1
|
Yanginlar C, Rother N, Post TGJM, Jacobs M, Jonkman I, Brouns M, Rinzema S, Martens JHA, Vermeulen M, Joosten LAB, Netea MG, Hilbrands LB, Choudhry ZA, van der Vlag J, Duivenvoorden R. Trained innate immunity in response to nuclear antigens in systemic lupus erythematosus. J Autoimmun 2024; 149:103335. [PMID: 39549487 DOI: 10.1016/j.jaut.2024.103335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 10/10/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease directed against nuclear antigens, including those derived from apoptotic microparticles (MPs) and neutrophil extracellular traps (NETs). Here we investigated whether nuclear autoantigens can induce trained immunity in SLE patients. Trained immunity is a de facto innate immune memory elicited by an initial stimulus that induces a more vigorous long-term inflammatory response to subsequent stimuli. Isolated monocytes were stimulated with SLE-typical nuclear antigens, neutrophil extracellular traps (NETs), and apoptotic microparticles (MPs) or plasma from SLE patients. After five days of rest, cells were restimulated with Toll-like receptor (TLR) agonists, and cytokine production was measured using ELISA. Functional, transcriptomic and epigenetic changes in monocytes from SLE patients were evaluated by ex vivo stimulations, flow cytometric analysis, RNA sequencing, and chromatin immunoprecipitation (ChIP) sequencing for histone 3 lysine 4 trimethylation. We found that in vitro, both MPs and NETs, as well as plasma from SLE patients, can induce trained immunity. Furthermore, circulating monocytes from SLE patients produce increased levels of pro-inflammatory cytokines after stimulation with TLR ligands, indicating trained immunity. This is accompanied by deregulation in histone 3 lysine 4 trimethylation and increased expression of metabolism and inflammation-related genes. Our findings demonstrate that trained immunity can develop against nuclear antigens and that trained immunity is involved in the immunological dysregulation in SLE patients.
Collapse
Affiliation(s)
- Cansu Yanginlar
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Tomas G J M Post
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Maaike Jacobs
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Inge Jonkman
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Montsy Brouns
- Department of Internal Medicine, Dr. Horacio Oduber Hospital, Oranjestad, Aruba
| | - Sybren Rinzema
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Zaheeb A Choudhry
- Department of Internal Medicine, Dr. Horacio Oduber Hospital, Oranjestad, Aruba
| | - Johan van der Vlag
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Khunsriraksakul C, Li Q, Markus H, Patrick MT, Sauteraud R, McGuire D, Wang X, Wang C, Wang L, Chen S, Shenoy G, Li B, Zhong X, Olsen NJ, Carrel L, Tsoi LC, Jiang B, Liu DJ. Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus. Nat Commun 2023; 14:668. [PMID: 36750564 PMCID: PMC9905560 DOI: 10.1038/s41467-023-36306-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts from 3 different ancestries and 10 genetically correlated autoimmune diseases, and identify 16 novel loci. We also perform transcriptome-wide association studies, computational drug repurposing analysis, and cell type enrichment analysis. We discover putative drug classes, including a histone deacetylase inhibitor that could be repurposed to treat lupus. We also identify multiple cell types enriched with putative target genes, such as non-classical monocytes and B cells, which may be targeted for future therapeutics. Using this newly assembled result, we further construct polygenic risk score models and demonstrate that integrating polygenic risk score with clinical lab biomarkers improves the diagnostic accuracy of systemic lupus erythematosus using the Vanderbilt BioVU and Michigan Genomics Initiative biobanks.
