1
|
Yang P, Su W, Wang L, Xu F, Kong Y, Long J. From aldehyde metabolism to delay aging: targeting ALDH2 as a novel strategy. Free Radic Biol Med 2025; 236:70-86. [PMID: 40349798 DOI: 10.1016/j.freeradbiomed.2025.05.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/19/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Aldehydes are molecules that are commonly found in both human physiology and the environment. The accumulation of these substances can lead to the cross-linking of intracellular DNA and proteins, thereby disrupting cellular function and contributing to the processes of premature aging and age-related diseases. Aldehyde dehydrogenase 2 (ALDH2), the key member of ALDH family, is an enzyme responsible for aldehyde metabolism, composed of four identical subunits located within the mitochondrial matrix. Its primary role is to catalyze the oxidation of aldehydes, resulting in the formation of their corresponding acid metabolites. This paper presents a succinct overview of the sources and metabolic pathways of key aldehydes within the human body, compares the various primary enzymes involved in aldehyde metabolism, and explores the structural and functional characteristics of ALDH2. Furthermore, ALDH2 is proposed as a potential therapeutic target for addressing aging and associated diseases. The discussion also includes prospective research avenues, particularly focusing on ALDH2 agonists and aldehyde scavengers designed to enhance the clearance of reactive aldehydes and safeguard cellular functions, thereby mitigating aldehyde-induced cellular damage and potentially delaying the aging process.
Collapse
Affiliation(s)
- Peng Yang
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China
| | - Wu Su
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China
| | - Lizhuo Wang
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China
| | - Fanding Xu
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China
| | - Yu Kong
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China
| | - Jiangang Long
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China.
| |
Collapse
|
2
|
Sun Z, Jiang W, Lu G, Ding Y, Wang L, Geng J, Zhang N, Wang H, Kang P, Tang B. Loss of ALDH2 accelerates the progression of pulmonary arterial hypertension through the 4-HNE/ERK1/2-p16 INK4a signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167863. [PMID: 40274079 DOI: 10.1016/j.bbadis.2025.167863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 03/12/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Senescence is an important causative factor in the development of pulmonary arterial hypertension (PAH). Aldehyde dehydrogenase 2 (ALDH2), an enzyme involved in aldehyde detoxification, plays a role in cardiovascular diseases associated with aldehyde accumulation. This study aimed to investigate the role of ALDH2 in hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) and PAH. ALDH2 knockout (ALDH2-/-) mice and wild-type (WT) mice were exposed to a hypoxic environment with 10 ± 0.5 % oxygen concentration for 4 weeks to develop a chronic hypoxia-induced PAH (HPH) mouse model. We found that right ventricular hypertrophy and pulmonary arteriole muscularization were more severe in ALDH2-/- mice compared to WT mice. Additionally, ALDH2-/- mice exhibited elevated expression levels of 4-HNE, p-ERK1/2, the senescence-related protein p16INK4a, and the senescence-associated secretory phenotype (SASP) compared to WT mice. Similarly, treatment with the ALDH2 inhibitor (Daidzin) significantly increased 4-HNE, p-ERK1/2, p16INK4a, and SASP levels in PASMCs under hypoxia. Conversely, overexpression of ALDH2 reduced 4-HNE, p-ERK1/2, and PASMC senescence. Furthermore, exogenous 4-HNE, used to simulate hypoxia conditions, activated the ERK signaling pathway and induced PASMC senescence. However, ERK-specific inhibitors (PD98059) blocked hypoxia-induced PASMC senescence. These results demonstrate that ALDH2 deficiency induces PASMC senescence and promotes pulmonary vascular remodeling through the 4-HNE/ERK1/2-p16INK4a signaling pathway in HPH, providing a novel target for PAH treatment.
Collapse
Affiliation(s)
- Zhengyu Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Wendi Jiang
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Guoqing Lu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Yangyang Ding
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Lei Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Jiayi Geng
- Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Ningning Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Hongju Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Pinfang Kang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China.
| | - Bi Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China.
| |
Collapse
|
3
|
Liu J, Ma S, Deng D, Yang Y, Li J, Zhang Y, Yin P, Shang D. Multi-Omics Profiling Reveals Glycerolipid Metabolism-Associated Molecular Subtypes and Identifies ALDH2 as a Prognostic Biomarker in Pancreatic Cancer. Metabolites 2025; 15:207. [PMID: 40137171 PMCID: PMC11943634 DOI: 10.3390/metabo15030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Background: The reprogramming of lipid metabolism, especially glycerolipid metabolism (GLM), plays a key role in cancer progression and response to therapy. However, the role and molecular characterization of GLM in pancreatic cancer (PC) remain unclear. Methods: A pan-cancer analysis of glycerolipid metabolism-related genes (GMRGs) was first conducted to assess copy-number variants, single-nucleotide variations, methylation, and mRNA expression. Subsequently, GLM in PC was characterized using lipidomics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptomic analysis. A cluster analysis based on bulk RNA sequencing data from 930 PC samples identified GLM-associated subtypes, which were then analyzed for differences in prognosis, biological function, immune microenvironment, and drug sensitivity. To prioritize prognostically relevant GMRGs in PC, we employed a random forest (RF) algorithm to rank their importance across 930 PC samples. Finally, the key biomarker of PC was validated using PCR and immunohistochemistry. Results: Pan-cancer analysis identified molecular features of GMRGs in cancers, while scRNA-seq, spatial transcriptomics, and lipidomics highlighted GLM heterogeneity in PC. Two GLM-associated subtypes with significant prognostic, biofunctional, immune microenvironmental, and drug sensitivity differences were identified in 930 PC samples. Finally, ALDH2 was identified as a novel prognostic biomarker in PC and validated in a large number of datasets and clinical samples. Conclusions: This study highlights the crucial role of GLM in PC and defines a new PC subtype and prognostic biomarker. These findings establish a novel avenue for studying prognostic prediction and precision medicine in PC patients.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China;
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China;
| | - Dawei Deng
- Department of Hepato-Biliary-Pancreas, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China;
| | - Yao Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Junchen Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Yunshu Zhang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China;
