1
|
Li Y, Zhao J, Guo S, He D. siRNA therapy in osteoarthritis: targeting cellular pathways for advanced treatment approaches. Front Immunol 2024; 15:1382689. [PMID: 38895116 PMCID: PMC11184127 DOI: 10.3389/fimmu.2024.1382689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is a common joint disorder characterized by the degeneration of cartilage and inflammation, affecting millions worldwide. The disease's complex pathogenesis involves various cell types, such as chondrocytes, synovial cells, osteoblasts, and immune cells, contributing to the intricate interplay of factors leading to tissue degradation and pain. RNA interference (RNAi) therapy, particularly through the use of small interfering RNA (siRNA), emerges as a promising avenue for OA treatment due to its capacity for specific gene silencing. siRNA molecules can modulate post-transcriptional gene expression, targeting key pathways involved in cellular proliferation, apoptosis, senescence, autophagy, biomolecule secretion, inflammation, and bone remodeling. This review delves into the mechanisms by which siRNA targets various cell populations within the OA milieu, offering a comprehensive overview of the potential therapeutic benefits and challenges in clinical application. By summarizing the current advancements in siRNA delivery systems and therapeutic targets, we provide a solid theoretical foundation for the future development of novel siRNA-based strategies for OA diagnosis and treatment, paving the way for innovative and more effective approaches to managing this debilitating disease.
Collapse
Affiliation(s)
- Yunshen Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Zhang G, Samarawickrama PN, Gui L, Ma Y, Cao M, Zhu H, Li W, Yang H, Li K, Yang Y, Zhu E, Li W, He Y. Revolutionizing Diabetic Foot Ulcer Care: The Senotherapeutic Approach. Aging Dis 2024:AD.2024.0065. [PMID: 38739931 DOI: 10.14336/ad.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are a prevalent and profoundly debilitating complication that afflicts individuals with diabetes mellitus (DM). These ulcers are associated with substantial morbidity, recurrence rates, disability, and mortality, imposing substantial economic, psychological, and medical burdens. Timely detection and intervention can mitigate the morbidity and disparities linked to DFU. Nevertheless, current therapeutic approaches for DFU continue to grapple with multifaceted limitations. A growing body of evidence emphasizes the crucial role of cellular senescence in the pathogenesis of chronic wounds. Interventions that try to delay cellular senescence, eliminate senescent cells (SnCs), or suppress the senescence-associated secretory phenotype (SASP) have shown promise for helping chronic wounds to heal. In this context, targeting cellular senescence emerges as a novel therapeutic strategy for DFU. In this comprehensive review, we look at the pathology and treatment of DFU in a systematic way. We also explain the growing importance of investigating SnCs in DFU and highlight the great potential of senotherapeutics that target SnCs in DFU treatment. The development of efficacious and safe senotherapeutics represents a pioneering therapeutic approach aimed at enhancing the quality of life for individuals affected by DFU.
Collapse
Affiliation(s)
- Guiqin Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li Gui
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Yuan Ma
- Department of Orthopedics, the Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Mei Cao
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Hong Zhu
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Wei Li
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Honglin Yang
- Department of Orthopedics, the Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Kecheng Li
- Department of Orthopedics, the Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Yang Yang
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Enfang Zhu
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Wen Li
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
3
|
Gomez LS, Jurk D. Unlocking the Potential of Senolytic Compounds: Advancements, Opportunities, and Challenges in Ageing-Related Research. Subcell Biochem 2024; 107:91-116. [PMID: 39693021 DOI: 10.1007/978-3-031-66768-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Cellular senescence is recognised as a contributor to the ageing process and the development of multiple age-related conditions. Researchers have launched efforts to identify compounds capable to selectively kill senescent cells, known as senolytics, without affecting non senescent cells. As of now, over 40 compounds have demonstrated senolytic properties, offering promising prospects for reversing or ameliorating age-related conditions in preclinical studies.This chapter presents the most recent developments in senolytic drug research, encompassing investigations spanning basic science, preclinical trials, and clinical studies. While many of these investigations have generated encouraging results in the realm of age-related interventions, this chapter also addresses potential challenges and pitfalls.
