγ1 is activated by Src family kinases (SFKs) and produces inositol 1,4,5-triphosphate (InsP3) from phosphatidylinositol 4,5-bisphosphate (PIP2). Inositol polyphosphate multikinase (IPMK) is a pleiotropic enzyme with broad substrate specificity and non-catalytic activities that mediate various functional protein-protein interactions. Therefore, IPMK plays critical functions in key biological events such as cell growth. However, the contribution of IPMK to the activation of PLCγ1 in TCR signaling remains mostly unelucidated. The current study aimed to elucidate the functions of IPMK in TCR signaling and to uncover the mode of IPMK-mediated signaling action in PLCγ1 activation. METHODS Concanavalin A (ConA)-induced acute hepatitis model was established in CD4+ T cell-specific IPMK knockout mice (IPMKΔCD4). Histological analysis was performed to assess hepatic injury. Primary cultures of naïve CD4+ T cells were used to uncover the role of mechanisms of IPMK in vitro. Western blot analysis, quantitative real-time PCR, and flow cytometry were performed to analyze the TCR-stimulation-induced PLCγ1 activation and the downstream signaling pathway in naïve CD4+ T cells. Yeast two-hybrid screening and co-immunoprecipitation were conducted to identify the IPMK-binding proteins and protein complexes. RESULTS IPMKΔCD4 mice showed alleviated ConA-induced acute hepatitis. CD4+ helper T cells in these mice showed reduced PLCγ1 Y783 phosphorylation, which subsequently dampens calcium signaling and IL-2 production. IPMK was found to contribute to PLCγ1 activation via the direct binding of IPMK to Src-associated substrate during mitosis of 68 kDa (Sam68). Mechanistically, IPMK stabilizes the interaction between Sam68 and to PLCγ1, thereby promoting PLCγ1 phosphorylation. Interfering this IPMK-Sam68 binding interaction with IPMK dominant-negative peptides impaired PLCγ1 phosphorylation. CONCLUSIONS Our results demonstrate that IPMK non-catalytically promotes PLCγ1 phosphorylation by stabilizing the PLCγ1-Sam68 complex. Targeting IPMK in CD4+ T cells may be a promising strategy for managing immune diseases caused by excessive stimulation of TCR.
Collapse
Affiliation(s)
- Sehoon Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Youseong-Gu, Daejeon, 34141, Republic of Korea
| | - Kyurae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Youseong-Gu, Daejeon, 34141, Republic of Korea
| | - Young-Ri Shim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Youseong-Gu, Daejeon, 34141, Republic of Korea
| | - Jiyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Youseong-Gu, Daejeon, 34141, Republic of Korea
| | - Sung Eun Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Youseong-Gu, Daejeon, 34141, Republic of Korea
| | - Hyungyu Min
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seulgi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Youseong-Gu, Daejeon, 34141, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Youseong-Gu, Daejeon, 34141, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Youseong-Gu, Daejeon, 34141, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Youseong-Gu, Daejeon, 34141, Republic of Korea
| | - Rho Hyun Seong
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Youseong-Gu, Daejeon, 34141, Republic of Korea.
- KAIST Institute for the BioCentury, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Stem Cell Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Liu Z, Sun M, Liu W, Feng F, Li X, Jin C, Zhang Y, Wang J. Deficiency of purinergic P2X4 receptor alleviates experimental autoimmune hepatitis in mice. Biochem Pharmacol 2024; 221:116033. [PMID: 38301964 DOI: 10.1016/j.bcp.2024.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Purinergic P2X4 receptor (P2X4R) has been shown to have immunomodulatory properties in infection, inflammation, and organ damage including liver regeneration and fibrosis. However, the mechanisms and pathophysiology associated with P2X4R during acute liver injury remain unknown. We used P2X4R-/- mice to explore the role of P2X4R in three different models of acute liver injury caused by concanavalin A (ConA), carbon tetrachloride, and acetaminophen. ConA treatment results in an increased expression of P2X4R in the liver of mice, which was positively correlated with higher levels of aspartate aminotransferase and alanine aminotransferase in the serum. However, P2X4R gene ablation significantly reduced the severity of acute hepatitis in mice caused by ConA, but not by carbon tetrachloride or acetaminophen. The protective benefits against immune-mediated acute hepatitis were achieved via modulating inflammation (Interleukin (IL)-1β, IL-6, IL-17A, interferon-γ, tumor necrosis factor-α), oxidative stress (malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase), apoptosis markers (Bax, Bcl-2, and Caspase-3), autophagy biomarkers (LC3, Beclin-1, and p62), and nucleotide oligomerization domain-likereceptorprotein 3(NLRP3) inflammasome-activated pyroptosis markers (NLRP3, Gasdermin D, Caspase-1, ASC, IL-1β). Additionally, administration of P2X4R antagonist (5-BDBD) or agonist (cytidine 5'-triphosphate) either improved or worsened ConA-induced autoimmune hepatitis, respectively. This study is the first to reveal that the absence of the P2X4 receptor may mitigate immune-mediated liver damage, potentially by restraining inflammation, oxidation, and programmed cell death mechanisms. And highlight P2X4 receptor is essential for ConA-induced acute hepatitis.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mengyang Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Fangyu Feng
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Xinyu Li
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China.
