1
|
Yao X, Liu Y, Mao M, Yang L, Zhan Q, Xiao J. Calorie restriction mimetic, resveratrol, attenuates hepatic ischemia and reperfusion injury through enhancing efferocytosis of macrophages via AMPK/STAT3/S1PR1 pathway. J Nutr Biochem 2024; 126:109587. [PMID: 38262562 DOI: 10.1016/j.jnutbio.2024.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Calorie restriction (CR) mimetic, resveratrol (RSV), has the capacity of promoting phagocytosis. However, its role in hepatic ischemia and reperfusion injury (HIRI) remains poorly understood. This study aimed to investigate the effect of RSV on alleviating HIRI and explore the underlying mechanisms. RSV was intraperitoneally injected in mice HIRI model, while RSV was co-incubated with culture medium for 24 h in RAW 264.7 cells and kupffer cells. Macrophage efferocytosis was assessed by immunostaining of PI and F4/80. The clearance of apoptotic neutrophils in the liver was determined by immunostaining of Ly6-G and cleaved-caspase-3. HE staining, Suzuki's score, serum levels of ALT, AST, TNF-α and IL-1β were analyzed to evaluate HIRI. The efferocytosis inhibitor, Cytochalasin D, was utilized to investigate the effect of RSV on HIRI. Western blot was employed to measure the levels of AMPKα, phospho-AMPKα, STAT3, phospho-STAT3 and S1PR1. SiSTAT3 and inhibitors targeting AMPK, STAT3 and S1PR1, respectively, were used to confirm the involvement of AMPK/STAT3/S1PR1 pathway in RSV-mediated efferocytosis and HIRI. RSV facilitated the clearance of apoptotic neutrophils and attenuated HIRI, which was impeded by Cytochalasin D. RSV boosted macrophage efferocytosis by up-regulating the levels of phospho-AMPKα, phospho-STAT3 and S1PR1, which was reversed by AMPK, STAT3 and S1PR1 inhibitors, respectively. Inhibition of STAT3 suppressed RSV-induced clearance of apoptotic neutrophils and exacerbated HIRI. CR mimetic, RSV, alleviates HIRI by promoting macrophages efferocytosis through AMPK/STAT3/S1PR1 pathway, providing valuable insights into the mechanisms underlying the protective effects of CR on attenuating HIRI.
Collapse
Affiliation(s)
- Xueya Yao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingxiang Liu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Menghan Mao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Qionghui Zhan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
2
|
Shen P, Jiang X, Zhang J, Wang J, Raj R, Li G, Ge H, Wang W, Yu B, Zhang J. Isolation and microbial transformation of tea sapogenin from seed pomace of Camellia oleifera with anti-inflammatory effects. Chin J Nat Med 2024; 22:280-288. [PMID: 38553195 DOI: 10.1016/s1875-5364(24)60598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Indexed: 04/02/2024]
Abstract
In the current study, tea saponin, identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel., was meticulously extracted and hydrolyzed to yield five known sapogenins: 16-O-tiglogycamelliagnin B (a), camelliagnin A (b), 16-O-angeloybarringtogenol C (c), theasapogenol E (d), theasapogenol F (e). Subsequent biotransformation of compound a facilitated the isolation of six novel metabolites (a1-a6). The anti-inflammatory potential of these compounds was assessed using pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns molecules (DAMPs)-mediated cellular inflammation models. Notably, compounds b and a2 demonstrated significant inhibitory effects on both lipopolysaccharide (LPS) and high-mobility group box 1 (HMGB1)-induced inflammation, surpassing the efficacy of the standard anti-inflammatory agent, carbenoxolone. Conversely, compounds d, a3, and a6 selectivity targeted endogenous HMGB1-induced inflammation, showcasing a pronounced specificity. These results underscore the therapeutic promise of C. oleifera seed pomace-derived compounds as potent agents for the management of inflammatory diseases triggered by infections and tissue damage.
