1
|
Hasan M, Yadav P, Ansari MA, Ali S, Khan HA. Therapeutic Dose of Zinc Aspartate and Zinc Citrate Attenuates Disease Activity Indices in Rheumatoid Arthritis. Biol Trace Elem Res 2024:10.1007/s12011-024-04439-3. [PMID: 39535573 DOI: 10.1007/s12011-024-04439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Zinc aspartate and zinc citrate have been used as zinc supplements in different health conditions. Taking into consideration their anti-inflammatory, immunomodulatory, anti-oxidant and antimicrobial properties, the present study has been designed to analyse the effect of zinc aspartate and zinc citrate treatment at therapeutic dose level on disease severity index, haematological, serological, antimicrobial and radiological markers of rheumatoid arthritis in Wistar rats. Bactericidal potential of the two organic zinc compounds was analysed in vitro in clinically isolated Escherichia coli. Arthritis was induced in male Wistar rats by intradermal injection of an emulsion containing collagen type II and Complete Freund's Adjuvant (CFA) containing 1 mg mL-1 Mycobacterium tuberculosis H37Ra. Zinc aspartate and zinc citrate were orally administered after the onset of the disease for 4 weeks. Ameliorative effect of zinc aspartate and zinc citrate was evaluated by analysing indices of severity and disease activity markers of rheumatoid arthritis. The liver and kidney function tests were performed to evaluate any possible adverse effect of compounds. Antimicrobial activity of the zinc compounds was assessed in clinically isolated E. coli by MTT assay. Zinc aspartate and zinc citrate equivalent to a therapeutic dose of 50 mg/day of elemental zinc attenuated the clinical characteristic of rheumatoid arthritis in the animal model of arthritis, collagen-induced arthritis (CIA). Both zinc salts also exhibited antimicrobial effects against E. coli. The selected dose of zinc aspartate and zinc citrate showed no adverse effects in treated rats. This study highlights the potentiality of zinc compounds as antiarthritic agents and also point to its preventive effects on microbial growth that has been observed in rheumatoid arthritis patients due to their increased sensitivity for bacterial infection.
Collapse
Affiliation(s)
- Mohammad Hasan
- Heavy Metal and Preventive Toxicology Lab, Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pooja Yadav
- Heavy Metal and Preventive Toxicology Lab, Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mairaj Ahmed Ansari
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Haider A Khan
- Heavy Metal and Preventive Toxicology Lab, Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Beigoli S, Boskabady MH. The molecular basis of the immunomodulatory effects of natural products: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156028. [PMID: 39276685 DOI: 10.1016/j.phymed.2024.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Natural products (NPs) have long been recognized for their potential to modulate the immune system, offering a natural and holistic approach to enhancing immune function. In recent years, the immunomodulation effects of various natural products have attained significant attention. PURPOSE This article provides an overview of the role of natural products in immunomodulation, exploring their mechanisms of action, common types of NPs with immunomodulation properties, clinical applications, as well as considerations for their safety and efficacy. METHODS Extensive research has been conducted to compile important discoveries on the immunomodulatory properties of NPs through thorough searches of multiple databases such as PubMed, Science Direct, and Scopus up until January 2024. RESULTS By decreasing the levels of Th2 cytokines and pro-inflammatory cytokines, the results suggested that NPs have the ability to modulate the immune system. Therefore, NPs alleviate inflammation in various disorders such as asthma and cancer. Furthermore, the observed increase in CD4 cells and IFN-ɣ/IL4 levels, along with an increased IFN-c/IL4 ratio, indicates a stimulatory effect of NPs on Th1 activity in various inflammatory conditions. Therefore, NPs regulate the immune system by inhibiting T-cells and decreasing the growth of young B-cell lymphoma cells. CONCLUSION Reviewing studies indicated that NPs have the potential to serve as immunomodulatory candidates for treating disorders characterized by immune dysregulation. However, additional experimental and clinical studies are necessary before these agents can be implemented in clinical settings.