Collapse
Affiliation(s)
- Lilian Sales Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Niklander SE, Aránguiz P, Faunes F, Martínez-Flores R. Aging and oral squamous cell carcinoma development: the role of cellular senescence. FRONTIERS IN ORAL HEALTH 2023; 4:1285276. [PMID: 37904749 PMCID: PMC10613501 DOI: 10.3389/froh.2023.1285276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
The gradual accumulation and inadequate renewal of senescent cells over time drive organismal aging. Senescent cells undergo altered gene expression and release inflammatory mediators collectively termed the senescence-associated secretory phenotype (SASP), which significantly contributes to a spectrum of age-related disorders, including cancer. In the context of carcinogenesis, the SASP produced by senescent cells has been implicated in the promotion of epithelial cancers, including oral squamous cell carcinoma (OSCC), the most common form of oral cancer. Senescent cells within the tumor microenvironment release factors that amplify the growth and invasiveness of neighboring cancer cells. Senotherapeutics, including senolytics and senomorphics, emerge as promising modalities to target senescent cells and their associated inflammatory factors, thereby opening novel avenues for augmenting the efficacy of cancer treatments. Here, we review the general aspects of cellular senescence, focusing on the relation between senescence-related inflammation with cancer development. We also analyze the available evidence linking cellular senescence with OSCC, highlighting possible clinical applications.
Collapse
Affiliation(s)
- Sven Eric Niklander
- Unit of Oral Pathology and Oral Medicine, Faculty of Dentistry, Universidad Andres Bello, Viña del Mar, Chile
| | - Pablo Aránguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Viña del Mar, Chile
| | - Fernando Faunes
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Viña del Mar, Chile
| | - René Martínez-Flores
- Unit of Oral Pathology and Oral Medicine, Faculty of Dentistry, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
5
|
Rose JP, Schurman CA, King CD, Bons J, Patel SK, Burton JB, O’Broin A, Alliston T, Schilling B. Deep coverage and quantification of the bone proteome provides enhanced opportunities for new discoveries in skeletal biology and disease. PLoS One 2023; 18:e0292268. [PMID: 37816044 PMCID: PMC10564166 DOI: 10.1371/journal.pone.0292268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Dysregulation of cell signaling in chondrocytes and in bone cells, such as osteocytes, osteoblasts, osteoclasts, and an elevated burden of senescent cells in cartilage and bone, are implicated in osteoarthritis (OA). Mass spectrometric analyses provides a crucial molecular tool-kit to understand complex signaling relationships in age-related diseases, such as OA. Here we introduce a novel mass spectrometric workflow to promote proteomic studies of bone. This workflow uses highly specialized steps, including extensive overnight demineralization, pulverization, and incubation for 72 h in 6 M guanidine hydrochloride and EDTA, followed by proteolytic digestion. Analysis on a high-resolution Orbitrap Eclipse and Orbitrap Exploris 480 mass spectrometer using Data-Independent Acquisition (DIA) provides deep coverage of the bone proteome, and preserves post-translational modifications, such as hydroxyproline. A spectral library-free quantification strategy, directDIA, identified and quantified over 2,000 protein groups (with ≥ 2 unique peptides) from calcium-rich bone matrices. Key components identified were proteins of the extracellular matrix (ECM), bone-specific proteins (e.g., secreted protein acidic and cysteine rich, SPARC, and bone sialoprotein 2, IBSP), and signaling proteins (e.g., transforming growth factor beta-2, TGFB2), and lysyl oxidase homolog 2 (LOXL2), an important protein in collagen crosslinking. Post-translational modifications (PTMs) were identified without the need for specific enrichment. This includes collagen hydroxyproline modifications, chemical modifications for collagen self-assembly and network formation. Multiple senescence factors were identified, such as complement component 3 (C3) protein of the complement system and many matrix metalloproteinases, that might be monitored during age-related bone disease progression. Our innovative workflow yields in-depth protein coverage and quantification strategies to discover underlying biological mechanisms of bone aging and to provide tools to monitor therapeutic interventions. These novel tools to monitor the bone proteome open novel horizons to investigate bone-specific diseases, many of which are age-related.