| |
Collapse
|
4
|
Gerussi A, Halliday N, Carbone M, Invernizzi P, Thorburn D. Open challenges in the management of autoimmune hepatitis. Minerva Gastroenterol (Torino) 2023; 69:61-83. [PMID: 33267568 DOI: 10.23736/s2724-5895.20.02805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Autoimmune hepatitis (AIH) is a rare autoimmune disease of the liver with many open questions as regards its etiopathogenesis, natural history and clinical management. The classical picture of AIH is chronic hepatitis with fluctuating elevation of serum transaminases and Immunoglobulin G levels, the presence of circulating autoantibodies and typical histological features. However, atypical presentations do occur and are not well captured by current diagnostic scores, with important consequences in terms of missed diagnoses and delayed treatments. AIH is treated with corticosteroids and immunosuppressive drugs but up to 40% of patients do not achieve full biochemical response and are at risk of progressing to cirrhosis and liver failure. Moreover, standard therapies are associated by significant side-effects which may impair the quality of life of patients living with AIH. However, advances in the understanding of the underlying immunology of AIH is raising the prospect of novel therapies and optimization of existing therapeutic approaches to reduce side-effect burdens and potentially restore immunological tolerance. In this review we outlined the clinical characteristics, etiopathogenesis and management of AIH and current challenges in the diagnosis and management of AIH and provided evidence underlying the evolution of diagnostic and clinical management protocols.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Department of Medicine and Surgery, Center for Autoimmune Liver Diseases, University of Milano-Bicocca, Monza, Monza-Brianza, Italy - .,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Monza-Brianza, Italy - .,Ancient DNA Lab Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel -
| | - Neil Halliday
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Marco Carbone
- Division of Gastroenterology, Department of Medicine and Surgery, Center for Autoimmune Liver Diseases, University of Milano-Bicocca, Monza, Monza-Brianza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Monza-Brianza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Department of Medicine and Surgery, Center for Autoimmune Liver Diseases, University of Milano-Bicocca, Monza, Monza-Brianza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Monza-Brianza, Italy
| | - Douglas Thorburn
- Institute for Liver and Digestive Health, University College London, London, UK
| |
Collapse
|
5
|
Cai T, Xu L, Xia D, Zhu L, Lin Y, Yu S, Zhu K, Wang X, Pan C, Chen Y, Chen D. Polyguanine alleviated autoimmune hepatitis through regulation of macrophage receptor with collagenous structure and TLR4‐TRIF‐NF‐κB signalling. J Cell Mol Med 2022; 26:5690-5701. [PMID: 36282897 PMCID: PMC9667514 DOI: 10.1111/jcmm.17599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive and chronic inflammatory disease in the liver. MARCO is a surface receptor of macrophage involving in tissue inflammation and immune disorders. Moreover, polyguanine (PolyG) is considered to bind to macrophage receptor with collagenous structure (MARCO). However, the role of MARCO and PolyG in the development and treatment of AIH still remains unclear. Therefore, this study explores the expression of MARCO and therapeutic activity of PolyG in both S100‐induced AIH in mouse and Lipopolysaccharide (LPS)‐treated macrophage (RAW264.7 cells). Moreover, there were significant increases in inflammatory factors and MARCO, as well as decrease in I‐kappa‐B‐alpha (Ik‐B) in the liver of AIH mice and LPS‐induced cells. However, PolyG treatment significantly reversed the elevation of inflammatory cytokins, MARCO and reduction of Ik‐B. In addition, PolyG treatment could downregulate the expression of Toll‐like receptor 4 (TLR4) and TIR‐domain‐containing adaptor inducing interferon‐β (TRIF), decrease macrophage M1 polarization and increase macrophage M2 polarization. When hepatocytes were co‐cultured with different treatment of macrophages, similar expression profile of inflammatory cytokines was observed in hepatocytes. The research revealed that MARCO expression was elevated in AIH mice. PolyG treatment and inhibition of MARCO significantly reduced inflammatory cytokines expression in the liver as well as hepatocytes and macrophages. Therefore, MARCO could be a target for the treatment of AIH.
Collapse
Affiliation(s)
- Tingchen Cai
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Lanman Xu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Centre Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University Ningbo Institute of Innovation for Combined Medicine and Engineering Ningbo China
| | - Dingchao Xia
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Lujian Zhu
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Yanhan Lin
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Sijie Yu
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Kailu Zhu
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Xiaodong Wang
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Chenwei Pan
- Department of Infectious Diseases The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Yongping Chen
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Dazhi Chen
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Department of Clinical Medicine Hangzhou Medical College Hangzhou China
| |
Collapse
|
6
|
Jin C, Gao BB, Zhou WJ, Zhao BJ, Fang X, Yang CL, Wang XH, Xia Q, Liu TT. Hydroxychloroquine attenuates autoimmune hepatitis by suppressing the interaction of GRK2 with PI3K in T lymphocytes. Front Pharmacol 2022; 13:972397. [PMID: 36188529 PMCID: PMC9520598 DOI: 10.3389/fphar.2022.972397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Hydroxychloroquine (HCQ) is derivative of the heterocyclic aromatic compound quinoline, which has been used for the treatment of autoimmune diseases. The central purpose of this study was to investigate therapeutic effects and inflammatory immunological molecular mechanism of HCQ in experimental autoimmune hepatitis (AIH). Treatment with HCQ ameliorated hepatic pathologic damage, inflammatory infiltration, while promoted regulatory T cell (Treg) and down-regulated CD8+T cell differentiation in AIH mice induced by S-100 antigen. In vitro, HCQ also suppressed pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-12) secretion, promoted anti-inflammatory cytokine (TGF-β1) secretion. HCQ mainly impaired T cell lipid metabolism but not glycolysis to promote Treg differentiation and function. Mechanistically, HCQ down-regulated GRK2 membrane translocation in T cells, inhibited GRK2-PI3K interaction to reduce the PI3K recruiting to the membrane, followed by suppressing the phosphorylation of PI3K-AKT-mTOR signal. Pretreating T cells with paroxetine, a GRK2 inhibitor, disturbed HCQ effect to T cells. HCQ also reversed the activation of the PI3K-AKT axis by 740 Y-P (PI3K agonist). Meanwhile, HCQ inhibited the PI3K-AKT-mTOR, JAK2-STAT3-SOCS3 and increased the AMPK signals in the liver and T cells of AIH mice. In conclusion, HCQ exhibited specific and potent therapeutic effects on AIH and attendant liver injury, which was attributed to HCQ acted on GRK2 translocation, inhibited metabolism-related PI3K-AKT and inflammation-related JAK2-STAT3 signal in T lymphocytes, thereby modulating lipid metabolism of T cell function to regulate Treg differentiation and function.