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Peiyuan Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China;
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China;
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| |
Collapse
|
4
|
Wang YN, Liu S. The role of ALDHs in lipid peroxidation-related diseases. Int J Biol Macromol 2025; 288:138760. [PMID: 39674477 DOI: 10.1016/j.ijbiomac.2024.138760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Lipid peroxidation presents the oxidative degradation of polyunsaturated fatty acids lincited by reactive species. Excessive accumulation of lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA), causes protein dysfunction and various illnesses. Aldehyde dehydrogenases (ALDHs) catalyze the metabolism of both endogenous and exogenous aldehydes. These enzymes participate in detoxification and intermediary metabolism. Contemporary research has affirmed the involvement of both enzymatic and non-enzymatic pathways of ALDHs in modulating the evolution of diseases associated with lipid peroxidation. This review provides an overview of the biological functions and clinical implications concerning the enzymatic and non-enzymatic pathways of ALDHs in diseases related to lipid peroxidation, such as, non-alcoholic fatty liver disease (NAFLD), atherosclerosis, and type 2 diabetes (T2DM). Furthermore, the activators or inhibitors of ALDHs represent a promising therapeutic strategy for lipid peroxidation-related diseases.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Shiyue Liu
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Shen Y, Hong Y, Huang X, Chen J, Li Z, Qiu J, Liang X, Mai C, Li W, Li X, Zhang Y. ALDH2 regulates mesenchymal stem cell senescence via modulation of mitochondrial homeostasis. Free Radic Biol Med 2024; 223:172-183. [PMID: 39097205 DOI: 10.1016/j.freeradbiomed.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Although mitochondrial aldehyde dehydrogenase 2 (ALDH2) is involved in aging and aging-related diseases, its role in the regulation of human mesenchymal stem cell (MSC) senescence has not been investigated. This study aimed to determine the role of ALDH2 in regulating MSC senescence and illustrate the potential mechanisms. MSCs were isolated from young (YMSCs) and aged donors (AMSCs). Senescence-associated β-galactosidase (SA-β-gal) staining and Western blotting were used to assess MSC senescence. Reactive oxygen species (ROS) generation and mitochondrial membrane potential were determined to evaluate mitochondrial function. We showed that the expression of ALDH2 increased alongside cellular senescence of MSCs. Overexpression of ALDH2 accelerated YMSC senescence whereas down-regulation alleviated premature senescent phenotypes of AMSCs. Transcriptome and biochemical analyses revealed that an elevated ROS level and mitochondrial dysfunction contributed to ALDH2 function in MSC senescence. Using molecular docking, we identified interferon regulatory factor 7 (IRF7) as the potential target of ALDH2. Mechanistically, ectopic expression of ALDH2 led to mitochondrial dysfunction and accelerated senescence of MSCs by increasing the stability of IRF7 through a direct physical interaction. These effects were partially reversed by knockdown of IRF7. These findings highlight a crucial role of ALDH2 in driving MSC senescence by regulating mitochondrial homeostasis, providing a novel potential strategy against human aging-related diseases.
Collapse
Affiliation(s)
- Ying Shen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ziqi Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Qiu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoting Liang
- Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cong Mai
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Sun Y, Jin L, Qin Y, Ouyang Z, Zhong J, Zeng Y. Harnessing Mitochondrial Stress for Health and Disease: Opportunities and Challenges. BIOLOGY 2024; 13:394. [PMID: 38927274 PMCID: PMC11200414 DOI: 10.3390/biology13060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Mitochondria, essential organelles orchestrating cellular metabolism, have emerged as central players in various disease pathologies. Recent research has shed light on mitohormesis, a concept proposing an adaptive response of mitochondria to minor disturbances in homeostasis, offering novel therapeutic avenues for mitochondria-related diseases. This comprehensive review explores the concept of mitohormesis, elucidating its induction mechanisms and occurrence. Intracellular molecules like reactive oxygen species (ROS), calcium, mitochondrial unfolded proteins (UPRmt), and integrated stress response (ISR), along with external factors such as hydrogen sulfide (H2S), physical stimuli, and exercise, play pivotal roles in regulating mitohormesis. Based on the available evidence, we elucidate how mitohormesis maintains mitochondrial homeostasis through mechanisms like mitochondrial quality control and mitophagy. Furthermore, the regulatory role of mitohormesis in mitochondria-related diseases is discussed. By envisioning future applications, this review underscores the significance of mitohormesis as a potential therapeutic target, paving the way for innovative interventions in disease management.
Collapse
Affiliation(s)
| | | | | | | | | | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.S.); (L.J.); (Y.Q.); (Z.O.); (J.Z.)
| |
Collapse
|
7
|
Ali I, Zhang H, Zaidi SAA, Zhou G. Understanding the intricacies of cellular senescence in atherosclerosis: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 96:102273. [PMID: 38492810 DOI: 10.1016/j.arr.2024.102273] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Cardiovascular disease is currently the largest cause of mortality and disability globally, surpassing communicable diseases, and atherosclerosis is the main contributor to this epidemic. Aging is intimately linked to atherosclerosis development and progression, however, the mechanism of aging in atherosclerosis is not well known. To emphasize the significant research on the involvement of senescent cells in atherosclerosis, we begin by outlining compelling evidence that indicates various types of senescent cells and SASP factors linked to atherosclerotic phenotypes. We subsequently provide a comprehensive summary of the existing knowledge, shedding light on the intricate mechanisms through which cellular senescence contributes to the pathogenesis of atherosclerosis. Further, we cover that senescence can be identified by both structural changes and several senescence-associated biomarkers. Finally, we discuss that preventing accelerated cellular senescence represents an important therapeutic potential, as permanent changes may occur in advanced atherosclerosis. Together, the review summarizes the relationship between cellular senescence and atherosclerosis, and inspects the molecular knowledge, and potential clinical significance of senescent cells in developing senescent-based therapy, thus providing crucial insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Ilyas Ali
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Hongliang Zhang
- Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, PR China
| | - Syed Aqib Ali Zaidi
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China.