Collapse
Affiliation(s)
- Pingping Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xuewa Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jingling Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiayi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Richa Raj
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guolong Li
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Weiwei Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Shen P, Sun Y, Jiang X, Zhou X, Nian B, Wang W, Zhang J. Interaction of bioactive kaempferol with HMGB1: Investigation by multi-spectroscopic and molecular simulation methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122360. [PMID: 36724682 DOI: 10.1016/j.saa.2023.122360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Chronic and persistent inflammation associated with excessive high mobility group protein 1 (HMGB1) is a risk factor for various diseases. Dietary intake of kaempferol has been proven to be effective in reducing HMGB1 levels and the degree of inflammation, but the structural mechanism remains unclear. In this context, we first investigated the interaction between bioactive kaempferol and HMGB1 using multi-spectroscopic and molecular simulation techniques. The surface plasmon resonance (SPR) data indicated that kaempferol binds directly to HMGB1 with a Kd value of 2.89 × 10-5 M. Binding of kaempferol with HMGB1 led to the intrinsic fluorescence quenching and modest secondary structure change of HMGB1 supported by fluorescence spectrometry and circular dichroism (CD). Using dynamic light scattering (DLS), it was found that kaempferol induced the aggregation of HMGB1 protein complex to form larger particles. On HMGB1-activated RAW264.7 cells, kaempferol co-incubation exhibited a remarkable inhibitory effect on nitric oxide (NO) release with an IC50 value of 5.02 μM, which was lower than that of quercetin. In silico, kaempferol binds to HMGB1 mainly through hydrogen bonds and hydrophobic forces. Collectively, our study showed kaempferol as a potential HMGB1 inhibitor, mainly acting by direct binding to HMGB1 and inducing its conformational changes, which provides clues for the treatment of chronic inflammation by kaempferol.
Collapse
Affiliation(s)
- Pingping Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yueming Sun
- The Affiliated Baiyun Hospital of Guizhou Medical University, Guizhou 550025, PR China
| | - Xuewa Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaoyang Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Binbin Nian
- RWTH Aachen University, Aachen 52062, Germany
| | - Weiwei Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210046, PR China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
4
|
Abdelmageed ME, Abdelrahman RS. Canagliflozin attenuates thioacetamide-induced liver injury through modulation of HMGB1/RAGE/TLR4 signaling pathways. Life Sci 2023; 322:121654. [PMID: 37023955 DOI: 10.1016/j.lfs.2023.121654] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Thioacetamide (TAA), a classic liver toxic compound, is used to establish experimental models of liver injury via induction of inflammation and oxidative stress. The current study was employed to explore the effects of canagliflozin (CANA), a sodium glucose cotransporter 2 (SGLT-2) inhibitor and antidiabetic agent, on TAA-induced acute liver injury. METHODS A rat model of acute hepatic injury was established using single intraperitoneal injection of TAA (500 mg/kg) and rats received CANA (10 and 30 mg/kg, orally) once daily for 10 days prior to TAA challenge. Liver function, oxidative stress, and inflammatory parameters were measured in serum and hepatic tissues of rats. RESULTS Elevated levels of liver enzymes, hepatic malondialdehyde (MDA), and serum lactate dehydrogenase (LDH) were significantly attenuated by CANA. CANA also increased hepatic superoxide dismutase (SOD) and glutathione (GSH). Hepatic levels of high-mobility group box 1 (HMGB1), toll like receptor4 (TLR4), receptor for advanced glycation end products (RAGE), and pro-inflammatory cytokines (IL-6, and IL-1β) were normalized with CANA. Additionally, Hepatic expression of p-JNK/p-p38 MAPK was significantly attenuated by CANA compared to TAA-treated rats. CANA also decreased hepatic immunoexpression of NF-κB and TNF-α and attenuated hepatic histopathological alterations via reduction of inflammation and necrosis scores and collagen deposition. Moreover, mRNA expression levels of TNF-α and IL-6 were reduced upon CANA treatment. CONCLUSION CANA attenuates TAA-prompted acute liver damage, via suppressing HMGB1/RAGE/TLR4 signaling, regulation of oxidative stress and inflammation pathways.