Collapse
Affiliation(s)
- Chao Jin
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Bei-Bei Gao
- Department of Pharmacy, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wen-Jing Zhou
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Bao-Jing Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xing Fang
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Chun-Lan Yang
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Xiao-Hua Wang
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Quan Xia
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Ting-Ting Liu
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Christen U, Hintermann E. Animal Models for Autoimmune Hepatitis: Are Current Models Good Enough? Front Immunol 2022; 13:898615. [PMID: 35903109 PMCID: PMC9315390 DOI: 10.3389/fimmu.2022.898615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune liver diseases like autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related cholangitis are chronic inflammatory diseases of the liver with an autoimmune background. The therapy of autoimmune hepatitis targets the autoreactive immune system and is largely dependent on the use of glucocorticoids and cytostatic drugs. In contrast, the treatment of cholestatic autoimmune liver diseases is restricted to the use of secondary or semi-synthetic bile acids, like ursodeoxycholic acid or obeticholic acid. Although the management of the disease using such drugs works well for the majority of patients, many individuals do not respond to standard therapy. In addition, chronic treatment with glucocorticoids results in well-known side effects. Further, the use of bile acids is a symptomatic therapy that has no direct immunomodulatory effect. Thus, there is still a lot of room for improvement. The use of animal models has facilitated to elucidate the pathogenesis of autoimmune liver diseases and many potential target structures for immunomodulatory therapies have been identified. In this review, we will focus on autoimmune hepatitis for which the first animal models have been established five decades ago, but still a precise treatment for autoimmune hepatitis, as obtainable for other autoimmune diseases such as rheumatoid arthritis or multiple sclerosis has yet to be introduced. Thus, the question arises if our animal models are too far from the patient reality and thus findings from the models cannot be reliably translated to the patient. Several factors might be involved in this discrepancy. There is first and foremost the genetic background and the inbred status of the animals that is different from human patients. Here the use of humanized animals, such as transgenic mice, might reduce some of the differences. However, there are other factors, such as housing conditions, nutrition, and the microbiome that might also play an important role. This review will predominantly focus on the current status of animal models for autoimmune hepatitis and the possible ways to overcome discrepancies between model and patient.
Collapse
|
8
|
Jiang R, Tang J, Zhang X, He Y, Yu Z, Chen S, Xia J, Lin J, Ou Q. CCN1 Promotes Inflammation by Inducing IL-6 Production via α6β1/PI3K/Akt/NF-κB Pathway in Autoimmune Hepatitis. Front Immunol 2022; 13:810671. [PMID: 35547732 PMCID: PMC9084230 DOI: 10.3389/fimmu.2022.810671] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease with unknown etiology. CCN1, an extracellular matrix-associated protein, is associated with carcinoma, inflammation, liver fibrosis, and even autoimmune diseases. However, the role that CCN1 plays in AIH has remained undetermined. In this study, expression of CCN1 in liver was detected by real-time PCR, western blot and immunohistochemistry (IHC). CCN1 level in serum was detected by ELISA. Diagnostic value of CCN1 was determined by receiver operating characteristic (ROC) curve analysis. CCN1 conditional knockout (CCN1fl/flCre+) mice were generated by mating CCN1fl/fl C57BL/6J and CAG-Cre-ERT C57BL/6J mice. Autoimmune hepatitis mice model was induced by concanavalin A (ConA). IKKα/β, IκBα, NF-κB p65 and Akt phosphorylation were determined by western blot. NF-κB p65 nuclear translocation was examined by immunofluorescence. Here, we found that CCN1 was over-expressed in hepatocytes of AIH patients. CCN1 level also increased in serum of AIH patients compared to healthy controls (HC). ROC curve analysis results showed that serum CCN1 was able to distinguish AIH patients from HD. In ConA induced hepatitis mice model, CCN1 conditional knockout (CCN1fl/flCre+) attenuated inflammation by reducing ALT/AST level and IL-6 expression. In vitro, CCN1 treatment dramatically induced IL-6 production in LO2 cells. Moreover, the production of IL-6 was attenuated by CCN1 knockdown. Furthermore, we showed that CCN1 could activate IL-6 production via the PI3K/Akt/NF-κB signaling pathway by binding to α6β1 receptor. In summary, our results reveal a novel role of CCN1 in promoting inflammation by upregulation of IL-6 production in AIH. Our study also suggests that targeting of CCN1 may represent a novel strategy in AIH treatment.