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Simões MS, Souza ABP, Silva-Comar FMS, Bersani-Amado CA, Cuman RKN, Peralta RM, Sá-Nakanishi AB, Bracht L, Bracht A, Comar JF. Effects of resveratrol on rheumatic symptoms and hepatic metabolism of arthritic rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024:jcim-2024-0200. [PMID: 39214854 DOI: 10.1515/jcim-2024-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Resveratrol has been studied as a potential agent for treating rheumatic conditions; however, this compound suppresses glucose synthesis and glycogen catabolism when infused in perfused livers of both arthritic and healthy rats. This study investigated the effects of oral administration of resveratrol on inflammation and liver metabolism in rats with arthritis induced by Freund's adjuvant, which serves as rheumatoid arthritis model. METHODS Holtzman rats, both healthy and exhibiting arthritic symptoms, were orally treated with resveratrol at doses varying from 25 to 500 mg/kg for a 5-day period preceding arthritis induction, followed by an additional 20-day period thereafter. Paw edema, arthritic score and hepatic myeloperoxidase activity were assessed to evaluate inflammation. Glycogen catabolism and gluconeogenesis from lactate were respectively evaluated in perfused livers from fed and fasted rats. RESULTS Resveratrol decreased the liver myeloperoxidase activity at doses above 100 mg/kg, and decreased the paw edema and delayed the arthritic score at doses above 250 mg/kg. The hepatic gluconeogenesis was decreased in arthritic rats and resveratrol did not improve it. However, resveratrol did not negatively modify the gluconeogenesis in livers of healthy and arthritic rats. Glycogen catabolism was in part and slightly modified by resveratrol in the liver of arthritic and healthy rats. CONCLUSIONS It is improbable that resveratrol negatively affects the liver metabolism, especially considering that gluconeogenesis is highly fragile to changes in cellular architecture. The findings suggest that resveratrol could serve as alternative for treating rheumatoid arthritis. Nevertheless, prudence is advised regarding its transient effects on liver metabolism.
Collapse
Affiliation(s)
- Mellina S Simões
- Department of Biochemistry, 42487 State University of Maringá , Maringá, PR, Brazil
| | - Ana Beatriz P Souza
- Department of Biochemistry, 42487 State University of Maringá , Maringá, PR, Brazil
| | | | - Ciomar A Bersani-Amado
- Department of Pharmacology and Therapeutics, 42487 State University of Maringá , Maringá, PR, Brazil
| | - Roberto K N Cuman
- Department of Pharmacology and Therapeutics, 42487 State University of Maringá , Maringá, PR, Brazil
| | - Rosane M Peralta
- Department of Biochemistry, 42487 State University of Maringá , Maringá, PR, Brazil
| | | | - Lívia Bracht
- Department of Biochemistry, 42487 State University of Maringá , Maringá, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, 42487 State University of Maringá , Maringá, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, 42487 State University of Maringá , Maringá, PR, Brazil
| |
Collapse
|
4
|
Chrastina M, Dráfi F, Pružinská K, Poništ S, Kamga KS, Khademnematolahi S, Bilka F, Novák P, Pašková Ľ, Bauerová K. Crocus sativus L. Extract (Saffron) Effectively Reduces Arthritic and Inflammatory Parameters in Monotherapy and in Combination with Methotrexate in Adjuvant Arthritis. Nutrients 2023; 15:4108. [PMID: 37836391 PMCID: PMC10574733 DOI: 10.3390/nu15194108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease, is characterized by inflammation that affects not only the liver but also other organs and the musculoskeletal system. The standard therapy for RA is methotrexate (MTX), which has safety limitations. The extract from Crocus sativus L. (saffron-SF) is also known for its anti-inflammatory effects. Therefore, we decided to investigate the potential benefit of SF in monotherapy via two doses (SF1-25 mg/kg of b.w.; SF2-50 mg/kg of b.w.) and in combination with MTX (0.3 mg/kg of b.w., twice a week) using adjuvant arthritis in rats. To evaluate these therapeutic settings, we used biometric, immunological, and biochemical parameters, as well as the relative gene expression of the mRNA in the liver. Our results showed a statistically significant increase in the experimental animals' body weight and the arthritic score (AS) on day 14 for monotherapy with SF1 and SF2. The change of hind paw volume (CHPV) was significant only for SF2 monotherapy on the 14th day of the experiment. A combination of SF1 and SF2 with MTX significantly modulated all the biometric parameters during the experimental period. Additionally, AS and CHPV improved considerably compared to MTX monotherapy on day 21. Furthermore, all monotherapies and combination therapies were significant for the biochemical parameter γ-glutamyl transferase (GGT) in the joint. GGT activity in the spleen was less pronounced; only MTX in combination with SF1 significantly modified this parameter. The higher dose of SF monotherapy (SF2) was similarly significant with respect to immunological parameters, such as plasmatic IL-17A, IL-1β, and MMP-9 on day 21. The combination of both doses of SF with MTX significantly improved these immunological parameters, except for C-reactive protein (CRP), which was influenced only by the higher dose of SF2 in combination with MTX in plasma at the end of the experiment. A different effect was found for the relative expression of CD36 mRNA, where only SF1 significantly decreased gene expression in the liver. However, the relative gene mRNA expression of IL-1β in the liver was significantly reduced by the SF monotherapies and the combination of both SF doses with MTX. Our findings showed SF's partial antiarthritic and anti-inflammatory potential in monotherapy, but the effect was stronger in combination with MTX.