Collapse
Affiliation(s)
- Chachrit Khunsriraksakul
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Qinmengge Li
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Havell Markus
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Renan Sauteraud
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Daniel McGuire
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Xingyan Wang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Chen Wang
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Lida Wang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Siyuan Chen
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nancy J Olsen
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Laura Carrel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Bibo Jiang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dajiang J Liu
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
3
|
Qi J, Zhou X, Bai Z, Lu Z, Zhu X, Liu J, Wang J, Jin M, Liu C, Li X. FcγRIIIA activation-mediated up-regulation of glycolysis alters MDSCs modulation in CD4 + T cell subsets of Sjögren syndrome. Cell Death Dis 2023; 14:86. [PMID: 36746935 PMCID: PMC9902521 DOI: 10.1038/s41419-023-05631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Our and other researchers' previous studies found that myeloid-derived suppressor cells (MDSCs) were increased, and these MDSCs, supposed to play immunosuppressive roles, showed significant pro-inflammatory effects in Sjögren's syndrome (SS). However, the key factors and potential mechanisms leading MDSCs to be inflammatory remain unclear. In this study, we found that MDSCs from SS patients were positively correlated with the percentages of Th17 cells, disease activity and serum autoantibodies, and showed higher levels of Fc gamma receptor (FcγR) IIIA and glycolysis. Most importantly, SS MDSCs or heat-aggregated IgG (HAIG)-treated MDSCs down-regulated Th1/Th2 ratio and up-regulated Th17/Treg ratio, which could be obviously rescued by IgG monomer or glycolysis inhibitor 2-DG. As well, the levels of FcγRIV and glycolysis in MDSCs and the ratio of Th17/Treg were increased, and the ratio of Th1/Th2 was decreased in SS-like NOD mice. Our study indicated that MDSCs showed pro-inflammatory phenotypes by disturbing CD4+ T-cell balances in SS. The pro-inflammatory effects of MDSCs might be directly linked to the enhanced glycolysis mediated by FcγRIIIA activation.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Xinyang Zhou
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Zhimin Lu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226006, People's Republic of China
| | - Xiaolu Zhu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Jiaqing Liu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Junli Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Chang Liu
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital, Dalian, Liaoning, 116083, People's Republic of China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China.
| |
Collapse
|
4
|
Li X, Fei F, Yao G, Yang X, Geng L, Wang D, Gao Y, Hou Y, Sun L. Notch1 signalling controls the differentiation and function of myeloid-derived suppressor cells in systemic lupus erythematosus. Immunology 2023; 168:170-183. [PMID: 36038992 DOI: 10.1111/imm.13570] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/25/2022] [Indexed: 12/27/2022] Open
Abstract
Emerging studies have reported the expansion of myeloid-derived suppressor cells (MDSCs) in some autoimmune disorders, such as systemic lupus erythematosus (SLE), but the detailed molecular mechanisms of the aberrant expansion in SLE are still unclear. In the present study, we confirmed that the increased MDSCs positively correlated with disease activity in SLE patients. The suppressive capacity of MDSCs from patients with high activity was lower than that of MDSCs from patients with low activity. Moreover, the potential precursors for MDSCs, common myeloid progenitors (CMPs) and granulocyte-monocyte progenitors (GMPs), were markedly increased in the bone marrow (BM) aspirates of SLE patients. As an important regulator of cell fate decisions, aberrant activation of Notch signalling was reported to participate in the pathogenesis of SLE. We found that the expression of Notch1 and its downstream target gene hairy and enhancer of split 1 (Hes-1) increased markedly in GMPs from SLE patients. Moreover, the Notch1 signalling inhibitor DAPT profoundly relieved disease progression and decreased the proportion of MDSCs in pristane-induced lupus mice. The frequency of GMPs was also decreased significantly in lupus mice after DAPT treatment. Furthermore, the inhibition of Notch1 signalling could limit the differentiation of MDSCs in vitro. The therapeutic effect of DAPT was also verified in Toll-like receptor 7 (TLR7) agonist-induced lupus mice. Taken together, our results demonstrated that Notch1 signalling played a crucial role in MDSC differentiation in SLE. These findings will provide a promising therapy for the treatment of SLE.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Fei Fei
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xixi Yang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yingying Gao