Collapse
Affiliation(s)
- Renquan Jiang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jifeng Tang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xuehao Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujue He
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ziqing Yu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shuhui Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinfang Xia
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. Autoimmmune hepatitis. Cell Mol Immunol 2022; 19:158-176. [PMID: 34580437 PMCID: PMC8475398 DOI: 10.1038/s41423-021-00768-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a T-cell mediated, inflammatory liver disease affecting all ages and characterized by female preponderance, elevated serum transaminase and immunoglobulin G levels, positive circulating autoantibodies, and presence of interface hepatitis at liver histology. AIH type 1, affecting both adults and children, is defined by positive anti-nuclear and/or anti-smooth muscle antibodies, while type 2 AIH, affecting mostly children, is defined by positive anti-liver-kidney microsomal type 1 and/or anti-liver cytosol type 1 antibody. While the autoantigens of type 2 AIH are well defined, being the cytochrome P4502D6 (CYP2D6) and the formiminotransferase cyclodeaminase (FTCD), in type 1 AIH they remain to be identified. AIH-1 predisposition is conferred by possession of the MHC class II HLA DRB1*03 at all ages, while DRB1*04 predisposes to late onset disease; AIH-2 is associated with possession of DRB1*07 and DRB1*03. The majority of patients responds well to standard immunosuppressive treatment, based on steroid and azathioprine; second- and third-line drugs should be considered in case of intolerance or insufficient response. This review offers a comprehensive overview of pathophysiological and clinical aspects of AIH.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino & Facoltà di Scienze Biomediche, Università della Svizzera Italiana, Lugano, Switzerland.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK.
| | - Giorgina Mieli-Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| |
Collapse
|
10
|
Liu J, Ma Z, Li H, Li X. Chinese medicine in the treatment of autoimmune hepatitis: Progress and future opportunities. Animal Model Exp Med 2022; 5:95-107. [PMID: 35263512 PMCID: PMC9043711 DOI: 10.1002/ame2.12201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease occurring in individuals of all ages with a higher incidence in females and characterized by hypergammaglobulinemia, elevated serum autoantibodies and histological features of interface hepatitis. AIH pathogenesis remains obscure and still needs in‐depth study, which is likely associated with genetic susceptibility and the loss of immune homeostasis. Steroids alone and in combination with other immunosuppressant agents are the primary choices of AIH treatment in the clinic, whereas, in some cases, severe adverse effects and disease relapse may occur. Chinese medicine used for the treatment of AIH has proven its merits over many years and is well tolerated. To better understand the pathogenesis of AIH and to evaluate the efficacy of novel therapies, several animal models have been generated to recapitulate the immune microenvironment of patients with AIH. In the current review, we summarize recent advances in the study of animal models for AIH and their application in pharmacological research of Chinese medicine‐based therapies and also discuss current limitations. This review aims to provide novel insights into the discovery of Chinese medicine‐originated therapies for AIH using cutting‐edge animal models.
Collapse
Affiliation(s)
- Jia Liu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Zhi Ma
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Han Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xiaojiaoyang Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
11
|
Huang C, Shen Y, Shen M, Fan X, Men R, Ye T, Yang L. Glucose Metabolism Reprogramming of Regulatory T Cells in Concanavalin A-Induced Hepatitis. Front Pharmacol 2021; 12:726128. [PMID: 34531750 PMCID: PMC8438122 DOI: 10.3389/fphar.2021.726128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 02/05/2023] Open
Abstract
Autoimmune hepatitis (AIH) is an inflammatory liver disease caused by a dysregulated immune response. Although the pathogenesis of AIH remains unclear, impaired regulatory T cells (Tregs) have been considered a driver of AIH development. Unlike autoreactive T cells, Tregs mainly utilize oxidative phosphorylation (OXPHOS) as their energy supply. Elevated glycolysis has been reported to limit the suppressive functions of Tregs. However, whether glucose metabolism reprogramming in Tregs is involved in AIH etiology remains unknown. The aim of this study was to examine alternations in Treg numbers and functions in AIH patients and concanavalin A (Con A)-induced hepatitis, while exploring associations between impaired Tregs and glucose metabolism. The frequency of Tregs was decreased in the peripheral blood but increased in liver biopsies of AIH patients. Moreover, immunosuppressive therapy rescued circulating Tregs in AIH. In Con A-induced immune hepatitis, enhanced intrahepatic Treg accumulation was observed over time, accompanied by reduced splenic Treg numbers. To investigate whether functional impairment of Tregs occurs in AIH, Tregs were isolated from experimental AIH (EAH) model mice and normal controls and the former displayed downregulated mRNA levels of FOXP3, CTLA4, CD103, TIGIT, CD39, and CD73. EAH model-derived Tregs also produced fewer anti-inflammatory mediators (TGF-β and IL-35) than control Tregs. Moreover, enhanced glycolysis and reduced OXPHOS were found in Tregs from EAH model mice, as reflected by elevated levels of key glycolytic enzymes (HK2, PK-M2, and LDH-A) and a decreased ATP concentration. This study revealed a decreased peripheral Treg frequency and abnormal intrahepatic Treg infiltration in AIH. It is first reported that glucose metabolism reprogramming is associated with decreases and functional impairments in the Treg population, promoting AIH development. Targeting glucose metabolism may provide novel insights for the treatment of AIH.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Shen
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyi Shen