Collapse
Affiliation(s)
- Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah 30001, Saudi Arabia
| |
Collapse
|
5
|
Panconesi R, Widmer J, Carvalho MF, Eden J, Dondossola D, Dutkowski P, Schlegel A. Mitochondria and ischemia reperfusion injury. Curr Opin Organ Transplant 2022; 27:434-445. [PMID: 35950880 DOI: 10.1097/mot.0000000000001015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review describes the role of mitochondria in ischemia-reperfusion-injury (IRI). RECENT FINDINGS Mitochondria are the power-house of our cells and play a key role for the success of organ transplantation. With their respiratory chain, mitochondria are the main energy producers, to fuel metabolic processes, control cellular signalling and provide electrochemical integrity. The mitochondrial metabolism is however severely disturbed when ischemia occurs. Cellular energy depletes rapidly and various metabolites, including Succinate accumulate. At reperfusion, reactive oxygen species are immediately released from complex-I and initiate the IRI-cascade of inflammation. Prior to the development of novel therapies, the underlying mechanisms should be explored to target the best possible mitochondrial compound. A clinically relevant treatment should recharge energy and reduce Succinate accumulation before organ implantation. While many interventions focus instead on a specific molecule, which may inhibit downstream IRI-inflammation, mitochondrial protection can be directly achieved through hypothermic oxygenated perfusion (HOPE) before transplantation. SUMMARY Mitochondria are attractive targets for novel molecules to limit IRI-associated inflammation. Although dynamic preservation techniques could serve as delivery tool for new therapeutic interventions, their own inherent mechanism should not only be studied, but considered as key treatment to reduce mitochondrial injury, as seen with the HOPE-approach.
Collapse
Affiliation(s)
- Rebecca Panconesi
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Jeannette Widmer
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | | | - Janina Eden
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Daniele Dondossola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| | - Philipp Dutkowski
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| |
Collapse
|
6
|
Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:cells11040688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
|
7
|
Zhang Y, Li Y, Wang Q, Zheng D, Feng X, Zhao W, Cai L, Zhang Q, Xu H, Fu H. Attenuation of hepatic ischemia‑reperfusion injury by adipose stem cell‑derived exosome treatment via ERK1/2 and GSK‑3β signaling pathways. Int J Mol Med 2022; 49:13. [PMID: 34878156 PMCID: PMC8711591 DOI: 10.3892/ijmm.2021.5068] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Exosomes are an emerging therapeutic tool for the treatment of tissue injuries. In the present study, the protective effect of isolated exosomes from adipose‑derived stem cells (ADSCs‑exo) against hepatic ischemia‑reperfusion (I/R) injury was explored. Hepatic I/R injury was achieved by inducing ischemia for 60 min followed by reperfusion for 2 and 6 h. Pre‑treatment with ADSCs‑exo revealed a significant reduction in necrosis and apoptosis in liver tissue induced by I/R injury. Hypoxic oxidative stress was managed by exosome‑mediated reduced reactive oxygen species and increased superoxide dismutase that in turn protected mitochondrial damage and apoptosis. Reduction in inflammatory mediators such as IL‑1β and TNF‑α was also observed and protection of hepatocytes from I/R injury was evidenced by a significant decrease in biochemical markers of liver damage (alanine transaminase, aspartate transaminase and lactate dehydrogenase). Exosomal prostaglandin E2 (PGE2)‑mediated ERK1/2 and GSK‑3β phosphorylation were revealed to increase Bcl‑2 and decrease Bax expression with mitochondrial permeability transition pore‑inhibition which may be considered a prime mechanism of exosome‑mediated hepatoprotection. In conclusion, our results indicated that ADSCs‑exo pre‑treatment is effective in protecting liver I/R injury.
Collapse
Affiliation(s)
- Yaqing Zhang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Yonghua Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Qilong Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Dongyu Zheng
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Xue Feng
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Wei Zhao
- Department of Obstetrics and Gynecology, Inner Mongolia Autonomous Region Corps Hospital of Chinese People's Armed Police Force, Hohhot, Inner Mongolia Autonomous Region 010040, P.R. China
| | - Linlin Cai
- Department of Anesthesiology, Wuxi People's Hospital, Wuxi, Jiangsu 214023, P.R. China
| | - Qingqing Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China
| | - Haitao Xu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Hailong Fu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
8
|