- Department of Rheumatology and Immunology, The First People's Hospital of Nantong, Nantong, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Tan L, Shi G, Zhao J, Xia X, Li D, Wang S, Liang J, Hou Y, Dou H. MDSCs participate in the pathogenesis of diffuse pulmonary hemorrhage in murine lupus through mTOR-FoxO1 signaling. Biochem Biophys Rep 2022; 32:101351. [PMID: 36164563 PMCID: PMC9507990 DOI: 10.1016/j.bbrep.2022.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Junyu Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Saiwen Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
6
|
Li Y, Wang H, Zhang Z, Tang C, Zhou X, Mohan C, Wu T. Identification of polo-like kinase 1 as a therapeutic target in murine lupus. Clin Transl Immunology 2022; 11:e1362. [PMID: 35024139 PMCID: PMC8733964 DOI: 10.1002/cti2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/21/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The signalling cascades that contribute to lupus pathogenesis are incompletely understood. We address this by using an unbiased activity‐based kinome screen of murine lupus. Methods An unbiased activity‐based kinome screen (ABKS) of 196 kinases was applied to two genetically different murine lupus strains. Systemic and renal lupus were evaluated following in vivo PLK1blockade. The upstream regulators and downstream targets of PLK1 were also interrogated. Results Multiple signalling cascades were noted to be more active in murine lupus spleens, including PLK1. In vivo administration of a PLK1‐specific inhibitor ameliorated splenomegaly, anti‐dsDNA antibody production, proteinuria, BUN and renal pathology in MRL.lpr mice (P < 0.05). Serum IL‐6, IL‐17 and kidney injury molecule 1 (KIM‐1) were significantly decreased after PLK1 inhibition. PLK1 inhibition reduced germinal centre and marginal zone B cells in the spleen, but changes in T cells were not significant. In vitro, splenocytes were treated with anti‐mouse CD40 Ab or F(ab’)2 fragment anti‐mouse IgM. After 24‐h stimulation, IL‐6 secretion was significantly reduced upon PLK1 blockade, whereas IL‐10 production was significantly increased. The phosphorylation of mTOR was assessed in splenocyte subsets, which revealed a significant change in myeloid cells. PLK1 blockade reduced phosphorylation associated with mTOR signalling, while Aurora‐A emerged as a potential upstream regulator of PLK1. Conclusion The Aurora‐A → PLK1 → mTOR signalling axis may be central in lupus pathogenesis, and emerges as a potential therapeutic target.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Hongting Wang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Zijing Zhang
- Department of Biomedical Engineering University of Houston Houston TX USA.,Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan China
| | - Chenling Tang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Xinjin Zhou
- Department of Pathology Baylor University Medical Center at Dallas Dallas TX USA
| | - Chandra Mohan
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Tianfu Wu
- Department of Biomedical Engineering University of Houston Houston TX USA
| |
Collapse
|
7
|
C-type lectin receptor Dectin3 deficiency balances the accumulation and function of FoxO1-mediated LOX-1 + M-MDSCs in relieving lupus-like symptoms. Cell Death Dis 2021; 12:829. [PMID: 34480018 PMCID: PMC8417277 DOI: 10.1038/s41419-021-04052-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Recent studies indicate that Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) can function as the signal of pattern recognition receptors, which play a pivotal role in the pathogenesis of the autoimmune disease. Systemic lupus erythematosus (SLE) is a classic autoimmune disease. Previous reports mainly focused on the potential role of TLRs in regulating the development of SLE, but little is known about the role of CLRs in the progression of SLE. Our previous studies showed that the inflammation-mediated accumulation of myeloid-derived suppressor cells (MDSCs) including granulocytic (G-MDSCs) and monocytic (M-MDSCs) participated in the pathogenesis of lupus. Mice deficient in Card9 (the downstream molecule of CLRs) were more susceptible to colitis-associated cancer via promoting the expansion of MDSCs. Whether the abnormal activation of CLRs regulates the expansion of MDSCs to participate in the pathogenesis of lupus remains unknown. In the present study, the expressions of CLRs were examined in both SLE patients and mouse models, revealing the expression of Dectin3 was positively correlated with SLEDAI. Dectin3 deficiency retarded the lupus-like disease by regulating the expansion and function of MDSCs. The mechanistic analysis revealed that Dectin3 deficiency promoted FoxO1-mediated apoptosis of MDSCs. Syk-Akt1-mediated nuclear transfer of FoxO1 increased in Dectin3-deficient MDSCs. Notedly, the accumulation of M-MDSCs mainly decreased in Dectin3-/- lupus mice, and the nuclear transfer of FoxO1 negatively correlated with the expression of LOX-1 on M-MDSCs. The silencing of FoxO1 expression in Dectin3-/- mice promoted the expansion of LOX-1+ M-MDSCs in vivo, and LOX-1+ M-MDSCs increased the differentiation of Th17 cells. Both LOX-1 expression on M-MDSCs and Dectin3 expression on MDSCs increased in patients with SLE. These data indicated that increased LOX-1+ M-MDSCs were related to the exacerbation of SLE development and might be potential target cells for the treatment of SLE.