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ruoting Men
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Li SL, Cao R, Hu XF, Xiong P, Zhao GY, Xie YN, Wang ZM, Li YK, Yang B, Yang J. Daidzein ameliorated concanavalin A-induced liver injury through the Akt/GSK-3β/Nrf2 pathway in mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1228. [PMID: 34532365 PMCID: PMC8421986 DOI: 10.21037/atm-21-378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Background Daidzein is a soybean isoflavone that has been shown in previous studies to have anti-inflammatory and antioxidant effects. However, it remains unknown whether daidzein plays a protective role against concanavalin A (Con A)-induced autoimmune hepatitis (AIH). Methods In this study, an animal model of AIH was constructed by intravenous injection of Con A (15 mg/kg). Daidzein (200 mg/kg/d) was intraperitoneally administered to mice for 3 days before the Con A injection. Alpha mouse liver 12 (AML-12) cells were incubated in the absence or presence of daidzein to determine whether daidzein can alleviate Con A-induced hepatotoxicity. Results The findings showed that pretreatment with daidzein significantly reduced Con A-induced oxidative stress and hepatocyte apoptosis in Con A-induced liver injury. Pretreatment with daidzein significantly prevented the decrease of intrahepatic protein levels of phosphorylated Akt (p-Akt), phosphorylated GSK3β (p-GSK3β), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NOQ1 (NAD(P)H quinone dehydrogenase 1) in response to Con A administration. Meanwhile, malondialdehyde (MDA) production was reduced, and glutathione peroxidase (GPX), superoxide dismutase (SOD) activity, and SOD2 mRNA expression were elevated in daidzein-pretreated livers. In in vitro experiments, daidzein pretreatment prevented Con A-induced murine hepatocyte death. This effect was partly diminished by an inhibitor of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Conclusions These results indicate that daidzein pretreatment attenuates Con A-induced liver injury through the Akt/GSK3β/Nrf2 pathway. Our findings provide new insights into the use of plant-derived products for AIH treatment beyond immunosuppression.
Collapse
Affiliation(s)
- Shang-Lin Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Cao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Fan Hu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xiong
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang-Yuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Min Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Kun Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Lotfy A, Elgamal A, Burdzinska A, Swelum AA, Soliman R, Hassan AA, Shiha G. Stem cell therapies for autoimmune hepatitis. Stem Cell Res Ther 2021; 12:386. [PMID: 34233726 PMCID: PMC8262021 DOI: 10.1186/s13287-021-02464-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis is a chronic inflammatory hepatic disorder which may cause liver fibrosis. Appropriate treatment of autoimmune hepatitis is therefore important. Adult stem cells have been investigated as therapies for a variety of disorders in latest years. Hematopoietic stem cells (HSCs) were the first known adult stem cells (ASCs) and can give rise to all of the cell types in the blood and immune system. Originally, HSC transplantation was served as a therapy for hematological malignancies, but more recently researchers have found the treatment to have positive effects in autoimmune diseases such as multiple sclerosis. Mesenchymal stem cells (MSCs) are ASCs which can be extracted from different tissues, such as bone marrow, adipose tissue, umbilical cord, and dental pulp. MSCs interact with several immune response pathways either by direct cell-to-cell interactions or by the secretion of soluble factors. These characteristics make MSCs potentially valuable as a therapy for autoimmune diseases. Both ASC and ASC-derived exosomes have been investigated as a therapy for autoimmune hepatitis. This review aims to summarize studies focused on the effects of ASCs and their products on autoimmune hepatitis.
Collapse
Affiliation(s)
- Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Anna Burdzinska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006, Warsaw, Poland
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.,Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Reham Soliman
- Tropical Medicine Department, Faculty of Medicine, Port Said University, Port Said, Egypt.,Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt
| | - Ayman A Hassan
- Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt
| | - Gamal Shiha
- Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt. .,Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
14
|
PK/PD Modeling of the PDE7 Inhibitor-GRMS-55 in a Mouse Model of Autoimmune Hepatitis. Pharmaceutics 2021; 13:pharmaceutics13050597. [PMID: 33919375 PMCID: PMC8143339 DOI: 10.3390/pharmaceutics13050597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
This study aimed to assess the efficacy and explore the mechanisms of action of a potent phosphodiesterase (PDE)7A and a moderate PDE4B inhibitor GRMS-55 in a mouse model of autoimmune hepatitis (AIH). The concentrations of GRMS-55 and relevant biomarkers were measured in the serum of BALB/c mice with concanavalin A (ConA)-induced hepatitis administered with GRMS-55 at two dose levels. A semi-mechanistic PK/PD/disease progression model describing the time courses of measured biomarkers was developed. The emetogenicity as a potential side effect of the studied compound was evaluated in the α2-adrenoceptor agonist-induced anesthesia model. The results indicate that liver damage observed in mice challenged with ConA was mainly mediated by TNF-α and IFN-γ. GRMS-55 decreased the levels of pro-inflammatory mediators and the transaminase activities in the serum of mice with AIH. The anti-inflammatory properties of GRMS-55, resulting mainly from PDE7A inhibition, led to a high hepatoprotective activity in mice with AIH, which was mediated by an inhibition of pro-inflammatory signaling. GRMS-55 did not induce the emetic-like behavior. The developed PK/PD/disease progression model may be used in future studies to assess the potency and explore the mechanisms of action of new investigational compounds for the treatment of AIH.