| |
Collapse
|
8
|
Lin MJ, Hu SL, Tian Y, Zhang J, Liang N, Sun R, Gong SX, Wang AP. Targeting Vascular Smooth Muscle Cell Senescence: A Novel Strategy for Vascular Diseases. J Cardiovasc Transl Res 2023; 16:1010-1020. [PMID: 36973566 DOI: 10.1007/s12265-023-10377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Vascular diseases are a major threat to human health, characterized by high rates of morbidity, mortality, and disability. VSMC senescence contributes to dramatic changes in vascular morphology, structure, and function. A growing number of studies suggest that VSMC senescence is an important pathophysiological mechanism for the development of vascular diseases, including pulmonary hypertension, atherosclerosis, aneurysm, and hypertension. This review summarizes the important role of VSMC senescence and senescence-associated secretory phenotype (SASP) secreted by senescent VSMCs in the pathophysiological process of vascular diseases. Meanwhile, it concludes the progress of antisenescence therapy targeting VSMC senescence or SASP, which provides new strategies for the prevention and treatment of vascular diseases.
Collapse
Affiliation(s)
- Meng-Juan Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shi-Liang Hu
- Department of Rheumatology, Shaoyang Central Hospital, Shaoyang, 422000, China
| | - Ying Tian
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Jing Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Na Liang
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Rong Sun
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Ai-Ping Wang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
| |
Collapse
|
9
|
Besin V, Yulianti T, Notopuro PB, Humardani FM. Genetic Polymorphisms of Ischemic Stroke in Asians. Clin Chim Acta 2023; 549:117527. [PMID: 37666385 DOI: 10.1016/j.cca.2023.117527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The increasing incidence of ischemic stroke emphasizes the necessity for early detection and preventive strategies. Diagnostic biomarkers currently available for ischemic stroke only become detectable shortly before the manifestation of stroke symptoms. Genetic variants associated with ischemic stroke offer a potential solution to address this diagnostic limitation. However, it is crucial to acknowledge that genetic variants cannot be modified in the same way as epigenetic changes. Nevertheless, individuals carrying risk or protective variants can modify their lifestyle to potentially influence the associated epigenetic factors. This study aims to summarize specific variants relevant to Asian populations that may aid in the early detection of ischemic stroke and explore their impact on the disease's pathophysiology. These variants give us important information about the genes that play a role in ischemic stroke by affecting things like atherosclerosis pathway, blood coagulation pathway, homocysteine metabolism, transporter function, transcription, and the activity of neurons regulation. It is important to recognize the variations in genetic variants among different ethnicities and avoid generalizing the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Valentinus Besin
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia
| | - Trilis Yulianti
- Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Paulus Budiono Notopuro
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Farizky Martriano Humardani
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia; Magister in Biomedical Science Program, Faculty of Medicine Universitas Brawijaya, Malang 65112, Indonesia.
| |
Collapse
|
10
|
Zhang Y, Weng J, Huan L, Sheng S, Xu F. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol 2023; 14:1165507. [PMID: 37261351 PMCID: PMC10228545 DOI: 10.3389/fimmu.2023.1165507] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Mitophagy is a type of autophagy that can selectively eliminate damaged and depolarized mitochondria to maintain mitochondrial activity and cellular homeostasis. Several pathways have been found to participate in different steps of mitophagy. Mitophagy plays a significant role in the homeostasis and physiological function of vascular endothelial cells, vascular smooth muscle cells, and macrophages, and is involved in the development of atherosclerosis (AS). At present, many medications and natural chemicals have been shown to alter mitophagy and slow the progression of AS. This review serves as an introduction to the field of mitophagy for researchers interested in targeting this pathway as part of a potential AS management strategy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiajun Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Luyao Huan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
11
|
Meng J, Geng Q, Jin S, Teng X, Xiao L, Wu Y, Tian D. Exercise protects vascular function by countering senescent cells in older adults. Front Physiol 2023; 14:1138162. [PMID: 37089434 PMCID: PMC10118010 DOI: 10.3389/fphys.2023.1138162] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Blood vessels are key conduits for the transport of blood and circulating factors. Abnormalities in blood vessels promote cardiovascular disease (CVD), which has become the most common disease as human lifespans extend. Aging itself is not pathogenic; however, the decline of physiological and biological function owing to aging has been linked to CVD. Although aging is a complex phenomenon that has not been comprehensively investigated, there is accumulating evidence that cellular senescence aggravates various pathological changes associated with aging. Emerging evidence shows that approaches that suppress or eliminate cellular senescence preserve vascular function in aging-related CVD. However, most pharmacological therapies for treating age-related CVD are inefficient. Therefore, effective approaches to treat CVD are urgently required. The benefits of exercise for the cardiovascular system have been well documented in basic research and clinical studies; however, the mechanisms and optimal frequency of exercise for promoting cardiovascular health remain unknown. Accordingly, in this review, we have discussed the changes in senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) that occur in the progress of CVD and the roles of physical activity in CVD prevention and treatment.
Collapse
Affiliation(s)
- Jinqi Meng
- Department of Sports, Hebei Medical University, Shijiazhuang, China
| | - Qi Geng
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Zhang H, Xia N, Tang T, Nie S, Zha L, Zhang M, Lv B, Lu Y, Jiao J, Li J, Cheng X. Cholesterol suppresses human iTreg differentiation and nTreg function through mitochondria-related mechanisms. J Transl Med 2023; 21:224. [PMID: 36973679 PMCID: PMC10045251 DOI: 10.1186/s12967-023-03896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/16/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Both the crystalline and soluble forms of cholesterol increase macrophage secretion of interleukin 1β (IL-1β), aggravating the inflammatory response in atherosclerosis (AS). However, the link between cholesterol and regulatory T cells (Tregs) remains unclear. This study aimed to investigate the effect of cholesterol treatment on Tregs. METHODS Differentiation of induced Tregs (iTregs) was analyzed using flow cytometry. The expression of hypoxia-inducible factor-1a (HIF-1a) and its target genes was measured by western blotting and/or RT-qPCR. Two reporter jurkat cell lines were constructed by lentiviral transfection. Mitochondrial function and the structure of natural Tregs (nTregs) were determined by tetramethylrhodamine (TMRM) and mitoSOX staining, Seahorse assay, and electron microscopy. The immunoregulatory function of nTregs was determined by nTreg-macrophage co-culture assay and ELISA. RESULTS Cholesterol treatment suppressed iTreg differentiation and impaired nTreg function. Mechanistically, cholesterol induced the production of mitochondrial reactive oxygen species (mtROS) in naïve T cells, inhibiting the degradation of HIF-1α and unleashing its inhibitory effects on iTreg differentiation. Furthermore, cholesterol-induced mitochondrial oxidative damage impaired the immunosuppressive function of nTregs. Mixed lymphocyte reaction and nTreg-macrophage co-culture assays revealed that cholesterol treatment compromised the ability of nTregs to inhibit pro-inflammatory conventional T cell proliferation and promote the anti-inflammatory functions of macrophages. Finally, mitoTEMPO (MT), a specific mtROS scavenger, restored iTreg differentiation and protected nTreg from further deterioration. CONCLUSION Our findings suggest that cholesterol may aggravate inflammation within AS plaques by acting on both iTregs and nTregs, and that MT may be a promising anti-atherogenic drug.