Collapse
Affiliation(s)
- Martin Chrastina
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
| | - Katarína Pružinská
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia
| | - Silvester Poništ
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
| | - Kevine Silihe Kamga
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 812, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé P.O. Box 1364, Cameroon
| | - Sasan Khademnematolahi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - František Bilka
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (F.B.); (P.N.); (Ľ.P.)
| | - Peter Novák
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (F.B.); (P.N.); (Ľ.P.)
| | - Ľudmila Pašková
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (F.B.); (P.N.); (Ľ.P.)
| | - Katarína Bauerová
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (K.P.); (S.P.); (K.S.K.); (S.K.)
| |
Collapse
|
5
|
Deb R, Nagotu S. The nexus between peroxisome abundance and chronological ageing in Saccharomyces cerevisiae. Biogerontology 2023; 24:81-97. [PMID: 36209442 DOI: 10.1007/s10522-022-09992-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Ageing is characterized by changes in several cellular processes, with dysregulation of peroxisome function being one of them. Interestingly, the most conserved function of peroxisomes, ROS homeostasis, is strongly associated with ageing and age-associated pathologies. Previous studies have identified a role for peroxisomes in the regulation of chronological lifespan in yeast. In this study, we report the effect of altered peroxisome number on the chronological lifespan of yeast in two different growth media conditions. Three mutants, pex11, pex25 and pex27, defective in peroxisome fission, have been thoroughly investigated for the chronological lifespan. Reduced chronological lifespan of all the mutants was observed in peroxisome-inducing growth conditions. Furthermore, the combined deletion pex11pex25 exhibited the most prominent reduction in lifespan. Interestingly altered peroxisomal phenotype upon ageing was observed in all the cells. Increased ROS accumulation and reduced catalase activity was exhibited by chronologically aged mutant cells. Interestingly, mutants with reduced number of peroxisomes concomitantly also exhibited an accumulation of free fatty acids and increased number of lipid droplets. Taken together, our results reveal a previously unrealized effect of fission proteins in the chronological lifespan of yeast.