Borjas T, Jacob A, Yen H, Patel V, Coppa G, Aziz M, Wang P. Inhibition of the Interaction of TREM-1 and eCIRP Attenuates Inflammation and Improves Survival in Hepatic Ischemia/Reperfusion. Shock 2022; 57:246-255. [PMID: 34864782 PMCID: PMC8758526 DOI: 10.1097/shk.0000000000001894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Triggering receptor expressed on myeloid cells-1 (TREM-1) has important implications in sepsis and inflammation and is a novel receptor for extracellular cold-inducible RNA-binding protein (eCIRP). We hypothesize that the inhibition of TREM-1 via its interaction with eCIRP by novel peptide inhibitor M3 or knockout gene will attenuate the inflammation and injury associated with severe hepatic ischemia/reperfusion (I/R). METHODS Wild-type (WT) C57BL/6 and TREM-1-/- mice underwent 60 min of 70% hepatic ischemia, with 24 h of reperfusion. Additionally, WT mice underwent hepatic I/R and were treated with M3 (10 mg/kg body weight) or vehicle (normal saline) at the start of reperfusion. Blood and ischemic liver tissues were collected, and analysis was performed using enzymatic assays, enzyme-linked immunosorbent assay, reverse-transcription quantitative polymerase chain reaction, and pathohistology techniques. For survival surgery, mice additionally underwent resection of non-ischemic lobes of the liver and survival was monitored for 10 days. RESULTS There was an increase in serum levels of tissue markers including aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase as well as cytokine levels (IL-6) and histological scoring of hematoxylin and eosin sections in WT I/R mice. These markers decreased substantially in TREM-1-/- mice. Additionally, neutrophil infiltration markers and markers of local inflammation (myeloperoxidase, macrophage inflammatory protein-2, cyclooxygenase-2) were attenuated in TREM-1-/- mice. Similarly, we show a significant decrease in injury and inflammation markers with M3 treatment. Additionally, we demonstrate decreased apoptosis with TREM-1 inhibition. Finally, M3 treatment improved the survival rate from 42% to 75% after hepatic I/R. CONCLUSION TREM-1 is an important eCIRP receptor in the inflammatory response of hepatic I/R, and deficiency of TREM-1 via knockout gene or peptide inhibition attenuated liver injury and inflammation, and improved survival. Inhibition of the TREM-1 and eCIRP interaction in hepatic I/R may have important therapeutic potential.
Collapse
Affiliation(s)
- Timothy Borjas
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Asha Jacob
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - HaoTing Yen
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Vihas Patel
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Gene Coppa
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Monowar Aziz
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Ping Wang
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| |
Collapse
|
9
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
10
|
The Role of Mitochondria in Liver Ischemia-Reperfusion Injury: From Aspects of Mitochondrial Oxidative Stress, Mitochondrial Fission, Mitochondrial Membrane Permeable Transport Pore Formation, Mitophagy, and Mitochondria-Related Protective Measures. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670579. [PMID: 34285766 PMCID: PMC8275408 DOI: 10.1155/2021/6670579] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Ischemia-reperfusion injury (IRI) has indeed been shown as a main complication of hepatectomy, liver transplantation, trauma, and hypovolemic shock. A large number of studies have confirmed that microvascular and parenchymal damage is mainly caused by reactive oxygen species (ROS), which is considered to be a major risk factor for IRI. Under normal conditions, ROS as a kind of by-product of cellular metabolism can be controlled at normal levels. However, when IRI occurs, mitochondrial oxidative phosphorylation is inhibited. In addition, oxidative respiratory chain damage leads to massive consumption of adenosine triphosphate (ATP) and large amounts of ROS. Additionally, mitochondrial dysfunction is involved in various organs and tissues in IRI. On the one hand, excessive free radicals induce mitochondrial damage, for instance, mitochondrial structure, number, function, and energy metabolism. On the other hand, the disorder of mitochondrial fusion and fission results in further reduction of the number of mitochondria so that it is not enough to clear excessive ROS, and mitochondrial structure changes to form mitochondrial membrane permeable transport pores (mPTPs), which leads to cell necrosis and apoptosis, organ failure, and metabolic dysfunction, increasing morbidity and mortality. According to the formation mechanism of IRI, various substances have been discovered or synthesized for specific targets and cell signaling pathways to inhibit or slow the damage of liver IRI to the body. Here, based on the development of this field, this review describes the role of mitochondria in liver IRI, from aspects of mitochondrial oxidative stress, mitochondrial fusion and fission, mPTP formation, and corresponding protective measures. Therefore, it may provide references for future clinical treatment and research.