Collapse
Affiliation(s)
- Jacob P. Rose
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | | | - Christina D. King
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Sandip K. Patel
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Jordan B. Burton
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Amy O’Broin
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, Unted States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, United States of America
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA, United States of America
| |
Collapse
|
6
|
Liu Z, Wang T, Sun X, Nie M. Autophagy and apoptosis: regulatory factors of chondrocyte phenotype transition in osteoarthritis. Hum Cell 2023:10.1007/s13577-023-00926-2. [PMID: 37277675 DOI: 10.1007/s13577-023-00926-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Osteoarthritis (OA) is the main pathogenic factor in diseases that cause joint deformities. As the main manifestation of the progress of OA, cartilage degradation has been closely associated with the degeneration of chondrocytes, which is induced by inflammatory factors and other trauma factors. Autophagy and apoptosis are the main mechanisms for cells to maintain homeostasis and play crucial roles in OA. Under the influence of external environmental factors (such as aging and injury), the metabolism of cells can be altered, which may affect the extent of autophagy and apoptosis. With the progression of OA, these changes can alter the cell phenotypes, and the cells of different phenotypes display distinct differences in morphology and function. In this review, we have summarized the alteration in cell metabolism, autophagy, and the extent of apoptosis during OA progression and its effects on the cell phenotypes to provide new ideas for further research on the mechanisms of phenotypic transition and therapeutic strategies so as to reverse the cell phenotypes.
Collapse
Affiliation(s)
- Zhibo Liu
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, People's Republic of China
| | - Ting Wang
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, People's Republic of China
| | - Xianding Sun
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, People's Republic of China.
| | - Mao Nie
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Lin J, Jia S, Zhang W, Nian M, Liu P, Yang L, Zuo J, Li W, Zeng H, Zhang X. Recent Advances in Small Molecule Inhibitors for the Treatment of Osteoarthritis. J Clin Med 2023; 12:jcm12051986. [PMID: 36902773 PMCID: PMC10004353 DOI: 10.3390/jcm12051986] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Osteoarthritis refers to a degenerative disease with joint pain as the main symptom, and it is caused by various factors, including fibrosis, chapping, ulcers, and loss of articular cartilage. Traditional treatments can only delay the progression of osteoarthritis, and patients may need joint replacement eventually. As a class of organic compound molecules weighing less than 1000 daltons, small molecule inhibitors can target proteins as the main components of most drugs clinically. Small molecule inhibitors for osteoarthritis are under constant research. In this regard, by reviewing relevant manuscripts, small molecule inhibitors targeting MMPs, ADAMTS, IL-1, TNF, WNT, NF-κB, and other proteins were reviewed. We summarized these small molecule inhibitors with different targets and discussed disease-modifying osteoarthritis drugs based on them. These small molecule inhibitors have good inhibitory effects on osteoarthritis, and this review will provide a reference for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shantou University Medical College, Shantou 515041, China
| | - Weifei Zhang
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Mengyuan Nian
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peng Liu
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Li Yang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianwei Zuo
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (W.L.); (H.Z.); (X.Z.)
| | - Hui Zeng
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (W.L.); (H.Z.); (X.Z.)