Collapse
Affiliation(s)
- Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
6
|
Martins JN, Lucredi NC, Oliveira MC, Oliveira ACV, Godoy MA, Sá-Nakanishi AB, Bracht L, Cesar GB, Gonçalves RS, Vicentini VE, Caetano W, Godoy VA, Bracht A, Comar JF. Poloxamers-based nanomicelles as delivery vehicles of hypericin for hepatic photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Simões MS, Ames-Sibin AP, Lima EP, Pateis VO, Bersani-Amado CA, Mathias PCF, Peralta RM, Sá-Nakanishi AB, Bracht L, Bracht A, Comar JF. Resveratrol biotransformation and actions on the liver metabolism of healthy and arthritic rats. Life Sci 2022; 310:120991. [PMID: 36162485 DOI: 10.1016/j.lfs.2022.120991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
AIMS To investigate the effects of resveratrol on glycogen catabolism and gluconeogenesis in perfused livers of healthy and arthritic rats. The actions of resveratrol-3-O-glucuronide (R3G) and the biotransformation of resveratrol into R3G was further evaluated in the livers. MAIN METHODS arthritis was induced with Freund's adjuvant. Resveratrol at concentrations of 10, 25, 50, 100 and 200 μM and 200 μM R3G were introduced in perfused livers. Resveratrol and metabolites were measured in the outflowing perfusate. Respiration of isolated mitochondria and activity of gluconeogenic enzymes were also evaluated in the livers. KEY FINDINGS resveratrol inhibited glycogen catabolism when infused at concentrations above 50 μM and gluconeogenesis even at 10 μM in both healthy and arthritic rat livers, but more sensitive in these latter. Resveratrol above 100 μM inhibited ADP-stimulated respiration and the activities of NADH- and succinate-oxidases in mitochondria, which were partially responsible for gluconeogenesis inhibition. Pyruvate carboxylase activity was inhibited by 25 μM resveratrol and should inhibit gluconeogenesis already at low concentrations. Resveratrol was significantly metabolized to R3G in healthy rat livers, however, R3G formation was lower in arthritic rat livers. The latter must be in part a consequence of a lower glucose disposal for glucuronidation. When compared to resveratrol, R3G inhibited gluconeogenesis in a lower extension and glycogen catabolism in a higher extension. SIGNIFICANCE the effects of resveratrol and R3G tended to be transitory and existed only when the resveratrol is present in the organ, however, they should be considered because significant serum concentrations of both are found after oral ingestion of resveratrol.
Collapse
Affiliation(s)
- Mellina S Simões
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Emanuele P Lima
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Vanesa O Pateis
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Paulo C F Mathias
- Department of Cellular Biology, State University of Maringa, PR, Brazil
| | - Rosane M Peralta
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Lívia Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringa, PR, Brazil.
| |
Collapse
|
8
|
Shi Y, Shu J, Ning Z, Fan D, Shu H, Zhao H, Li L, Zhao N, Lu C, Lu A, He X. Analysis of Hepatic Lipid Metabolism and Immune Function During the Development of Collagen-Induced Arthritis. Front Immunol 2022; 13:901697. [PMID: 35784282 PMCID: PMC9245434 DOI: 10.3389/fimmu.2022.901697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The liver is essential for metabolic and immune functions and has been linked to systemic inflammatory diseases. However, the role of the liver is still elusive during the development of rheumatoid arthritis (RA), although there have been indeed some reports. We used label-free quantitative proteomics and experimental verification in this study to reveal the hepatic lipid metabolism and immune function during collagen-induced arthritis (CIA) development. The proteomics results revealed that the role of the liver differs in different phases of CIA rats. In terms of specific performance, hepatic lipid metabolism, which is primarily concerned with cholesterol, triacylglycerol, and phospholipid, was significantly influenced in the CIA induction phase, whereas the immune function, which includes binding of granulocytes, adhesion of immune cells, etc., was affected considerably at the peak phase of CIA rats compared to normal rats. Finally, the hepatic dynamic changes in CIA rats were further confirmed using targeted metabolomics and ELISA. We found that most fatty acids of the liver in the CIA induction phase were significantly decreased, and proteins related to complement activation and migration or adhesion of immune cells including C3, MMP-8, CTSZ, and S100A9 were significantly increased in the liver of CIA rats in the peak phase. Our findings indicated that the lipid metabolism and immune function of the liver were influenced in CIA rats. Thus, the conditions of the liver during RA development should be considered in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Yingjie Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Shu
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dancai Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyang Shu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- *Correspondence: Aiping Lu, ; Xiaojuan He,
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Xiaojuan He,
| |
Collapse
|
9
|