Collapse
|
11
|
Hamed M, Logan A, Gruszczyk AV, Beach TE, James AM, Dare AJ, Barlow A, Martin J, Georgakopoulos N, Gane AM, Crick K, Fouto D, Fear C, Thiru S, Dolezalova N, Ferdinand JR, Clatworthy MR, Hosgood SA, Nicholson ML, Murphy MP, Saeb-Parsy K. Mitochondria-targeted antioxidant MitoQ ameliorates ischaemia-reperfusion injury in kidney transplantation models. Br J Surg 2021; 108:1072-1081. [PMID: 33963377 DOI: 10.1093/bjs/znab108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/28/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Ischaemia-reperfusion (IR) injury makes a major contribution to graft damage during kidney transplantation. Oxidative damage to mitochondria is an early event in IR injury. Therefore, the uptake, safety, and efficacy of the mitochondria-targeted antioxidant MitoQ were investigated in models of transplant IR injury. METHODS MitoQ uptake by warm and cooled pairs of pig and declined human kidneys was measured when preserved in cold static storage or by hypothermic machine perfusion. Pairs of pigs' kidneys were exposed to defined periods of warm and cold ischaemia, flushed and stored at 4°C with or without MitoQ (50 nmol/l to 250 µmol/l), followed by reperfusion with oxygenated autologous blood in an ex vivo normothermic perfusion (EVNP). Pairs of declined human kidneys were flushed and stored with or without MitoQ (5-100 µmol/l) at 4°C for 6 h and underwent EVNP with ABO group-matched blood. RESULTS Stable and concentration-dependent uptake of MitoQ was demonstrated for up to 24 h in pig and human kidneys. Total blood flow and urine output were significantly greater in pig kidneys treated with 50 µmol/l MitoQ compared with controls (P = 0.006 and P = 0.007 respectively). In proof-of-concept experiments, blood flow after 1 h of EVNP was significantly greater in human kidneys treated with 50 µmol/l MitoQ than in controls (P ≤ 0.001). Total urine output was numerically higher in the 50-µmol/l MitoQ group compared with the control, but the difference did not reach statistical significance (P = 0.054). CONCLUSION Mitochondria-targeted antioxidant MitoQ can be administered to ischaemic kidneys simply and effectively during cold storage, and may improve outcomes after transplantation.
Collapse
Affiliation(s)
- M Hamed
- Department of Surgery, University of Cambridge, Cambridge, UK.,MRC Mitochondrial Biology Unit, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| | - A Logan
- MRC Mitochondrial Biology Unit, Cambridge, UK
| | - A V Gruszczyk
- Department of Surgery, University of Cambridge, Cambridge, UK.,MRC Mitochondrial Biology Unit, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| | - T E Beach
- Department of Surgery, University of Cambridge, Cambridge, UK.,MRC Mitochondrial Biology Unit, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| | - A M James
- MRC Mitochondrial Biology Unit, Cambridge, UK
| | - A J Dare
- Department of Surgery, University of Cambridge, Cambridge, UK.,MRC Mitochondrial Biology Unit, Cambridge, UK
| | - A Barlow
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - J Martin
- Department of Surgery, University of Cambridge, Cambridge, UK.,MRC Mitochondrial Biology Unit, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| | - N Georgakopoulos
- Department of Surgery, University of Cambridge, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| | - A M Gane
- Department of Surgery, University of Cambridge, Cambridge, UK.,MRC Mitochondrial Biology Unit, Cambridge, UK
| | - K Crick
- Department of Surgery, University of Cambridge, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| | - D Fouto
- Department of Surgery, University of Cambridge, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| | - C Fear
- Department of Surgery, University of Cambridge, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| | - S Thiru
- Department of Pathology, Cambridge University Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge, UK
| | - N Dolezalova
- Department of Surgery, University of Cambridge, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| | - J R Ferdinand
- Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - M R Clatworthy
- Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - S A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| | - M L Nicholson
- Department of Surgery, University of Cambridge, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| | - M P Murphy
- MRC Mitochondrial Biology Unit, Cambridge, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - K Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK.,Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, UK
| |
Collapse
|
12
|
Iske J, Elkhal A, Tullius SG. The Fetal-Maternal Immune Interface in Uterus Transplantation. Trends Immunol 2021; 41:213-224. [PMID: 32109373 DOI: 10.1016/j.it.2020.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/16/2022]
Abstract
Uterus transplants (UTxs) have been performed worldwide. Overall frequencies have been low, but globally initiated UTx programs are expected to increase clinical implementation. The uterus constitutes a unique immunological environment with specific features of tissue renewal and a receptive endometrium. Decidual immune cells facilitate embryo implantation and placenta development. Although UTx adds to the complexity of immunity during pregnancy and transplantation, the procedure provides a unique clinical and experimental model. We posit that understanding the distinct immunological properties at the interface of the transplanted uterus, the fetus and maternal circulation might provide valuable novel insights while improving outcomes for UTx. Here, we discuss immunological challenges and opportunities of UTx affecting mother, pregnancy and healthy livebirths.