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (W.L.); (H.Z.); (X.Z.)
| |
Collapse
|
8
|
Moiseeva V, Cisneros A, Cobos AC, Tarrega AB, Oñate CS, Perdiguero E, Serrano AL, Muñoz-Cánoves P. Context-dependent roles of cellular senescence in normal, aged, and disease states. FEBS J 2023; 290:1161-1185. [PMID: 35811491 DOI: 10.1111/febs.16573] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that often emerges after tissue damage and in age-related diseases. Through the production of a multicomponent secretory phenotype (SASP), senescent cells can impact the regeneration and function of tissues. However, the effects of senescent cells and their SASP are very heterogeneous and depend on the tissue environment and type as well as the duration of injury, the degree of persistence of senescent cells and the organism's age. While the transient presence of senescent cells is widely believed to be beneficial, recent data suggest that it is detrimental for tissue regeneration after acute damage. Furthermore, although senescent cell persistence is typically associated with the progression of age-related chronic degenerative diseases, it now appears to be also necessary for correct tissue function in the elderly. Here, we discuss what is currently known about the roles of senescent cells and their SASP in tissue regeneration in ageing and age-related diseases, highlighting their (negative and/or positive) contributions. We provide insight for future research, including the possibility of senolytic-based therapies and cellular reprogramming, with aims ranging from enhancing tissue repair to extending a healthy lifespan.
Collapse
Affiliation(s)
- Victoria Moiseeva
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Andrés Cisneros
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aina Calls Cobos
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aida Beà Tarrega
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Claudia Santos Oñate
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,ICREA, Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| |
Collapse
|
9
|
Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J 2023; 290:1362-1383. [PMID: 35015337 DOI: 10.1111/febs.16350] [Citation(s) in RCA: 200] [Impact Index Per Article: 200.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
The concept of geroscience is that since ageing is the greatest risk factor for many diseases and conditions, targeting the ageing process itself will have the greatest impact on human health. Of the hallmarks of ageing, cellular senescence has emerged as a druggable therapeutic target for extending healthspan in model organisms. Cellular senescence is a cell state of irreversible proliferative arrest driven by different types of stress, including oncogene-induced stress. Many senescent cells (SnCs) develop a senescent-associated secretory phenotype (SASP) comprising pro-inflammatory cytokines, chemokines, proteases, bioactive lipids, inhibitory molecules, extracellular vesicles, metabolites, lipids and other factors, able to promote chronic inflammation and tissue dysfunction. SnCs up-regulate senescent cell anti-apoptotic pathways (SCAPs) that prevent them from dying despite the accumulation of damage to DNA and other organelles. These SCAPs and other pathways altered in SnCs represent therapeutic targets for the development of senotherapeutic drugs that induce selective cell death of SnCs, specifically termed senolytics or suppress markers of senescence, in particular the SASP, termed senomorphics. Here, we review the current state of the development of senolytics and senomorphics for the treatment of age-related diseases and disorders and extension of healthy longevity. In addition, the challenges of documenting senolytic and senomorphic activity in pre-clinical models and the current state of the clinical application of the different senotherapeutics will be discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Louise E Pitcher
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Vaishali Prahalad
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Abstract
Cellular senescence has become a subject of great interest within the ageing research field over the last 60 years, from the first observation in vitro by Leonard Hayflick and Paul Moorhead in 1961, to novel findings of phenotypic sub-types and senescence-like phenotype in post-mitotic cells. It has essential roles in wound healing, tumour suppression and the very first stages of human development, while causing widespread damage and dysfunction with age leading to a raft of age-related diseases. This chapter discusses these roles and their interlinking pathways, and how the observed accumulation of senescent cells with age has initiated a whole new field of ageing research, covering pathologies in the heart, liver, kidneys, muscles, brain and bone. This chapter will also examine how senescent cell accumulation presents in these different tissues, along with their roles in disease development. Finally, there is much focus on developing treatments for senescent cell accumulation in advanced age as a method of alleviating age-related disease. We will discuss here the various senolytic and senostatic treatment approaches and their successes and limitations, and the innovative new strategies being developed to address the differing effects of cellular senescence in ageing and disease.