Collapse
Affiliation(s)
- Huanzhi Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shaofang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yuzhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
13
|
Shi XY, Yue XL, Xu YS, Jiang M, Li RJ. Aldehyde dehydrogenase 2 and NOD-like receptor thermal protein domain associated protein 3 inflammasome in atherosclerotic cardiovascular diseases: A systematic review of the current evidence. Front Cardiovasc Med 2023; 10:1062502. [PMID: 36910525 PMCID: PMC9996072 DOI: 10.3389/fcvm.2023.1062502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammation and dyslipidemia underlie the pathological basis of atherosclerosis (AS). Clinical studies have confirmed that there is still residual risk of atherosclerotic cardiovascular diseases (ASCVD) even after intense reduction of LDL. Some of this residual risk can be explained by inflammation as anti-inflammatory therapy is effective in improving outcomes in subjects treated with LDL-lowering agents. NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation is closely related to early-stage inflammation in AS. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme of toxic aldehyde metabolism located in mitochondria and works in the metabolism of toxic aldehydes such as 4-HNE and MDA. Despite studies confirming that ALDH2 can negatively regulate NLRP3 inflammasome and delay the development of atherosclerosis, the mechanisms involved are still poorly understood. Reactive Oxygen Species (ROS) is a common downstream pathway activated for NLRP3 inflammasome. ALDH2 can reduce the multiple sources of ROS, such as oxidative stress, inflammation, and mitochondrial damage, thereby reducing the activation of NLRP3 inflammasome. Further, according to the downstream of ALDH2 and the upstream of NLRP3, the molecules and related mechanisms of ALDH2 on NLRP3 inflammasome are comprehensively expounded as possible. The potential mechanism may provide potential inroads for treating ASCVD.
Collapse
Affiliation(s)
- Xue-Yun Shi
- Qilu Medical College, Shandong University, Jinan, China
| | - Xiao-Lin Yue
- Qilu Medical College, Shandong University, Jinan, China
| | - You-Shun Xu
- Qilu Medical College, Shandong University, Jinan, China
| | - Mei Jiang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China
| | - Rui-Jian Li
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
14
|
Luo Z, Cheng J, Wang Y. Effects of the genetic variants of alcohol-metabolizing enzymes on lipid levels in Asian populations: a systematic review and meta-analysis. Nutr Rev 2022:6960646. [PMID: 36565468 DOI: 10.1093/nutrit/nuac100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CONTEXT Emerging evidence indicates that variants of alcohol-metabolizing enzymes may influence lipid metabolism. OBJECTIVE This study aimed to investigate whether the rs671 and rs1229984 variants affect lipid levels in East Asian individuals. DATA SOURCES PubMed, Foreign Medical Journal Service, Embase, Cochrane Library, Scopus, MEDLINE, Web of Science, Web of Knowledge, Wanfang, and Chinese Biomedical Literature databases were searched until December 31, 2021. DATA EXTRACTION Meta-analyses of studies that examined the effects of alcohol-metabolizing enzyme variants on lipid levels, as well as the interaction with alcohol intake, were selected. Data extraction was conducted independently by two investigators and confirmed by the third. DATA ANALYSIS In total, 86 studies (179 640 individuals) were analyzed. The A allele of rs671 (a functional variant in the ALDH2 gene) was linked to higher levels of low-density lipoprotein cholesterol (LDL-C) and lower levels of triglycerides and high-density lipoprotein cholesterol. In contrast, the A allele of the rs1229984 (a functional variant in the ADH2 gene) was associated only with lower levels of LDL-C. The effects of rs671 and rs1229984 on lipid levels were much stronger in Japanese than in Chinese individuals and in males than in females. Regression analysis indicated that the effects of rs671 on lipid levels were independent of alcohol intake in an integrated East Asian population (ie, Japanese, Chinese, and Korean individuals). Intriguingly, alcohol intake had a statistical influence on lipid levels when the sample analyzed was restricted to Japanese individuals or to males. CONCLUSIONS The rs671 and rs1229984 variants of alcohol-metabolizing enzymes have significant effects on lipid levels and may serve as genetic markers for lipid dyslipidemia in East Asian populations. Circulating lipid levels in Japanese individuals and in males were modulated by the interaction between rs671 and alcohol intake.
Collapse
Affiliation(s)
- Zhi Luo
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jun Cheng
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Huang X, Zeng Z, Li S, Xie Y, Tong X. The Therapeutic Strategies Targeting Mitochondrial Metabolism in Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14122760. [PMID: 36559254 PMCID: PMC9788260 DOI: 10.3390/pharmaceutics14122760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of systemic disorders threatening human health with complex pathogenesis, among which mitochondrial energy metabolism reprogramming has a critical role. Mitochondria are cell organelles that fuel the energy essential for biochemical reactions and maintain normal physiological functions of the body. Mitochondrial metabolic disorders are extensively involved in the progression of CVD, especially for energy-demanding organs such as the heart. Therefore, elucidating the role of mitochondrial metabolism in the progression of CVD is of great significance to further understand the pathogenesis of CVD and explore preventive and therapeutic methods. In this review, we discuss the major factors of mitochondrial metabolism and their potential roles in the prevention and treatment of CVD. The current application of mitochondria-targeted therapeutic agents in the treatment of CVD and advances in mitochondria-targeted gene therapy technologies are also overviewed.