Collapse
|
8
|
Shi G, Li D, Zhang D, Xu Y, Pan Y, Lu L, Li J, Xia X, Dou H, Hou Y. IRF-8/miR-451a regulates M-MDSC differentiation via the AMPK/mTOR signal pathway during lupus development. Cell Death Discov 2021; 7:179. [PMID: 34282122 PMCID: PMC8289825 DOI: 10.1038/s41420-021-00568-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease. Myeloid-derived suppressor cells (MDSCs) have been found to be involved in the regulation of SLE development. However, little is known about the association between MDSC subsets and the factors that draw MDSCs into abnormal expansion. This study found that the percentage of M-MDSCs increased in mice with pristane-induced lupus. Toll-like receptor (TLR)7 signal activation and high interferon-α (IFN-α) level promoted M-MDSC differentiation in vitro. Moreover, both AMP-activated protein kinase (AMPK) agonist metformin and two mammalian targets of rapamycin (mTOR) inhibitors (INK128 and rapamycin) inhibited the percentage of M-MDSCs in lupus mice as well as in the TLR7- and IFN-α-induced bone marrow (BM) differentiation into MDSCs in vitro. In terms of mechanism, whole-genome transcriptome profiling was performed by RNA sequencing, revealing that the expression of the transcription factor IRF-8 was higher in M-MDSCs isolated from pristane-induced lupus mice, compared with control mice. IRF-8 was identified to be crucial for TLR7- and IFN-α-induced BM differentiation into MDSCs in vitro. Furthermore, interferon (IFN) regulatory factor8 (IRF-8) was targeted by miR-451a in M-MDSC differentiation. Of note, metformin-modified M-MDSCs could relieve lupus symptoms in pristane-induced lupus mice. The findings revealed a novel mechanism linking IRF-8/miR-451a to M-MDSC differentiation via the AMPK/mTOR signal pathway during lupus development. This study might provide an important reference for SLE therapy by targeting M-MDSCs.
Collapse
Affiliation(s)
- Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Dongya Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yujun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| |
Collapse
|
9
|
Asgarzade A, Ziyabakhsh A, Asghariazar V, Safarzadeh E. Myeloid-derived suppressor cells: Important communicators in systemic lupus erythematosus pathogenesis and its potential therapeutic significance. Hum Immunol 2021; 82:782-790. [PMID: 34272089 DOI: 10.1016/j.humimm.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a recognized chronic condition associated with immune system disorders that affect women nine times more commonly than men. SLE is characterized by over-secretion and release of autoantibodies in response to different cellular compartments and self-tolerance breaks to its own antigens. The detailed immunological dysregulation as an associated event that elicits the onset of clinical manifestations of SLE has not been clarified yet. Though, research using several animal models in the last two decades has indicated the role of the immune system in the pathogenesis of this disease. Myeloid-derived suppressor cells (MDSCs) as heterogeneous myeloid cells, are responsible for severe pathological conditions, including infection, autoimmunity, and cancer, by exerting considerable immunosuppressive effects on T-cells responses. It has been reported that these cells are involved in the regulation process of the immune response in several autoimmune diseases, particularly SLE. The function of MDSC is deleterious in infection and cancer diseases, though their role is more complicated in autoimmune diseases. In this review, we summarized the role and function of MDSCs in the pathogenesis and progression of SLE and its possible therapeutic approach.