Collapse
Affiliation(s)
- Rebecca Reed
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
11
|
Potential Role of Polyphenolic Flavonoids as Senotherapeutic Agents in Degenerative Diseases and Geroprotection. Pharmaceut Med 2022; 36:331-352. [PMID: 36100824 PMCID: PMC9470070 DOI: 10.1007/s40290-022-00444-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 10/29/2022]
|
12
|
Zhao M, Pan B, He Y, Niu B, Gao X. Elucidating the pharmacological mechanism by which Si-Wu-Tang induces cellular senescence in breast cancer via multilevel data integration. Aging (Albany NY) 2022; 14:5812-5837. [PMID: 35859293 PMCID: PMC9365552 DOI: 10.18632/aging.204185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023]
Abstract
Traditional Chinese medicine (TCM) is a promising strategy for effectively treating cancer by inducing cellular senescence with minimal side effects. Si-Wu-Tang (SWT) is a TCM composed of four herbs that is commonly used in China for the treatment of gynecological diseases; SWT can prevent breast cancer (BC), but the molecular mechanism by which SWT induces cellular senescence and its clinical application value remain unknown. We identified 335 differentially expressed genes (DEGs) in SWT-treated MCF-7 cells through Gene Expression Omnibus (GEO) dataset analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed the enrichment of biological processes and key signaling pathways including cellular senescence, the cell cycle, the MAPK signaling pathway, and the p53 signaling pathway. Additionally, SWT induced BC cell senescence by upregulating the expression of 33 aging/senescence-induced genes (ASIGs). According to LASSO regression analysis, NDRG1, ERRFI1, SOCS1, IRS2, IGFBP4, and BIRC3 levels were associated with BC prognosis and were used to develop risk scores. ERRFI1, SOCS1, IRS2, IGFBP4, and BIRC3 were identified as protective factors (P < 0.05, HR < 1), while NDRG1 was identified as a risk factor (P < 0.05, HR > 1). Notably, patients with low risk scores had increased senescence-associated secretory phenotypes (SASPs) and immune cell infiltration. Overall, we systematically integrated biological databases and biocomputational methods to reveal the mechanisms by which SWT induces senescence in breast cancer and its clinical value.
Collapse
Affiliation(s)
- Minhong Zhao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Botao Pan
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Yanjun He
- Department of Emergency, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Bo Niu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Xiuan Gao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| |
Collapse
|
13
|
Zhang H, Jing S, Wang X, Yang C, Liu X, Yang T. Effects of ACE2/GHRL Axis on Proliferation, Apoptosis and Inflammatory Factor Levels of Synovial Cells in Osteoarthritis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We aimed to assess the effects of ACE2/GHRL on the proliferation and apoptosis of synovial cells in osteoarthritis (OA). 20 healthy mice were randomly assigned into blank group and experimental group (ACE2 was knocked down). In addition, 30 mice were subdivided into 3 group (n
= 10) and treated with saline solution, GHRL (auxin), and GHRL+CHPAA (Auxin inhibitor) followed by analysis of synovial cell proliferation, apoptosis and inflammatory factor level by Western blot analysis, MTT and flow cytometry. Experimental group exhibited decreased cell proliferation, increased
apoptosis upon silencing of ACE2 (p < 0.05) along with elevated expressions of Caspase3 and Bax protein and decreased Bcl-2, inflammatory factors and the GHRL level (p < 0.05). Treatment with GHRL increased cell proliferation cells and decreased apoptosis. Meanwhile, Bcl-2
expression and IL-1β, IL-6 and IL-8 levels in GHRL group were significantly lower than other two groups whilst Caspase-3 and Bax level was significantly higher (p < 0.05). After CHPAA treatment, ACE2 expression in CHPAA group was dramatically declined (p < 0.01).
In conclusion, ACE2/GHRL might alleviate OA progression through regulation of cell proliferation, apoptosis and inflammation of synoviocytes, providing insight into a therapeutic target for treating OA.