Collapse
|
15
|
Summary of Natural Products Ameliorate Concanavalin A-Induced Liver Injury: Structures, Sources, Pharmacological Effects, and Mechanisms of Action. PLANTS 2021; 10:plants10020228. [PMID: 33503905 PMCID: PMC7910830 DOI: 10.3390/plants10020228] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Liver diseases represent a threat to human health and are a significant cause of mortality and morbidity worldwide. Autoimmune hepatitis (AIH) is a progressive and chronic hepatic inflammatory disease, which may lead to severe complications. Concanavalin A (Con A)-induced hepatic injury is regarded as an appropriate experimental model for investigating the pathology and mechanisms involved in liver injury mediated by immune cells as well as T cell-related liver disease. Despite the advances in modern medicine, the only available strategies to treat AIH, include the use of steroids either solely or with immunosuppressant drugs. Unfortunately, this currently available treatment is associated with significant side-effects. Therefore, there is an urgent need for safe and effective drugs to replace and/or supplement those in current use. Natural products have been utilized for treating liver disorders and have become a promising therapy for various liver disorders. In this review, the natural compounds and herbal formulations as well as extracts and/or fractions with protection against liver injury caused by Con A and the underlying possible mechanism(s) of action are reviewed. A total of 53 compounds from different structural classes are discussed and over 97 references are cited. The goal of this review is to attract the interest of pharmacologists, natural product researchers, and synthetic chemists for discovering novel drug candidates for treating immune-mediated liver injury.
Collapse
|
16
|
Identification and characterization of dynamically regulated hepatitis-related genes in a concanavalin A-induced liver injury model. Aging (Albany NY) 2020; 12:23187-23199. [PMID: 33221747 PMCID: PMC7746381 DOI: 10.18632/aging.104089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
Background: Concanavalin A (ConA)-induced liver damage of mice is a well-established murine model mimicking the human autoimmune hepatitis (AIH). However, the pathogenic genes of the liver injury remain to be revealed. Methods: Using time-series liver transcriptome, top dynamic genes were inferred from a set of segmented regression models, and cross-checked by weighted correlation network analysis (WGCNA). AIH murine models created by ConA were used to verify the in vivo effect of these genes. Results: We identified 115 top dynamic genes, of which most were overlapped with the hub genes determined by WGCNA. The expression of several top dynamic genes including Cd63, Saa3, Slc10a1, Nrxn1, Ugt2a3, were verified in vivo. Further, Cluster determinant 63 (Cd63) knockdown in mice treated with ConA showed significantly less liver pathology and inflammation as well as higher survival rates than the corresponding controls. Conclusion: We have identified the top dynamic genes related to the process of acute liver injury, and highlighted a targeted strategy for Cd63 might have utility for the protection of hepatocellular damage.
Collapse
|
17
|
Liu SP, Bian ZH, Zhao ZB, Wang J, Zhang W, Leung PSC, Li L, Lian ZX. Animal Models of Autoimmune Liver Diseases: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:252-271. [PMID: 32076943 DOI: 10.1007/s12016-020-08778-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoimmune liver diseases (AILDs) are potentially life-threatening chronic liver diseases which include autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and recently characterized IgG4-related sclerosing cholangitis. They are caused by immune attack on hepatocytes or bile ducts, with different mechanisms and clinical manifestations. The etiologies of AILDs include a susceptible genetic background, environment insults, infections, and changes of commensal microbiota, but remain complicated. Understanding of the underlying mechanisms of AILDs is mandatory for early diagnosis and intervention, which is of great importance for better prognosis. Thus, animal models are developed to mimic the pathogenesis, find biomarkers for early diagnosis, and for therapeutic attempts of AILDs. However, no animal models can fully recapitulate features of certain AILD, especially the late stages of diseases. Certain limitations include different living condition, cell composition, and time frame of disease development and resolution. Moreover, there is no IgG4 in rodents which exists in human. Nevertheless, the understanding and therapy of AILDs have been greatly advanced by the development and mechanistic investigation of animal models. This review will provide a comprehensive overview of traditional and new animal models that recapitulate different features and etiologies of distinct AILDs.