Collapse
Affiliation(s)
- Jasper Iske
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Abdallah Elkhal
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Bindi E, Alganabi M, Biouss G, Liu J, Li B, Miyake H, Angotti R, Pierro A. Hepatic oxidative injury: role of mitochondrial dysfunction in necrotizing enterocolitis. Pediatr Surg Int 2021; 37:325-332. [PMID: 33547933 DOI: 10.1007/s00383-020-04816-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Necrotizing enterocolitis (NEC) is a severe neonatal gastrointestinal disease that can cause damage to remote organs. Previous studies have shown that inflammatory and oxidative injury occur in the liver during NEC. Mitochondrial DNA (mtDNA) plays an important role in hepatic injuries of many other diseases. We aimed to investigate the mechanism of mitochondrial dysfunction in hepatic oxidative injury during NEC. METHODS NEC was induced in C57BL/6 mice (approval: 44032) by hypoxia, gavage feeding with hyperosmolar formula, and lipopolysaccharide administration from postnatal days 5 to 9 (n = 15). Two additional groups with hypoxia only (n = 10) and hypoxia and hyperosmolar formula (n = 13) were also examined. Breastfed pups were used as control (n = 15). Liver was harvested on postnatal day 9. Gene expressions of mtDNA markers cytochrome c oxidase subunit 3 (COX3), cytochrome b (CYTB) and NADH-ubiquinone oxidoreductase chain 1 (ND1) were measured by real-time qPCR. Mitochondrial morphology marker HSP60 and oxidative stress marker NRF2 were detected by immunofluorescence staining and compared between NEC and control. Data were presented as mean ± SD and compared using Student's t test; p < 0.05 was considered significant. RESULTS Gene expression of mtDNA markers (COX3, CYTB, and ND1) were significantly decreased in the liver of NEC mice relative to control, hypoxia alone, and hypoxia with hyperosmolar formula. Immunofluorescence showed depletion of HSP60 indicating decreased mitochondria in NEC liver relative to control. Furthermore, a higher protein expression of NRF2 was observed indicating higher oxidative stress in NEC liver relative to control. CONCLUSIONS Intestinal injury in experimental NEC leads to a systemic inflammatory response affecting the liver. Hepatic oxidative injury in NEC is characterized by decreased mitochondria and mtDNA depletion. This study provides insight into the mechanism of liver injury in NEC.
Collapse
Affiliation(s)
- Edoardo Bindi
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada.,Department of Medical Sciences, Surgical Sciences and Neurosciences, Division of Pediatric Surgery, Hospital of "Santa Maria Alle Scotte", Siena, Italy
| | - Mashriq Alganabi
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - George Biouss
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Jia Liu
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Hiromu Miyake
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Rossella Angotti
- Department of Medical Sciences, Surgical Sciences and Neurosciences, Division of Pediatric Surgery, Hospital of "Santa Maria Alle Scotte", Siena, Italy
| | - Agostino Pierro
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
14
|
Kawasoe J, Uchida Y, Miyauchi T, Kadono K, Hirao H, Saga K, Watanabe T, Ueda S, Terajima H, Uemoto S. The lectin-like domain of thrombomodulin is a drug candidate for both prophylaxis and treatment of liver ischemia and reperfusion injury in mice. Am J Transplant 2021; 21:540-551. [PMID: 32805077 PMCID: PMC7891328 DOI: 10.1111/ajt.16269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 01/25/2023]
Abstract
Ischemia and reperfusion injury (IRI) can occur in any tissue or organ. With respect to liver transplantation, the liver grafts from donors by definition experience transient ischemia and subsequent blood reflow. IRI is a problem not only in organ transplantation but also in cases of thrombosis or circulatory disorders such as mesenteric ischemia, myocardial, or cerebral infarction. We have reported that recombinant human soluble thrombomodulin (rTM), which is currently used in Japan to treat disseminated intravascular coagulation (DIC), has a protective effect and suppresses liver IRI in mice. However, rTM may not be fully safe to use in humans because of its inherent anticoagulant activity. In the present study, we used a mouse liver IRI model to explore the possibility that the isolated lectin-like domain of rTM (rTMD1), which has no anticoagulant activity, could be effective as a therapeutic modality for IRI. Our results indicated that rTMD1 could suppress ischemia and reperfusion-induced liver damage in a dose-dependent manner without concern of associated hemorrhage. Surprisingly, rTMD1 suppressed the liver damage even after IR insult had occurred. Taken together, we conclude that rTMD1 may be a candidate drug for prevention of and therapy for human liver IRI without the possible risk of hemorrhage.