Collapse
Affiliation(s)
- Xiaoyang Huang
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhenhua Zeng
- Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, China
| | - Siqi Li
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Yufei Xie
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyong Tong
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
16
|
Miao G, Zhao X, Chan SL, Zhang L, Li Y, Zhang Y, Zhang L, Wang B. Vascular smooth muscle cell c-Fos is critical for foam cell formation and atherosclerosis. Metabolism 2022; 132:155213. [PMID: 35513168 DOI: 10.1016/j.metabol.2022.155213] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hyperlipidemia-induced vascular smooth muscle cell (VSMC)-derived foam cell formation is considered a crucial event in the development of atherosclerosis. Since c-Fos emerges as a key modulator of lipid metabolism, we investigated whether c-Fos plays a role in hyperlipidemia-induced VSMC-derived foam cell formation and atherosclerosis. APPROACH AND RESULTS c-Fos expression was observed in VSMCs in atherosclerotic plaques from patients and western diet-fed atherosclerosis-prone LDLR-/- and ApoE-/- mice by immunofluorescence staining. To ascertain c-Fos's function in atherosclerosis development, VSMC-specific c-Fos deficient mice in ApoE-/- background were established. Western diet-fed c-FosVSMCKOApoE-/- mice exhibited a significant reduction of atherosclerotic lesion formation as measured by hematoxylin and eosin staining, accompanied by decreased lipid deposition within aortic roots as determined by Oil red O staining. Primary rat VSMCs were isolated to examine the role of c-Fos in lipid uptake and foam cell formation. oxLDL stimulation resulted in VSMC-derived foam cell formation and elevated intracellular mitochondrial reactive oxygen species (mtROS), c-Fos and LOX-1 levels, whereas specific inhibition of mtROS, c-Fos or LOX-1 lessened lipid accumulation in oxLDL-stimulated VSMCs. Mechanistically, oxLDL acts through mtROS to enhance transcription activity of c-Fos to facilitate the expression of LOX-1, exerting a feedforward mechanism with oxLDL to increase lipid uptake and propel VSMC-derived foam cell formation and atherogenesis. CONCLUSION Our study demonstrates a fundamental role of mtROS/c-Fos/LOX-1 signaling pathway in promoting oxLDL uptake and VSMC-derived foam cell formation during atherosclerosis. c-Fos may represent a promising therapeutic target amenable to clinical translation in the future.
Collapse
Affiliation(s)
- Guolin Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China
| | - Xi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Siu-Lung Chan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yaohua Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuke Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Beibei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
17
|
Zha Y, Zhuang W, Yang Y, Zhou Y, Li H, Liang J. Senescence in Vascular Smooth Muscle Cells and Atherosclerosis. Front Cardiovasc Med 2022; 9:910580. [PMID: 35722104 PMCID: PMC9198250 DOI: 10.3389/fcvm.2022.910580] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the primary cell type involved in the atherosclerosis process; senescent VSMCs are observed in both aged vessels and atherosclerotic plaques. Factors associated with the atherosclerotic process, including oxidative stress, inflammation, and calcium-regulating factors, are closely linked to senescence in VSMCs. A number of experimental studies using traditional cellular aging markers have suggested that anti-aging biochemical agents could be used to treat atherosclerosis. However, doubt has recently been cast on such potential due to the increasingly apparent complexity of VSMCs status and an incomplete understanding of the role that these cells play in the atherosclerosis process, as well as a lack of specific or spectrum-limited cellular aging markers. The utility of anti-aging drugs in atherosclerosis treatment should be reevaluated. Promotion of a healthy lifestyle, exploring in depth the characteristics of each cell type associated with atherosclerosis, including VSMCs, and development of targeted drug delivery systems will ensure efficacy whilst evaluation of the safety and tolerability of drug use should be key aims of future anti-atherosclerosis research. This review summarizes the characteristics of VSMC senescence during the atherosclerosis process, the factors regulating this process, as well as an overview of progress toward the development and application of anti-aging drugs.
Collapse
Affiliation(s)
- Yiwen Zha
- Medical College, Yangzhou University, Yangzhou, China
| | - Wenwen Zhuang
- Medical College, Yangzhou University, Yangzhou, China
| | - Yongqi Yang
- Medical College, Yangzhou University, Yangzhou, China
| | - Yue Zhou
- Medical College, Yangzhou University, Yangzhou, China
| | - Hongliang Li
- Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- *Correspondence: Hongliang Li,
| | - Jingyan Liang
- Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
- Jingyan Liang,
| |
Collapse
|
18
|
Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New insight into dyslipidemia‐induced cellular senescence in atherosclerosis. Biol Rev Camb Philos Soc 2022; 97:1844-1867. [PMID: 35569818 PMCID: PMC9541442 DOI: 10.1111/brv.12866] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
Atherosclerosis, characterized by lipid‐rich plaques in the arterial wall, is an age‐related disorder and a leading cause of mortality worldwide. However, the specific mechanisms remain complex. Recently, emerging evidence has demonstrated that senescence of various types of cells, such as endothelial cells (ECs), vascular smooth muscle cells (VSMCs), macrophages, endothelial progenitor cells (EPCs), and adipose‐derived mesenchymal stem cells (AMSCs) contributes to atherosclerosis. Cellular senescence and atherosclerosis share various causative stimuli, in which dyslipidemia has attracted much attention. Dyslipidemia, mainly referred to elevated plasma levels of atherogenic lipids or lipoproteins, or functional impairment of anti‐atherogenic lipids or lipoproteins, plays a pivotal role both in cellular senescence and atherosclerosis. In this review, we summarize the current evidence for dyslipidemia‐induced cellular senescence during atherosclerosis, with a focus on low‐density lipoprotein (LDL) and its modifications, hydrolysate of triglyceride‐rich lipoproteins (TRLs), and high‐density lipoprotein (HDL), respectively. Furthermore, we describe the underlying mechanisms linking dyslipidemia‐induced cellular senescence and atherosclerosis. Finally, we discuss the senescence‐related therapeutic strategies for atherosclerosis, with special attention given to the anti‐atherosclerotic effects of promising geroprotectors as well as anti‐senescence effects of current lipid‐lowering drugs.