Collapse
Affiliation(s)
- Huadong Zhang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shangfei Jing
- Department of Hand Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| | - Xingxing Wang
- Shanxi Provincial People’s Hospital, Special Hospital Ward, Taiyuan, Shanxi, 030000, China
| | - Chenyuan Yang
- People’s Hospital Affiliated to Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| | - Xiaoxu Liu
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| | - Tieyi Yang
- Department of Traumatology and Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| |
Collapse
|
14
|
Al Mamun A, Sufian MA, Uddin MS, Sumsuzzman DM, Jeandet P, Islam MS, Zhang HJ, Kong AN, Sarwar MS. Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. Eur J Pharmacol 2022; 928:174991. [PMID: 35513016 DOI: 10.1016/j.ejphar.2022.174991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 01/10/2023]
Abstract
During the last few decades, cancer has remained one of the deadliest diseases that endanger human health, emphasizing urgent drug discovery. Cellular senescence has gained a great deal of attention in recent years because of its link to the development of cancer therapy. Senescent cells are incapable of proliferating due to irreversibly inhibited the initiation of the cell cycle pathways. However, senescent cells aggregate in tissues and produce a pro-inflammatory secretome called senescence-associated secretory phenotype (SASP) that can cause serious harmful effects if not managed properly. There is mounting evidence that senescent cells lead to various phases of tumorigenesis in various anatomical sites, owing mostly to the paracrine activities of the SASP. Therefore, a new treatment field called senotherapeutics has been established. Senotherapeutics are newly developed anticancer agents that have been demonstrated to inhibit cancer effectively. In light of recent findings, several promising natural products have been identified as senescence inducers and senotherapeutics, including, miliusanes, epigallocatechin gallate, phloretin, silybin, resveratrol, genistein, sulforaphane, quercetin, allicin, fisetin, piperlongumine, berberine, triptolide, tocotrienols and curcumin analogs. Several of them have already been validated through preclinical trials and exert an enormous potential for clinical trials. This review article focuses on and summarises the latest advances on cellular senescence and its potential as a target for cancer treatment and highlights the well-known natural products as senotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687, Reims, Cedex 2, France
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
15
|
Li H, Cao Z, Wang L, Liu C, Lin H, Tang Y, Yao P. Macrophage Subsets and Death Are Responsible for Atherosclerotic Plaque Formation. Front Immunol 2022; 13:843712. [PMID: 35432323 PMCID: PMC9007036 DOI: 10.3389/fimmu.2022.843712] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases, the notorious killer, are mainly caused by atherosclerosis (AS) characterized by lipids, cholesterol, and iron overload in plaques. Macrophages are effector cells and accumulate to the damaged and inflamed sites of arteries to internalize native and chemically modified lipoproteins to transform them into cholesterol-loaded foam cells. Foam cell formation is determined by the capacity of phagocytosis, migration, scavenging, and the features of phenotypes. Macrophages are diverse, and the subsets and functions are controlled by their surrounding microenvironment. Generally, macrophages are divided into classically activated (M1) and alternatively activated (M2). Recently, intraplaque macrophage phenotypes are recognized by the stimulation of CXCL4 (M4), oxidized phospholipids (Mox), hemoglobin/haptoglobin complexes [HA-mac/M(Hb)], and heme (Mhem). The pro-atherogenic or anti-atherosclerotic phenotypes of macrophages decide the progression of AS. Besides, apoptosis, necrosis, ferroptosis, autophagy and pyrotopsis determine plaque formation and cardiovascular vulnerability, which may be associated with macrophage polarization phenotypes. In this review, we first summarize the three most popular hypotheses for AS and find the common key factors for further discussion. Secondly, we discuss the factors affecting macrophage polarization and five types of macrophage death in AS progression, especially ferroptosis. A comprehensive understanding of the cellular and molecular mechanisms of plaque formation is conducive to disentangling the candidate targets of macrophage-targeting therapies for clinical intervention at various stages of AS.