Collapse
Affiliation(s)
- Shou-Pei Liu
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhen-Hua Bian
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi-Bin Zhao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jinjun Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Liang Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China. .,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Zhe-Xiong Lian
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China. .,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Wang H, Feng X, Yan W, Tian D. Regulatory T Cells in Autoimmune Hepatitis: Unveiling Their Roles in Mouse Models and Patients. Front Immunol 2020; 11:575572. [PMID: 33117375 PMCID: PMC7575771 DOI: 10.3389/fimmu.2020.575572] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a severe and chronic liver disease, and its incidence has increased worldwide in recent years. Research into the pathogenesis of AIH remains limited largely owing to the lack of suitable mouse models. The concanavalin A (ConA) mouse model is a typical and well-established model used to investigate T cell-dependent liver injury. However, ConA-induced hepatitis is acute and usually disappears after 48 h; thus, it does not mimic the pathogenesis of AIH in the human body. Several studies have explored various AIH mouse models, but as yet there is no widely accepted and valid mouse model for AIH. Immunosuppression is the standard clinical therapy for AIH, but patient side effects and recurrence limit its use. Regulatory T cells (Tregs) play critical roles in the maintenance of immune homeostasis and in the prevention of autoimmune diseases, which may provide a potential therapeutic target for AIH therapy. However, the role of Tregs in AIH has not yet been clarified, partly because of difficulties in diagnosing AIH and in collecting patient samples. In this review, we discuss the studies related to Treg in various AIH mouse models and patients with AIH and provide some novel insights for this research area.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Bakela K, Dimitraki MG, Skoufa E, Athanassakis I. Rescue of autoimmune hepatitis by soluble MHC class II molecules in an altered concanavalin A-induced experimental model. Animal Model Exp Med 2020; 3:264-272. [PMID: 33024948 PMCID: PMC7529329 DOI: 10.1002/ame2.12133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soluble major histocompatibility complex class II (sMHCII) molecules have been described to maintain tolerance through the suppression of autoreactive T lymphocytes. In order to evaluate their ability to rescue autoimmune hepatitis (AIH) symptoms, the present work attempted to administer sMHCII molecules to an in vitro as well as in vivo concanavalin A (ConA)-induced AIH model. METHODS The in vitro AIH model consisted of splenocyte stimulation with ConA in the presence or absence of serum-isolated sMHCII molecules. An in vivo ConA-modified model with or without sMHCII treatment was developed. The cytokine profile in culture supernatants and serum was tested by ELISA. Cell markers were evaluated by immunofluorescence, while cell proliferation by tritiated thymidine uptake. AIH symptoms were assessed by daily observations for the establishment of a disease severity scoring system and liver histology was evaluated using a biomolecular imager. RESULTS The presence of sMHCII molecules in the ConA-stimulated cell cultures leads to a significant reduction of cell proliferation. The administration of sMHCII molecules to the ConA-treated animals showed a significant reduction in the levels of IL-2, IL-4, and IL-10, as well as a decrease in the number of spleen CD4+ and CD8+ cells. Upon development of a scoring system, it was shown that the sMHCII treatment was accompanied by a slower progression of the disease, while rescuing fibrotic liver morphology. CONCLUSION The results presented in this study confirm the ability of sMHCII proteins to alleviate autoimmune hepatitis, possibly highlighting new therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Katerina Bakela
- Laboratory of Immunology Department of Biology University of Crete Heraklion Crete Greece
| | | | - Evangelia Skoufa
- Laboratory of Immunology Department of Biology University of Crete Heraklion Crete Greece
| | - Irene Athanassakis
- Laboratory of Immunology Department of Biology University of Crete Heraklion Crete Greece
| |
Collapse
|
20
|
Zhang M, Li Q, Zhou C, Zhao Y, Li R, Zhang Y. Demethyleneberberine attenuates concanavalin A-induced autoimmune hepatitis in mice through inhibition of NF-κB and MAPK signaling. Int Immunopharmacol 2020; 80:106137. [PMID: 31931366 DOI: 10.1016/j.intimp.2019.106137] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Demethyleneberberine (DMB) is a natural product which has been reported to possess mitochondria-targeting anti-oxidative and anti-inflammatory effect. However, the pharmacological action and molecular mechanism of DMB on autoimmune hepatitis (AIH) have not been explored. In this study, AIH was induced by intravenously injecting Con A (20 mg/kg) in mice for 8 h, and DMB protected against Con A-induced AIH, evidenced by obvious reduction of hepatic enzymes in serum and histological lesion. DMB significantly inhibited the infiltration of CD4+ T cell and Kupffer cell as well as the expression of inflammatory cytokines, such as TNF-α, IL-6, IL-1β and IFN-γ by ELISA and qPCR analysis. Western blotting analysis illustrated that DMB remarkably inhibited Con A-induced phosphorylation of IKK, IκB, NF-κB p65, ERK, JNK, p38 MAPK and STAT3 induced by Con A. Moreover, DMB also effectively suppressed hepatic oxidative stress with reduction of MDA and elevation of GSH. Taken together, our findings indicated that DMB could prevent Con A-induced AIH by regulating NF-κB and MAPK signaling, suggesting that DMB can serve as a promising candidate for therapy of AIH.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qingxia Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Cuisong Zhou
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yaxing Zhao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ruiyan Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
21
|