Collapse
Affiliation(s)
- Qunyan Xiang
- Department of Geriatrics, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Institute of Aging and Age‐related Disease Research Central South University Changsha Hunan 410011 PR China
| | - Feng Tian
- Department of Geriatric Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Xiao Du
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Shilan Zhang
- Department of Gastroenterology, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| |
Collapse
|
19
|
Gao J, Hao Y, Piao X, Gu X. Aldehyde Dehydrogenase 2 as a Therapeutic Target in Oxidative Stress-Related Diseases: Post-Translational Modifications Deserve More Attention. Int J Mol Sci 2022; 23:ijms23052682. [PMID: 35269824 PMCID: PMC8910853 DOI: 10.3390/ijms23052682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) has both dehydrogenase and esterase activity; its dehydrogenase activity is closely related to the metabolism of aldehydes produced under oxidative stress (OS). In this review, we recapitulate the enzyme activity of ALDH2 in combination with its protein structure, summarize and show the main mechanisms of ALDH2 participating in metabolism of aldehydes in vivo as comprehensively as possible; we also integrate the key regulatory mechanisms of ALDH2 participating in a variety of physiological and pathological processes related to OS, including tissue and organ fibrosis, apoptosis, aging, and nerve injury-related diseases. On this basis, the regulatory effects and application prospects of activators, inhibitors, and protein post-translational modifications (PTMs, such as phosphorylation, acetylation, S-nitrosylation, nitration, ubiquitination, and glycosylation) on ALDH2 are discussed and prospected. Herein, we aimed to lay a foundation for further research into the mechanism of ALDH2 in oxidative stress-related disease and provide a basis for better use of the ALDH2 function in research and the clinic.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
- Correspondence:
| |
Collapse
|
20
|
Ajoolabady A, Bi Y, McClements DJ, Lip GYH, Richardson DR, Reiter RJ, Klionsky DJ, Ren J. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacol Res 2022; 176:106072. [PMID: 35007709 DOI: 10.1016/j.phrs.2022.106072] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Atherosclerosis refers to a unique form of chronic proinflammatory anomaly of the vasculature, presented as rupture-prone or occlusive lesions in arteries. In advanced stages, atherosclerosis leads to the onset and development of multiple cardiovascular diseases with lethal consequences. Inflammatory cytokines in atherosclerotic lesions contribute to the exacerbation of atherosclerosis. Pharmacotherapies targeting dyslipidemia, hypercholesterolemia, and neutralizing inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, and IL-12/23) have displayed proven promises although contradictory results. Moreover, adjuvants such as melatonin, a pluripotent agent with proven anti-inflammatory, anti-oxidative and neuroprotective properties, also display potentials in alleviating cytokine secretion in macrophages through mitophagy activation. Here, we share our perspectives on this concept and present melatonin-based therapeutics as a means to modulate mitophagy in macrophages and, thereby, ameliorate atherosclerosis.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - David J McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory Y H Lip
- University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA.
| |
Collapse
|
21
|
|
22
|
Xu J, Kitada M, Ogura Y, Koya D. Relationship Between Autophagy and Metabolic Syndrome Characteristics in the Pathogenesis of Atherosclerosis. Front Cell Dev Biol 2021; 9:641852. [PMID: 33937238 PMCID: PMC8083902 DOI: 10.3389/fcell.2021.641852] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is the main cause of mortality in metabolic-related diseases, including cardiovascular disease and type 2 diabetes (T2DM). Atherosclerosis is characterized by lipid accumulation and increased inflammatory cytokines in the vascular wall, endothelial cell and vascular smooth muscle cell dysfunction and foam cell formation initiated by monocytes/macrophages. The characteristics of metabolic syndrome (MetS), including obesity, glucose intolerance, dyslipidemia and hypertension, may activate multiple mechanisms, such as insulin resistance, oxidative stress and inflammatory pathways, thereby contributing to increased risks of developing atherosclerosis and T2DM. Autophagy is a lysosomal degradation process that plays an important role in maintaining cellular metabolic homeostasis. Increasing evidence indicates that impaired autophagy induced by MetS is related to oxidative stress, inflammation, and foam cell formation, further promoting atherosclerosis. Basal and mild adaptive autophagy protect against the progression of atherosclerotic plaques, while excessive autophagy activation leads to cell death, plaque instability or even plaque rupture. Therefore, autophagic homeostasis is essential for the development and outcome of atherosclerosis. Here, we discuss the potential role of autophagy and metabolic syndrome in the pathophysiologic mechanisms of atherosclerosis and potential therapeutic drugs that target these molecular mechanisms.
Collapse
Affiliation(s)
- Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
23
|
Fledderus J, Vanchin B, Rots MG, Krenning G. The Endothelium as a Target for Anti-Atherogenic Therapy: A Focus on the Epigenetic Enzymes EZH2 and SIRT1. J Pers Med 2021; 11:jpm11020103. [PMID: 33562658 PMCID: PMC7915331 DOI: 10.3390/jpm11020103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Endothelial cell inflammatory activation and dysfunction are key events in the pathophysiology of atherosclerosis, and are associated with an elevated risk of cardiovascular events. Yet, therapies specifically targeting the endothelium and atherosclerosis are lacking. Here, we review how endothelial behaviour affects atherogenesis and pose that the endothelium may be an efficacious cellular target for antiatherogenic therapies. We discuss the contribution of endothelial inflammatory activation and dysfunction to atherogenesis and postulate that the dysregulation of specific epigenetic enzymes, EZH2 and SIRT1, aggravate endothelial dysfunction in a pleiotropic fashion. Moreover, we propose that commercially available drugs are available to clinically explore this postulation.