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongkun Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Hong X, Wang L, Zhang K, Liu J, Liu JP. Molecular Mechanisms of Alveolar Epithelial Stem Cell Senescence and Senescence-Associated Differentiation Disorders in Pulmonary Fibrosis. Cells 2022; 11:877. [PMID: 35269498 PMCID: PMC8909789 DOI: 10.3390/cells11050877] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary senescence is accelerated by unresolved DNA damage response, underpinning susceptibility to pulmonary fibrosis. Recently it was reported that the SARS-Cov-2 viral infection induces acute pulmonary epithelial senescence followed by fibrosis, although the mechanism remains unclear. Here, we examine roles of alveolar epithelial stem cell senescence and senescence-associated differentiation disorders in pulmonary fibrosis, exploring the mechanisms mediating and preventing pulmonary fibrogenic crisis. Notably, the TGF-β signalling pathway mediates alveolar epithelial stem cell senescence by mechanisms involving suppression of the telomerase reverse transcriptase gene in pulmonary fibrosis. Alternatively, telomere uncapping caused by stress-induced telomeric shelterin protein TPP1 degradation mediates DNA damage response, pulmonary senescence and fibrosis. However, targeted intervention of cellular senescence disrupts pulmonary remodelling and fibrosis by clearing senescent cells using senolytics or preventing senescence using telomere dysfunction inhibitor (TELODIN). Studies indicate that the development of senescence-associated differentiation disorders is reprogrammable and reversible by inhibiting stem cell replicative senescence in pulmonary fibrosis, providing a framework for targeted intervention of the molecular mechanisms of alveolar stem cell senescence and pulmonary fibrosis. Abbreviations: DPS, developmental programmed senescence; IPF, idiopathic pulmonary fibrosis; OIS, oncogene-induced replicative senescence; SADD, senescence-associated differentiation disorder; SALI, senescence-associated low-grade inflammation; SIPS, stress-induced premature senescence; TERC, telomerase RNA component; TERT, telomerase reverse transcriptase; TIFs, telomere dysfunction-induced foci; TIS, therapy-induced senescence; VIS, virus-induced senescence.
Collapse
Affiliation(s)
- Xiaojing Hong
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Kexiong Zhang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Jun Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, VIC 3181, Australia
- Hudson Institute of Medical Research, Monash University Department of Molecular and Translational Science, Clayton, VIC 3168, Australia
| |
Collapse
|
17
|
Lee M, Hamilton JAG, Talekar GR, Ross AJ, Michael L, Rupji M, Dwivedi B, Raikar SS, Boss J, Scharer CD, Graham DK, DeRyckere D, Porter CC, Henry CJ. Obesity-induced galectin-9 is a therapeutic target in B-cell acute lymphoblastic leukemia. Nat Commun 2022; 13:1157. [PMID: 35241678 PMCID: PMC8894417 DOI: 10.1038/s41467-022-28839-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
The incidence of obesity is rising with greater than 40% of the world’s population expected to be overweight or suffering from obesity by 2030. This is alarming because obesity increases mortality rates in patients with various cancer subtypes including leukemia. The survival differences between lean patients and patients with obesity are largely attributed to altered drug pharmacokinetics in patients receiving chemotherapy; whereas, the direct impact of an adipocyte-enriched microenvironment on cancer cells is rarely considered. Here we show that the adipocyte secretome upregulates the surface expression of Galectin-9 (GAL-9) on human B-acute lymphoblastic leukemia cells (B-ALL) which promotes chemoresistance. Antibody-mediated targeting of GAL-9 on B-ALL cells induces DNA damage, alters cell cycle progression, and promotes apoptosis in vitro and significantly extends the survival of obese but not lean mice with aggressive B-ALL. Our studies reveal that adipocyte-mediated upregulation of GAL-9 on B-ALL cells can be targeted with antibody-based therapies to overcome obesity-induced chemoresistance. Obesity has been reported to promote tumourigenesis and chemoresistance but the underlying mechanisms are not completely understood. Here, the authors show that adipocytes induce Galectin-9 (GAL-9) expression in B-acute lymphoblastic leukaemia (B-ALL) cells which leads to chemoresistance and antibody-mediated blockade of GAL-9 increases survival in preclinical B-ALL murine models.