Collapse
Affiliation(s)
- Junya Kawasoe
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan,Department of Gastroenterological Surgery and OncologyThe Tazuke Kofukai Medical Research Institute, Kitano HospitalOsakaJapan
| | - Yoichiro Uchida
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan,Department of Gastroenterological Surgery and OncologyThe Tazuke Kofukai Medical Research Institute, Kitano HospitalOsakaJapan
| | - Tomoyuki Miyauchi
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan,Department of Gastroenterological Surgery and OncologyThe Tazuke Kofukai Medical Research Institute, Kitano HospitalOsakaJapan
| | - Kentaro Kadono
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hirofumi Hirao
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kenichi Saga
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan,Department of Gastroenterological Surgery and OncologyThe Tazuke Kofukai Medical Research Institute, Kitano HospitalOsakaJapan
| | - Takeshi Watanabe
- Division of Immunology, Institute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
| | - Shugo Ueda
- Department of Gastroenterological Surgery and OncologyThe Tazuke Kofukai Medical Research Institute, Kitano HospitalOsakaJapan
| | - Hiroaki Terajima
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan,Department of Gastroenterological Surgery and OncologyThe Tazuke Kofukai Medical Research Institute, Kitano HospitalOsakaJapan
| | - Shinji Uemoto
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
15
|
Sebastian-Valverde M, Wu H, Al Rahim M, Sanchez R, Kumar K, De Vita RJ, Pasinetti GM. Discovery and characterization of small-molecule inhibitors of NLRP3 and NLRC4 inflammasomes. J Biol Chem 2021; 296:100597. [PMID: 33781745 PMCID: PMC8095128 DOI: 10.1016/j.jbc.2021.100597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammasomes are macromolecular complexes involved in the host response to external and endogenous danger signals. Inflammasome-mediated sterile inflammation plays a central role in several human conditions such as autoimmune diseases, type-2 diabetes, and neurodegenerative disorders, indicating inflammasomes could be appealing therapeutic targets. Previous work has demonstrated that inhibiting the ATPase activity of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3), disrupts inflammasome assembly and function. However, there is a necessity to find new potent compounds with therapeutic potential. Here we combine computational modeling of the target and virtual screening to discover a group of novel compounds predicted to inhibit NLRP3. We characterized the best compounds and determined their potency, specificity, and ability to inhibit processes downstream from NLRP3 activation. Moreover, we analyzed in mice the competence of a lead candidate to reduce lipopolysaccharide-induced inflammation. We also validated the active pharmacophore shared among all the NLRP3 inhibitors, and through computational docking, we clarify key structural features for compound positioning within the inflammasome ATP-binding site. Our study sets the basis for rational design and optimization of inflammasome-targeting probes and drugs.
Collapse
Affiliation(s)
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert J De Vita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| |
Collapse
|
16
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
17
|
Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020; 73:933-951. [PMID: 32371195 PMCID: PMC7502511 DOI: 10.1016/j.jhep.2020.04.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and restoration of homeostasis. Chronic release of these molecules can also promote inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated molecular patterns as danger signals in liver injury. We consider the role of reactive oxygen species and reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific damage-associated molecular patterns participate in the pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-associated molecular patterns in ischaemia reperfusion injury and liver transplantation and highlight current studies in which blockade of specific damage-associated molecular patterns has proven beneficial in humans and mice.
Collapse
Affiliation(s)
- Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA.
| |
Collapse
|
18
|
Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in Sepsis. Front Immunol 2019; 10:2536. [PMID: 31736963 PMCID: PMC6831555 DOI: 10.3389/fimmu.2019.02536] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a deadly inflammatory syndrome caused by an exaggerated immune response to infection. Much has been focused on host response to pathogens mediated through the interaction of pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs). PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Some well described members of the DAMP family are extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), histones, and adenosine triphosphate (ATP). DAMPs are released from the cell through inflammasome activation or passively following cell death. Similarly, neutrophil extracellular traps (NETs) are released from neutrophils during inflammation. NETs are webs of extracellular DNA decorated with histones, myeloperoxidase, and elastase. Although NETs contribute to pathogen clearance, excessive NET formation promotes inflammation and tissue damage in sepsis. Here, we review DAMPs and NETs and their crosstalk in sepsis with respect to their sources, activation, release, and function. A clear grasp of DAMPs, NETs and their interaction is crucial for the understanding of the pathophysiology of sepsis and for the development of novel sepsis therapeutics.