Collapse
Affiliation(s)
- Jolien Fledderus
- Medical Biology Section, Laboratory for Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (J.F.); (B.V.)
| | - Byambasuren Vanchin
- Medical Biology Section, Laboratory for Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (J.F.); (B.V.)
- Department Cardiology, School of Medicine, Mongolian National University of Medical Sciences, Jamyan St 3, Ulaanbaatar 14210, Mongolia
| | - Marianne G. Rots
- Epigenetic Editing, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands;
| | - Guido Krenning
- Medical Biology Section, Laboratory for Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (J.F.); (B.V.)
- Correspondence: ; Tel.: +31-50-361-8043; Fax: +31-50-361-9911
| |
Collapse
|
24
|
Ugusman A, Mohamed IN, Mohamed Pakri Mohamed R, Kumar J. Effects of moderate alcohol consumption on subclinical femoral atherosclerosis in smokers and non-smokers. Addiction 2021; 116:428-429. [PMID: 32945557 DOI: 10.1111/add.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Azizah Ugusman
- Department of Physiology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | | | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
25
|
Ou LC, Zhong S, Ou JS, Tian JW. Application of targeted therapy strategies with nanomedicine delivery for atherosclerosis. Acta Pharmacol Sin 2021; 42:10-17. [PMID: 32457416 DOI: 10.1038/s41401-020-0436-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022]
Abstract
Atherosclerosis (AS) is the main pathological cause of coronary heart disease (CHD). Current clinical interventions including statin drugs can effectively reduce acute myocardial infarction and stroke to some extent, but residual risk remains high. The current clinical treatment regimens are relatively effective for early atherosclerotic plaques and can even reverse their progression. However, the effectiveness of these treatments for advanced AS is not ideal, and advanced atherosclerotic plaques-the pathological basis of residual risk-can still cause a recurrence of acute cardiovascular and cerebrovascular events. Recently, nanomedicine-based treatment strategies have been extensively used in antitumor therapy, and also shown great potential in anti-AS therapy. There are many microstructures in late-stage atherosclerotic plaques, such as neovascularization, micro-calcification, and cholesterol crystals, and these have become important foci for targeted nanomedicine delivery. The use of targeted nanoparticles has become an important strategy for the treatment of advanced AS to further reduce the residual risk of cardiovascular events. Furthermore, the feasibility and safety of nanotechnology in clinical treatment have been preliminarily confirmed. In this review, we summarize the application of nanomedicine delivery in the treatment of advanced AS and the clinical value of several promising nanodrugs.
Collapse
|
26
|
Regnault V, Challande P, Pinet F, Li Z, Lacolley P. Cell senescence: basic mechanisms and the need for computational networks in vascular ageing. Cardiovasc Res 2020; 117:1841-1858. [PMID: 33206947 DOI: 10.1093/cvr/cvaa318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/26/2020] [Accepted: 10/28/2020] [Indexed: 01/10/2023] Open
Abstract
This review seeks to provide an update of the mechanisms of vascular cell senescence, from newly identified molecules to arterial ageing phenotypes, and finally to present a computational approach to connect these selected proteins in biological networks. We will discuss current key signalling and gene expression pathways by which these focus proteins and networks drive normal and accelerated vascular ageing. We also review the possibility that senolytic drugs, designed to restore normal cell differentiation and function, could effectively treat multiple age-related vascular diseases. Finally, we discuss how cell senescence is both a cause and a consequence of vascular ageing because of the possible feedback controls between identified networks.
Collapse
Affiliation(s)
- Véronique Regnault
- Université de Lorraine, INSERM, DCAC, 9 avenue de la forêt de Haye, CS 50184, 54000 Nancy, France
| | - Pascal Challande
- Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, 4 place Jussieu, 75005 Paris, France
| | - Florence Pinet
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Zhenlin Li
- Sorbonne Université, CNRS, INSERM, IBPS, Biological Adaptation and Aging, Paris, France
| | - Patrick Lacolley
- Université de Lorraine, INSERM, DCAC, 9 avenue de la forêt de Haye, CS 50184, 54000 Nancy, France
| |
Collapse
|
27
|
Wang S, Wang L, Qin X, Turdi S, Sun D, Culver B, Reiter RJ, Wang X, Zhou H, Ren J. ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy. Signal Transduct Target Ther 2020; 5:119. [PMID: 32703954 PMCID: PMC7378833 DOI: 10.1038/s41392-020-0171-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
Ample clinical evidence suggests a high incidence of cardiovascular events in Alzheimer's disease (AD), although neither precise etiology nor effective treatment is available. This study was designed to evaluate cardiac function in AD patients and APP/PS1 mutant mice, along with circulating levels of melatonin, mitochondrial aldehyde dehydrogenase (ALDH2) and autophagy. AD patients and APP/PS1 mice displayed cognitive and myocardial deficits, low levels of circulating melatonin, ALDH2 activity, and autophagy, ultrastructural, geometric (cardiac atrophy and interstitial fibrosis) and functional (reduced fractional shortening and cardiomyocyte contraction) anomalies, mitochondrial injury, cytosolic mtDNA buildup, apoptosis, and suppressed autophagy and mitophagy. APP/PS1 mutation downregulated cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) levels and TBK1 phosphorylation, while promoting Aβ accumulation. Treatment with melatonin overtly ameliorated unfavorable APP/PS1-induced changes in cardiac geometry and function, apoptosis, mitochondrial integrity, cytosolic mtDNA accumulation (using both immunocytochemistry and qPCR), mitophagy, and cGAS-STING-TBK1 signaling, although these benefits were absent in APP/PS1/ALDH2-/- mice. In vitro evidence indicated that melatonin attenuated APP/PS1-induced suppression of mitophagy and cardiomyocyte function, and the effect was negated by the nonselective melatonin receptor blocker luzindole, inhibitors or RNA interference of cGAS, STING, TBK1, and autophagy. Our data collectively established a correlation among cardiac dysfunction, low levels of melatonin, ALDH2 activity, and autophagy in AD patients, with compelling support in APP/PS1 mice, in which melatonin rescued myopathic changes by promoting cGAS-STING-TBK1 signaling and mitophagy via an ALDH2-dependent mechanism.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xing Qin
- Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi'an, 710032, China
| | - Subat Turdi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi'an, 710032, China
| | - Bruce Culver
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China.