Collapse
Affiliation(s)
- Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
10
|
Li Y, Xu Y, Liu X, Yan X, Lin Y, Tan Q, Hou Y. mTOR inhibitor INK128 promotes wound healing by regulating MDSCs. Stem Cell Res Ther 2021; 12:170. [PMID: 33691762 PMCID: PMC7944919 DOI: 10.1186/s13287-021-02206-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Skin wounds in diabetic patients hardly recover. Accumulating evidence has shown that mammalian target of rapamycin (mTOR) pathway and myeloid-derived suppressor cells (MDSCs) are involved in inflammatory-related response. INK128 is a novel mTOR kinase inhibitor in clinical development. However, the exact roles of MDSCs and INK128 in healing wound of diabetic patients are unclear. Methods Mice models of normal, diabetic, and diabetic+INK128 were constructed. Bone marrow (BM)-derived macrophages and RAW264.7 cell line co-cultured with MDSCs, which were induced at different conditions. Flow cytometry, western blot, quantitative real-time PCR, and immunohistochemical analysis were performed. Results Diabetic mice (DM) had a slower recovery rate, thinner epidermis and dermis, and less blood vessels than those of normal mice. MDSCs were abnormally accumulated in DM, mTOR was activated in MDSCs of DM, and the cells were treated with high glucose. Moreover, mTOR signaling inhibitor INK128 could promote wound healing through reducing the MDSCs. MDSC function was disordered in DM and high-glucose environments, while INK128 could help retrieve their function. Furthermore, high glucose and other factors in DM could promote M-MDSC differentiation to M1 pro-inflammatory macrophage cells, thus inhibiting wound healing. The differentiation, which was dependent on mTOR signaling, could be reversed by INK128. Conclusion INK128 is potential to be developed as a clinical strategy to promote wound healing of diabetic patients.
Collapse
Affiliation(s)
- Yi Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China.,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yujun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Xinghan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Xin Yan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, People's Republic of China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
11
|
Zhang D, Wang M, Shi G, Pan P, Ji J, Li P. Regulating T Cell Population Alleviates SLE by Inhibiting mTORC1/C2 in MRL/lpr Mice. Front Pharmacol 2021; 11:579298. [PMID: 33597869 PMCID: PMC7883674 DOI: 10.3389/fphar.2020.579298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 01/04/2023] Open
Abstract
It’s well known that the mammalian target of rapamycin (mTOR) exerts a critical role in the regulator of immune cells and is associated with T cells dysfunction in patients with systemic lupus erythematosus (SLE). Antigen-induced T-cell proliferation via mTORC1 suppressed by Rapamycin has been used to improve SLE primarily. Previously it has showed that INK128, a highly potent, specific orally inhibitor of mTORC1 and mTORC2, significantly attenuates SLE in pristine-induced lupus mice. Herein we compared the cure effects of INK128 and rapamycin on lupus mice. We treated MRL/lpr mice with INK128 or rapamycin at 12 weeks-age. The effect of the two inhibitors on the lupus mice was determined by immunohistochemistry. The effect of the two inhibitors on T cell populations was investigated by flow cytometry. The mTOR signaling was measured by Western Blot. INK128 remarkably alleviated SLE by reducing splenomegaly, renal inflammation and damage, and resuming T-cell dysfunction. The more effective of INK128 on SLE than rapamycin. INK128 effectively suppressed mTORC1 and mTORC2 activity in T cells, but rapamycin just suppressed mTORC1 activity. Thus, our results show that INK128 is can effectively alleviate SLE and be used as one of the potential clinical therapeutic candidates for SLE.