Moreira LS, Chagas AC, Ames-Sibin AP, Pateis VO, Gonçalves OH, Silva-Comar FMS, Hernandes L, Sá-Nakanishi AB, Bracht L, Bersani-Amado CA, Bracht A, Comar JF. Alpha-tocopherol-loaded polycaprolactone nanoparticles improve the inflammation and systemic oxidative stress of arthritic rats. J Tradit Complement Med 2021; 12:414-425. [PMID: 35747358 PMCID: PMC9209870 DOI: 10.1016/j.jtcme.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background and aim The present study investigated the effects of orally administered α-tocopherol-loaded polycaprolactone nanoparticles on the articular inflammation and systemic oxidative status of middle-aged Holtzman rats with Freund's adjuvant-induced polyarthritis, a model for rheumatoid arthritis. Intraperitoneally administered free α-tocopherol provided the reference for comparison. Experimental procedure Two protocols of treatment were followed: intraperitoneal administration of free α-tocopherol (100 mg/kg i.p.) or oral administration of free and nanoencapsulated α-tocopherol (100 mg/kg p.o.). Animals were treated during 18 days after arthritis induction. Results Free (i.p.) and encapsulated α-tocopherol decreased the hind paws edema, the leukocytes infiltration into femorotibial joints and the mRNA expression of pro-inflammatory cytokines in the tibial anterior muscle of arthritic rats, but the encapsulated compound was more effective. Free (i.p.) and encapsulated α-tocopherol decreased the high levels of reactive oxygen species in the brain and liver, but only the encapsulated compound decreased the levels of protein carbonyl groups in these organs. Both free (i.p.) and encapsulated α-tocopherol increased the α-tocopherol levels and the ratio of reduced to oxidized glutathione in these organs. Conclusion Both intraperitoneally administered free α-tocopherol and orally administered encapsulated α-tocopherol effectively improved inflammation and systemic oxidative stress in middle-aged arthritic rats. However, the encapsulated form should be preferred because the oral administration route does not be linked to the evident discomfort that is caused in general by injectable medicaments. Consequently, α-tocopherol-loaded polycaprolactone nanoparticles may be a promising adjuvant to the most current approaches aiming at rheumatoid arthritis therapy. Oxidative stress is systemically increased in rats with adjuvant-induced arthritis. Arthritic rats were orally treated with α-tocopherol-loaded polycaprolactone nanoparticles. Treatment decreased the paw edema and articular inflammation of arthritic rats. Treatment improved the oxidative stress in the liver and brain arthritic rats. The content of α-tocopherol was increased in the brain and liver of treated rats.
Collapse
|
10
|
Souza KS, Moreira LS, Silva BT, Oliveira BPM, Carvalho AS, Silva PS, Verri WA, Sá-Nakanishi AB, Bracht L, Zanoni JN, Gonçalves OH, Bracht A, Comar JF. Low dose of quercetin-loaded pectin/casein microparticles reduces the oxidative stress in arthritic rats. Life Sci 2021; 284:119910. [PMID: 34453939 DOI: 10.1016/j.lfs.2021.119910] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022]
Abstract
AIMS Quercetin has been investigated as an agent to treat rheumatoid arthritis. At high doses it improves inflammation and the antioxidant status of arthritic rats, but it also exerts mitochondriotoxic and pro-oxidant activities. Beneficial effects of quercetin have not been found at low doses because of its chemical instability and low bioavailability. In the hope of overcoming these problems this study investigated the effects of long-term administration of quercetin-loaded pectin/casein microparticles on the oxidative status of liver and brain of rats with adjuvant-induced arthritis. MAIN METHODS Particle morphology was viewed with transmission electron microscopy and the encapsulation efficiency was measured indirectly by X-ray diffraction. Quercetin microcapsules (10 mg/Kg) were orally administered to rats during 60 days. Inflammation indicators and oxidative stress markers were measured in addition to the respiratory activity and ROS production in isolated mitochondria. KEY FINDINGS Quercetin was efficiently encapsulated inside the polymeric matrix, forming a solid amorphous solution. The administration of quercetin microparticles to arthritic rats almost normalized protein carbonylation, lipid peroxidation, the levels of reactive oxygen species as well as the reduced glutathione content in both liver and brain. The paw edema in arthritic rats was not responsive, but the plasmatic activity of ALT and the mitochondrial respiration were not affected by quercetin, indicating absence of mitochondriotoxic or hepatotoxic actions. SIGNIFICANCE Quercetin-loaded pectin/casein microcapsules orally administered at a low dose improve oxidative stress of arthritic rats without a strong anti-inflammatory activity. This supports the long-term use of quercetin as an antioxidant agent to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Kaiany S Souza
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Lucas S Moreira
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Bruna Thais Silva
- Department of Morphological Sciences, University of Maringá, PR, Brazil
| | - Byanca P M Oliveira
- Post-Graduation Program of Food Technology - Federal University of Technology - Paraná, Campo Mourão, PR, Brazil
| | - Amarilis S Carvalho
- Post-Graduation Program of Food Technology - Federal University of Technology - Paraná, Campo Mourão, PR, Brazil
| | - Patrícia S Silva
- Department of Chemical Engineering, State University of Maringa, PR, Brazil
| | - Waldiceu A Verri
- Post-Graduation Program of Experimental Pathology, State University of Londrina, PR, Brazil
| | | | - Lívia Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology - Federal University of Technology - Paraná, Campo Mourão, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringa, PR, Brazil.