Noor HB, Mou NA, Salem L, Shimul MF, Biswas S, Akther R, Khan S, Raihan S, Mohib MM, Sagor MA. Anti-inflammatory Property of AMP-activated Protein Kinase. Antiinflamm Antiallergy Agents Med Chem 2020; 19:2-41. [PMID: 31530260 PMCID: PMC7460777 DOI: 10.2174/1871523018666190830100022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND One of the many debated topics in inflammation research is whether this scenario is really an accelerated form of human wound healing and immunityboosting or a push towards autoimmune diseases. The answer requires a better understanding of the normal inflammatory process, including the molecular pathology underlying the possible outcomes. Exciting recent investigations regarding severe human inflammatory disorders and autoimmune conditions have implicated molecular changes that are also linked to normal immunity, such as triggering factors, switching on and off, the influence of other diseases and faulty stem cell homeostasis, in disease progression and development. METHODS We gathered around and collected recent online researches on immunity, inflammation, inflammatory disorders and AMPK. We basically searched PubMed, Scopus and Google Scholar to assemble the studies which were published since 2010. RESULTS Our findings suggested that inflammation and related disorders are on the verge and interfere in the treatment of other diseases. AMPK serves as a key component that prevents various kinds of inflammatory signaling. In addition, our table and hypothetical figures may open a new door in inflammation research, which could be a greater therapeutic target for controlling diabetes, obesity, insulin resistance and preventing autoimmune diseases. CONCLUSION The relationship between immunity and inflammation becomes easily apparent. Yet, the essence of inflammation turns out to be so startling that the theory may not be instantly established and many possible arguments are raised for its clearance. However, this study might be able to reveal some possible approaches where AMPK can reduce or prevent inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Md A.T. Sagor
- Address correspondence to this author at the Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; Tel: +8801719130130; E-mail:
| |
Collapse
|
22
|
Fan X, Men R, Wang H, Shen M, Wang T, Ye T, Luo X, Yang L. Methylprednisolone Decreases Mitochondria-Mediated Apoptosis and Autophagy Dysfunction in Hepatocytes of Experimental Autoimmune Hepatitis Model via the Akt/mTOR Signaling. Front Pharmacol 2019; 10:1189. [PMID: 31680966 PMCID: PMC6813226 DOI: 10.3389/fphar.2019.01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 02/05/2023] Open
Abstract
Autoimmune hepatitis (AIH) is characterized by massive immune cell-mediated hepatocyte destruction. Glucocorticoids, particularly methylprednisolone (MP), are the most effective treatment for AIH; however, the mechanism underlying the effects of glucocorticoid treatment has not been fully elucidated. The present study explored the effects of MP on damaged hepatocytes in mice with concanavalin A (ConA)-induced experimental autoimmune hepatitis (EAH). C57BL/6 mice were divided into three groups: a normal control group (injected with normal saline), a ConA (20 mg/kg) group, and a ConA + MP (3.12 mg/kg) group. The serum levels of liver enzymes, cytokines, activated T cells, and apoptosis- and autophagy-associated marker proteins were determined 12 h after ConA injection. Human hepatocyte cell line LO2 was used to verify the effects of ConA and MP in vitro. MP treatment significantly decreased inflammatory reactions in the serum and liver tissues and activated the Akt/mTOR signaling pathway to inhibit apoptosis and autophagy in hepatocytes in vivo. Transmission electron microscopy (TEM) revealed fewer autophagosomes in the MP-treated group than in the ConA-treated group. MP treatment obviously suppressed apoptosis and mitochondrial membrane potential (ΔΨm) loss in hepatocytes in vitro. Furthermore, ConA treatment increased the levels of LC3-II, p62/SQSTM1, and Beclin-1, while bafilomycin A1 did not augment the levels of LC3-II. MP treatment decreased the levels of LC3-II, p62/SQSTM1, and Beclin-1 and upregulated the levels of phosphorylated (p)-Akt and p-mTOR. In conclusion, MP ameliorated mitochondria-mediated apoptosis and autophagy dysfunction in ConA-induced hepatocyte injury in vivo and in vitro via the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Ruoting Men
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Haoran Wang
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Mengyi Shen
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Wang
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefeng Luo
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre,West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Viral Infections and Autoimmune Disease: Roles of LCMV in Delineating Mechanisms of Immune Tolerance. Viruses 2019; 11:v11100885. [PMID: 31546586 PMCID: PMC6832701 DOI: 10.3390/v11100885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
Viral infections are a natural part of our existence. They can affect us in many ways that are the result of the interaction between the viral pathogen and our immune system. Most times, the resulting immune response is beneficial for the host. The pathogen is cleared, thus protecting our vital organs with no other consequences. Conversely, the reaction of our immune system against the pathogen can cause organ damage (immunopathology) or lead to autoimmune disease. To date, there are several mechanisms for virus-induced autoimmune disease, including molecular mimicry and bystander activation, in support of the “fertile field” hypothesis (terms defined in our review). In contrast, viral infections have been associated with protection from autoimmunity through mechanisms that include Treg invigoration and immune deviation, in support of the “hygiene hypothesis”, also defined here. Infection with lymphocytic choriomeningitis virus (LCMV) is one of the prototypes showing that the interaction of our immune system with viruses can either accelerate or prevent autoimmunity. Studies using mouse models of LCMV have helped conceive and establish several concepts that we now know and use to explain how viruses can lead to autoimmune activation or induce tolerance. Some of the most important mechanisms established during the course of LCMV infection are described in this short review.
Collapse
|
24
|
Taubert R, Hupa-Breier KL, Jaeckel E, Manns MP. Novel therapeutic targets in autoimmune hepatitis. J Autoimmun 2018; 95:34-46. [DOI: 10.1016/j.jaut.2018.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
|
25
|
Christen U, Hintermann E. Pathogens and autoimmune hepatitis. Clin Exp Immunol 2018; 195:35-51. [PMID: 30113082 DOI: 10.1111/cei.13203] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a severe form of hepatitis resulting in the autoimmune-mediated destruction of the liver parenchyma. Whereas many of the immunopathogenic events have been elucidated and some of the drivers of the disease have been identified, little is known about the aetiology of the disease. There are certain risk factors, such as particular human leucocyte antigen (HLA) haplotypes, that enhance the susceptibility for AIH or influence the severity of the disease. However, as for many other autoimmune diseases, the mere presence of such risk factors does not warrant the occurrence of the disease. Not all individuals carrying risk factors develop AIH, and not all patients with AIH are carriers of high-risk alleles. Thus, additional environmental factors need to be considered as triggers for AIH. Environmental factors include diet, sunlight exposure, stress, medication and hygiene, as well as pathogen infections and vaccinations. This review discusses if pathogens should be considered as triggers for the initiation and/or propagation of AIH.
Collapse
Affiliation(s)
- U Christen
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital, Frankfurt am Main, Germany
| | - E Hintermann
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|