Collapse
Affiliation(s)
- Dongya Zhang
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meiling Wang
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoping Shi
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Pan
- Department of Anesthesiology, Kunshan Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Jianjian Ji
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengfei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Romo-Tena J, Kaplan MJ. Immunometabolism in the pathogenesis of systemic lupus erythematosus: an update. Curr Opin Rheumatol 2020; 32:562-571. [PMID: 32826478 PMCID: PMC10463177 DOI: 10.1097/bor.0000000000000738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To provide an update on state-of-the-art evidence on the role of immunometabolism reprogramming in the pathogenesis of systemic lupus erythematosus (SLE). RECENT FINDINGS Mitochondrial dysfunction and enhanced oxidative stress, along with specific defects in other metabolic pathways, can promote dysregulation of innate and adaptive immune responses in SLE. These abnormalities appear to be driven by genetic and epigenetic factors, modulated by stochastic events. In addition to extensive descriptions of abnormalities in immunometabolism of lupus lymphocytes, recent studies support the critical role of dysregulation of metabolic pathways in innate immune cells including neutrophils, macrophages and dendritic cells, in SLE pathogenesis. Recent abnormalities described in lipid metabolism have been associated with SLE disease activity and related damage. Promising therapeutic strategies that target these metabolic abnormalities have recently been described in SLE. SUMMARY Fundamental new insights regarding the role of mitochondrial dysfunction in innate immune dysregulation in SLE pathogenesis have recently emerged. Defects in specific molecular pathways pertinent to immunometabolism in SLE have been described. New insights in translational medicine and promising therapeutic targets have been proposed based on these recent findings.
Collapse
Affiliation(s)
- Jorge Romo-Tena
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Medical Science PhD Program, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Li D, Qi J, Wang J, Pan Y, Li J, Xia X, Dou H, Hou Y. Protective effect of dihydroartemisinin in inhibiting senescence of myeloid-derived suppressor cells from lupus mice via Nrf2/HO-1 pathway. Free Radic Biol Med 2019; 143:260-274. [PMID: 31419476 DOI: 10.1016/j.freeradbiomed.2019.08.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease characterized by multi-organ injury. However, whether myeloid-derived suppressor cells (MDSCs) senescence exists and participates in SLE pathogenesis remains unclear. And whether dihydroartemisinin (DHA) attenuates the symptoms of SLE via relieving MDSCs senescence remains elusive. In the present study, we measured the senescence of MDSCs in SLE using SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. We identified that the MDSCs senescence promoted the SLE progress by adaptive transfer MDSCs assays. Meanwhile, we further showed DHA ameliorated the symptoms of pristane-induced lupus by histopathological detection, Western blot analysis, immunofluorescence, QPCR and flow cytometry analysis. DHA reversed MDSCs senescence by detecting SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. Furthermore, mechanistic analysis indicated that the inhibitory effect of DHA on MDSCs senescence was blocked by ML385, the specific antagonist of Nrf2, which revealed that the effect of DHA on MDSCs senescence was dependent on the induction of Nrf2/HO-1 pathway. Of note, we revealed that DHA inhibited MDSCs senescence to ameliorate the SLE development by adaptive transfer DHA-treated MDSCs assays. In conclusion, MDSCs senescence played a vital role in the pathogenesis of SLE, and DHA attenuated the symptoms of SLE via relieving MDSCs aging involved in the induction of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingjing Qi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
14
|
Ji J, Li P, Shen C, Dou H, Wang T, Shi L, Hou Y. MDSCs: friend or foe in systemic lupus erythematosus. Cell Mol Immunol 2019; 16:937-939. [PMID: 31431693 DOI: 10.1038/s41423-019-0271-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, 210023, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China.,Key Laboratory of Inflammation and Immunoregulation, School of Medical and Life Science, Nanjing University of Chinese Medicine, 210046, Nanjing, China
| | - Pengfei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Liyun Shi
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Life Science, Nanjing University of Chinese Medicine, 210046, Nanjing, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
15
|