| | - Hao Zhou
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
28
|
You W, Hong Y, He H, Huang X, Tao W, Liang X, Zhang Y, Li X. TGF-β mediates aortic smooth muscle cell senescence in Marfan syndrome. Aging (Albany NY) 2020; 11:3574-3584. [PMID: 31147528 PMCID: PMC6594817 DOI: 10.18632/aging.101998] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022]
Abstract
Formation of aortic aneurysms as a consequence of augmented transforming growth factor β (TGF-β) signaling and vascular smooth muscle cell (VSMC) dysfunction is a potentially lethal complication of Marfan syndrome (MFS). Here, we examined VSMC senescence in patients with MFS and explored the potential mechanisms that link VSMC senescence and TGF-β. Tissue was harvested from the ascending aorta of control donors and MFS patients, and VSMCs were isolated. Senescence-associated β-galactosidase (SA-β-gal) activity and expression of senescence-related proteins (p53, p21) were significantly higher in aneurysmal tissue from MFS patients than in healthy aortic tissue from control donors. Compared to control-VSMCs, MFS-VSMCs were larger with higher levels of both SA-β-gal activity and mitochondrial reactive oxygen species (ROS). In addition, TGF-β1 levels were much higher in MFS- than control-VSMCs. TGF-β1 induced VSMC senescence through excessive ROS generation. This effect was suppressed by Mito-tempo, a mitochondria-targeted antioxidant, or SC-514, a NF-κB inhibitor. This suggests TGF-β1 induces VSMC senescence through ROS-mediated activation of NF-κB signaling. It thus appears that a TGF-β1/ROS/NF-κB axis may mediate VSMC senescence and aneurysm formation in MFS patients. This finding could serve as the basis for a novel strategy for treating aortic aneurysm in MFS.
Collapse
Affiliation(s)
- Wei You
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Haiwei He
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xiaoran Huang
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Wuyuan Tao
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xiaoting Liang
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xin Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
29
|
LncRNA ANRIL acts as a modular scaffold of WDR5 and HDAC3 complexes and promotes alteration of the vascular smooth muscle cell phenotype. Cell Death Dis 2020; 11:435. [PMID: 32513988 PMCID: PMC7280314 DOI: 10.1038/s41419-020-2645-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022]
Abstract
Many studies have shown that long-noncoding RNA (lncRNA) is associated with cardiovascular disease, but its molecular mechanism is still unclear. In this study, we explored the role of lncRNA ANRIL in ox-LDL-induced phenotypic transition of human aortic smooth muscle cells (HASMC). The results of quantitative fluorescence PCR showed that the expression of ANRIL in patients with coronary atherosclerotic heart disease (CAD) was significantly higher than that in normal subjects. RNA-FISH detection showed that the ANRIL expression increased in HASMC treated by ox-LDL. Ox-LDL could upregulate the expression of ANRIL and ROS and promote the phenotypic transition of HASMC. After downregulation of ANRIL by siRNA, ROS level decreased and HASMC phenotypic transition alleviated. ANRIL could act as a molecular scaffold to promote the binding of WDR5 and HDAC3 to form WDR5 and HDAC3 complexes, they regulated target genes such as NOX1 expression by histone modification, upregulated ROS level and promote HASMC phenotype transition. Therefore, we found a new epigenetic regulatory mechanism for phenotype transition of VSMC, ANRIL was a treatment target of occlusive vascular diseases.
Collapse
|
30
|
Cong L, Gao Z, Zheng Y, Ye T, Wang Z, Wang P, Li M, Dong B, Yang W, Li Q, Qiao S, Wang C, Shen Y, Li H, Tian W, Yang L. Electrical stimulation inhibits Val-boroPro-induced pyroptosis in THP-1 macrophages via sirtuin3 activation to promote autophagy and inhibit ROS generation. Aging (Albany NY) 2020; 12:6415-6435. [PMID: 32289749 PMCID: PMC7185124 DOI: 10.18632/aging.103038] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022]
Abstract
The incidence of atherosclerosis (AS), a major contributor to cardiovascular disease, is steadily rising along with an increasingly older population worldwide. Pyroptosis, a form of inflammatory programmed cell death, determines the release of pro-inflammatory mediators by endothelial cells, smooth muscle cells, and atheroma-associated macrophages and foam cells, thereby playing a critical role in AS progression. Canonical pyroptosis is mediated by inflammasome formation, activation of caspase-1, and maturation and release of proinflammatory cytokines. Electrical stimulation (ES) is a noninvasive, safe therapy that has been shown to alleviate symptoms in several health conditions. Here, we investigated the anti-inflammatory and anti-pyroptotic effects of ES in human THP-1 macrophages treated with the dipeptidyl peptidase inhibitor Val-boroPro (VbP). We found that ES downregulated NOD-like receptor family protein 3 (NLRP3) inflammasome, ASC, and caspase-1 expression and abrogated the release of Interleukin-1β (IL-1β) and Interleukin-18 (IL-18), indicating effective pyroptosis inhibition. These changes were paralleled by a reduction in reactive oxygen species (ROS) production, reversal of VbP-induced sirtuin3 (Sirt3) downregulation, deacetylation of ATG5, and induction of autophagy. These findings suggest that ES may be a viable strategy to counteract pyroptosis-mediated inflammation in AS by raising Sirt3 to promote autophagy and inhibit ROS generation.
Collapse
Affiliation(s)
- Lin Cong
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Ziyu Gao
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Yinghong Zheng
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Ting Ye
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Zitong Wang
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Pengyu Wang
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Manman Li
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Bowen Dong
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Wei Yang
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Quanfeng Li
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Shupei Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Yijun Shen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Hong Li
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Liming Yang
- Department of Pathophysiology, Basic Medical Science, Harbin Medical University, Harbin 150081, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing 100037, China
| |
Collapse
|