| |
Collapse
|
11
|
Sá-Nakanishi AB, de Oliveira MC, O Pateis V, P Silva LA, Pereira-Maróstica HV, Gonçalves GA, S Oliveira MA, Godinho J, Bracht L, Milani H, Bracht A, Comar JF. Glycemic homeostasis and hepatic metabolism are modified in rats with global cerebral ischemia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165934. [PMID: 32827650 DOI: 10.1016/j.bbadis.2020.165934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/11/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia-induced hyperglycemia has been reported to accentuate neurological damage following focal or global cerebral ischemia. Hyperglycemia found in rats following focal brain ischemia occurs in the first 24 h and has been claimed to be caused by increased liver gluconeogenesis and insulin resistance. However, liver gluconeogenesis and the mechanisms leading to hyperglycemia after global cerebral ischemia remain uncertain. This study investigated the glycemic homeostasis and hepatic metabolism in rats after transient four-vessel occlusion (4-VO)-induced global cerebral ischemia, an event that mimics to a certain degree the situation during cardiac arrest. Several metabolic fluxes were measured in perfused livers. Activities and mRNA expressions of hepatic glycolysis and glyconeogenesis rate-limiting enzymes were assessed as well as respiratory activity of hepatic isolated mitochondria. Global cerebral ischemia was associated with hyperglycemia and hyperinsulinemia 24 h after ischemia. Insulin resistance developed later and was prominent after the 5th day. Hepatic anabolism and catabolism were both modified in a complex and time-dependent way. Gluconeogenesis, β-oxidation, ketogenesis and glycolysis were diminished at 24 h after ischemia. At 5 days after ischemia glycolysis had normalized, but gluconeogenesis, ketogenesis and β-oxidation were accelerated. The overall metabolic modifications suggest that a condition of depressed metabolism was established in response to the new conditions generated by the cerebral global ischemia. Whether the modifications in the liver metabolism found in rats after the ischemic insult can be translated to individuals following global brain ischemia remains uncertain, but the results of this study are hoped to encourage further investigations.
Collapse
Affiliation(s)
| | | | - Vanesa O Pateis
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | | | | | | | | | - Jacqueline Godinho
- Department of Pharmacology and Therapeutics, State University of Maringá, PR, Brazil
| | - Lívia Bracht
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringá, PR, Brazil.
| |
Collapse
|
12
|
Yang X, Chang Y, Wei W. Emerging role of targeting macrophages in rheumatoid arthritis: Focus on polarization, metabolism and apoptosis. Cell Prolif 2020; 53:e12854. [PMID: 32530555 PMCID: PMC7377929 DOI: 10.1111/cpr.12854] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages maintain a dynamic balance in physiology. Various known or unknown microenvironmental signals influence the polarization, activation and death of macrophages, which creates an imbalance that leads to disease. Rheumatoid arthritis (RA) is characterized by the massive infiltration of a variety of chronic inflammatory cells in synovia. Abundant activated macrophages found in RA synovia are an early hallmark of RA, and the number of these macrophages can be decreased after effective treatment. In RA, the proportion of M1 (pro‐inflammatory macrophages) is higher than that of M2 (anti‐inflammatory macrophages). The increased pro‐inflammatory ability of macrophages is related to their excessive activation and proliferation as well as an enhanced anti‐apoptosis ability. At present, there are no clinical therapies specific to macrophages in RA. Understanding the mechanisms and functional consequences of the heterogeneity of macrophages will aid in confirming their potential role in inflammation development. This review will outline RA‐related macrophage properties (focus on polarization, metabolism and apoptosis) as well as the origin of macrophages. The molecular mechanisms that drive macrophage properties also be elucidated to identify novel therapeutic targets for RA and other autoimmune disease.