Li D, Shi G, Wang J, Zhang D, Pan Y, Dou H, Hou Y. Baicalein ameliorates pristane-induced lupus nephritis via activating Nrf2/HO-1 in myeloid-derived suppressor cells. Arthritis Res Ther 2019; 21:105. [PMID: 31023362 PMCID: PMC6482536 DOI: 10.1186/s13075-019-1876-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 03/26/2019] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Lupus nephritis (LN) is a representative manifestation in systemic lupus erythematosus (SLE). Some studies have shown that myeloid-derived suppressor cells (MDSCs) play a vital role in the regulation of the SLE process. MDSC infiltration in the kidney as well as inflammation and oxidative stress provokes the acceleration and deterioration of LN. Nuclear factor E2-related factor 2 (Nrf2) is thought to be a major regulator of the antioxidant response. Baicalein is a flavonoid with known anti-inflammatory effects and antioxidant response. However, the effects of baicalein on MDSCs, inflammation, and oxidative stress are not evaluated in the development of pristane-induced LN in mice. METHODS The renoprotective effect of baicalein was detected in a pristane-induced lupus mice model. NLRP3 inflammasome activation and NF-κB phosphorylation as well as reactive oxygen species (ROS) production and Nrf2 activation were examined. The percentages and function changes of MDSCs were measured. The possible mechanisms of the underlying effects of baicalein on ROS production and signaling pathways of Nrf2/heme-oxygenase (HO)-1, NLRP3 inflammasome, and NF-κB phosphorylation in lipopolysaccharide (LPS)-primed MDSCs were analyzed. RESULTS Baicalein reduced proteinuria and attenuated renal function impairment and renal histopathology including intrinsic cell proliferation, cellular crescents, and podocyte injury as well as glomerulonephritis activity in lupus mice. Moreover, baicalein downregulated the activation of NLRP3 inflammasome and levels of ROS or NF-κB phosphorylation, and it enhanced Nrf2 activation. Of note, baicalein inhibited the expansion of MDSCs and improved the function of MDSCs in lupus mice. Through analyzing LPS-primed MDSCs in vitro, baicalein was found to exhibit cytoprotective effects coincident with the induction of Nrf2/HO-1 signaling and the suppression of the NLRP3 inflammasome. CONCLUSION The data show that baicalein alleviates the symptoms of pristane-induced LN and suggest that the alleviation may be attributed to inhibition of MDSC expansion and regulation of the balance of the Nrf2/HO-1 signal and NLRP3 expression in MDSCs.
Collapse
Affiliation(s)
- Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No.22 Hankou Rd., Gulou District, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No.22 Hankou Rd., Gulou District, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No.22 Hankou Rd., Gulou District, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Dongya Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No.22 Hankou Rd., Gulou District, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No.22 Hankou Rd., Gulou District, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No.22 Hankou Rd., Gulou District, Nanjing, 210093, Jiangsu, People's Republic of China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No.22 Hankou Rd., Gulou District, Nanjing, 210093, Jiangsu, People's Republic of China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
16
|
The Impact of Protein Acetylation/Deacetylation on Systemic Lupus Erythematosus. Int J Mol Sci 2018; 19:ijms19124007. [PMID: 30545086 PMCID: PMC6321219 DOI: 10.3390/ijms19124007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease in which the body’s immune system mistakenly attacks healthy cells. Although the exact cause of SLE has not been identified, it is clear that both genetics and environmental factors trigger the disease. Identical twins have a 24% chance of getting lupus disease if the other one is affected. Internal factors such as female gender and sex hormones, the major histocompatibility complex (MHC) locus and other genetic polymorphisms have been shown to affect SLE, as well as external, environmental influences such as sunlight exposure, smoking, vitamin D deficiency, and certain infections. Several studies have reported and proposed multiple associations between the alteration of the epigenome and the pathogenesis of autoimmune disease. Epigenetic factors contributing to SLE include microRNAs, DNA methylation status, and the acetylation/deacetylation of histone proteins. Additionally, the acetylation of non-histone proteins can also influence cellular function. A better understanding of non-genomic factors that regulate SLE will provide insight into the mechanisms that initiate and facilitate disease and also contribute to the development of novel therapeutics that can specifically target pathogenic molecular pathways.
Collapse
|