Collapse
Affiliation(s)
- Naomi-Liza Denning
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Steven D Gurien
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
19
|
Hirakawa Y, Tsuchishima M, Fukumura A, Kinoshita K, Hayashi N, Saito T, George J, Toshikuni N, Ueda Y, Tsutsumi M. Recombinant thrombomodulin prevented hepatic ischemia-reperfusion injury by inhibiting high-mobility group box 1 in rats. Eur J Pharmacol 2019; 863:172681. [PMID: 31542482 DOI: 10.1016/j.ejphar.2019.172681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023]
Abstract
Recombinant thrombomodulin (rTM) is a novel anticoagulant and anti-inflammatory agent that inhibits secretion of high-mobility group box 1 (HMGB1) from liver. We evaluated the protective effects of rTM on hepatic ischemia-reperfusion injury in rats. Ischemia was induced by clamping the portal vein and hepatic artery of left lateral and median lobes of the liver. At 30 min before ischemia and at 6 h after reperfusion, 0.3 ml of saline (IR group) or 0.3 ml of saline containing 6 mg/kg body weight of rTM (IR-rTM group) was injected into the liver through inferior vena cava or caudate vein. Blood flow was restored at 60 min of ischemia. Blood was collected 30 min prior to induction of ischemia and before restoration of blood flow, and at 6, 12, and 24 h after reperfusion. All the animals were euthanized at 24 h after reperfusion and the livers were harvested and subjected to biochemical and pathological evaluations. Serum levels of ALT, AST, and HMGB1 were significantly lower after reperfusion in the IR-rTM group compared to IR group. Marked hepatic necrosis was present in the IR group, while necrosis was almost absent in IR-rTM group. Treatment with rTM significantly reduced the expression of TNF-α and formation of 4-hydroxynonenal in the IR-rTM group compared to IR group. The results of the present study indicate that rTM could be used as a potent therapeutic agent to prevent IR-induced hepatic injury and the related adverse events.
Collapse
Affiliation(s)
- Yuki Hirakawa
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Atsushi Fukumura
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Kaori Kinoshita
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Nobuhiko Hayashi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Takashi Saito
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Nobuyuki Toshikuni
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Yoshimichi Ueda
- Department of Pathology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
20
|
Safe coordinated trafficking of heme and iron with copper maintain cell homeostasis: modules from the hemopexin system. Biometals 2019; 32:355-367. [PMID: 31011852 DOI: 10.1007/s10534-019-00194-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Studies with patients, animal models of human disease and hemopexin null mice have shown that the heme-binding protein hemopexin is vital for the protection of a variety of cell types and tissues against heme toxicity. The presence of hemopexin in all biological fluids examined to date indicates wide roles in abrogating heme toxicity in human tissues; and, thus, is clinically relevant. Heme-hemopexin endocytosis leads to coordinated trafficking of heme, iron and copper as heme traffics from endosomes to heme oxygenases (HOs) in the smooth endoplasmic reticulum and to the nucleus. This is safe redox-metal trafficking, without oxidative stress, as iron released from heme catabolism by HOs as well as copper taken up with heme-hemopexin move through the cell. To our knowledge, this coordinated metal trafficking has been described only for the hemopexin system and differs from the cell's response to non-protein bound heme, which can be toxic. We propose that defining how cells respond to heme-hemopexin endocytosis, a natural cytoprotective system, will aid our understanding of how cells adapt as they safely respond to increases in heme, Fe(II) and copper. This is relevant for many genetic hemolytic diseases and conditions, stroke and hemorrhage as well as neurodegeneration. Such analyses will help to define a pattern of events that can be utilized to characterize how dysfunctional redox and transition metal handling is linked to the development of pathology in disease states such as Alzheimer's disease when metal homeostasis is not restored; and potentially provide novel targets and approaches to improve therapies.
Collapse
|