Collapse
Affiliation(s)
- Xuezhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Anti-inflammatory Effect of Low-Dose Anethole and Ibuprofen Combination Is Accompanied by Partial Prevention of Hepatic Metabolic Changes in Arthritic Rats. Inflammation 2020; 43:1680-1691. [PMID: 32424605 DOI: 10.1007/s10753-020-01241-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Anethole (AN) is a natural compound that has attracted great scientific interest because of its numerous biological activities, including anti-inflammatory effects. However, these effects were obtained with high doses of AN, which may be one limitation of its therapeutic use. This study evaluated the effects of a low-dose AN and ibuprofen (IB) combination on inflammatory parameters in Freund's complete adjuvant-induced arthritis (AIA) and arthritis-induced hepatic metabolic changes. Holtzman rats were used and divided into groups: normal, AIA (control), arthritics treated with IB, arthritics treated with AN, and arthritics treated with AN + IB. The volume of the paws, the appearance of secondary lesions, and the number of synovial leukocytes were evaluated. Gluconeogenesis and ureagenesis from alanine were determined in the rat liver in isolated perfusion. The AN + IB (62.5 + 8.75 mg/kg) treatment exerted an inhibitory effect on inflammatory parameters and partially prevented hepatic metabolic changes that was similar to the effect of high-dose IB (35 mg/kg) and AN (250 mg/kg) treatment. This effect of the treatments on hepatic metabolism can be, partly at least, explained by the preservation of both the alanine aminotransferase (ALT) activity and the cytosolic NADH/NAD+ redox potential in the liver. Taken together, the data obtained provided evidence that the AN + IB combination at lower doses than AN and IB treatment alone had beneficial inhibitory potential for the treatment of AIA and attenuated metabolic changes in the liver. Graphical Abstract.
Collapse
|
14
|
Methyl Jasmonate Reduces Inflammation and Oxidative Stress in the Brain of Arthritic Rats. Antioxidants (Basel) 2019; 8:antiox8100485. [PMID: 31618993 PMCID: PMC6826661 DOI: 10.3390/antiox8100485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/29/2022] Open
Abstract
Methyl jasmonate (MeJA), common in the plant kingdom, is capable of reducing articular and hepatic inflammation and oxidative stress in adjuvant-induced arthritic rats. This study investigated the actions of orally administered MeJA (75–300 mg/kg) on inflammation, oxidative stress and selected enzyme activities in the brain of Holtzman rats with adjuvant-induced arthritis. MeJA prevented the arthritis-induced increased levels of nitrites, nitrates, lipid peroxides, protein carbonyls and reactive oxygen species (ROS). It also prevented the enhanced activities of myeloperoxidase and xanthine oxidase. Conversely, the diminished catalase and superoxide dismutase activities and glutathione (GSH) levels caused by arthritis were totally or partially prevented. Furthermore, MeJA increased the activity of the mitochondrial isocitrate dehydrogenase, which helps to supply NADPH for the mitochondrial glutathione cycle, possibly contributing to the partial recovery of the GSH/oxidized glutathione (GSSG) ratio. These positive actions on the antioxidant defenses may counterbalance the effects of MeJA as enhancer of ROS production in the mitochondrial respiratory chain. A negative effect of MeJA is the detachment of hexokinase from the mitochondria, which can potentially impair glucose phosphorylation and metabolism. In overall terms, however, it can be concluded that MeJA attenuates to a considerable extent the negative effects caused by arthritis in terms of inflammation and oxidative stress.
Collapse
|