Collapse
Affiliation(s)
- Miyoung Lee
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jamie A G Hamilton
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ganesh R Talekar
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anthony J Ross
- Riley Pediatric Cancer and Blood Diseases, Riley Children's Health, Indiana University School of Medicine, Indianapolis, Indiana, IN, USA
| | | | - Manali Rupji
- Bioinformatics and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Bioinformatics and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, USA
| | - Sunil S Raikar
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jeremy Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Deborah DeRyckere
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christopher C Porter
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
18
|
Carpintero-Fernández P, Varela-Eirín M, García-Yuste A, López-Díaz I, Caeiro JR, Mayán MD. Osteoarthritis: Mechanistic Insights, Senescence, and Novel Therapeutic Opportunities. Bioelectricity 2022; 4:39-47. [PMID: 39355566 PMCID: PMC11441363 DOI: 10.1089/bioe.2021.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease. In the last years, the research community has focused on understanding the molecular mechanisms that led to the pathogenesis of the disease, trying to identify different molecular and clinical phenotypes along with the discovery of new therapeutic opportunities. Different types of cell-to-cell communication mechanisms have been proposed to contribute to OA progression, including mechanisms mediated by connexin43 (Cx43) channels or by small extracellular vesicles. Furthermore, changes in the chondrocyte phenotype such as cellular senescence have been proposed as new contributors of the OA progression, changing the paradigm of the disease. The use of different drugs able to restore chondrocyte phenotype, to reduce cellular senescence and senescence-associated secretory phenotype components, and to modulate ion channel activity or Cx43 appears to be promising therapeutic strategies for the different types of OA. In this review, we aim to summarize the current knowledge in OA phenotypes related with aging and tissue damage and the new therapeutic opportunities currently available.
Collapse
Affiliation(s)
- Paula Carpintero-Fernández
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Marta Varela-Eirín
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Alejandro García-Yuste
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Iñaki López-Díaz
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
19
|
Wu CJ, Liu RX, Huan SW, Tang W, Zeng YK, Zhang JC, Yang J, Li ZY, Zhou Y, Zha ZG, Zhang HT, Liu N. Senescent skeletal cells cross-talk with synovial cells plays a key role in the pathogenesis of osteoarthritis. Arthritis Res Ther 2022; 24:59. [PMID: 35227288 PMCID: PMC8883702 DOI: 10.1186/s13075-022-02747-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) has been recognized as an age-related degenerative disease commonly seen in the elderly that affects the whole “organ” including cartilage, subchondral bone, synovium, and muscles. An increasing number of studies have suggested that the accumulation of senescent cells triggering by various stresses in the local joint contributes to the pathogenesis of age-related diseases including OA. In this review, we mainly focus on the role of the senescent skeletal cells (chondrocytes, osteoblasts, osteoclasts, osteocyte, and muscle cells) in initiating the development and progression of OA alone or through cross-talk with the macrophages/synovial cells. Accordingly, we summarize the current OA-targeted therapies based on the abovementioned theory, e.g., by eliminating senescent skeletal cells and/or inhibiting the senescence-associated secretory phenotype (SASP) that drives senescence. Furthermore, the existing animal models for the study of OA from the perspective of senescence are highlighted to fill the gap between basic research and clinical applications. Overall, in this review, we systematically assess the current understanding of cellular senescence in OA, which in turn might shed light on the stratified OA treatments.
Collapse
Affiliation(s)
- Chong-Jie Wu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ri-Xu Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Song-Wei Huan
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Wang Tang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yu-Kai Zeng
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jun-Cheng Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jie Yang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Ying Zhou
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China. .,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China.
| | - Ning Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China. .,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
20
|
Niklander SE, Lambert DW, Hunter KD. Senescent Cells in Cancer: Wanted or Unwanted Citizens. Cells 2021; 10:cells10123315. [PMID: 34943822 PMCID: PMC8699088 DOI: 10.3390/cells10123315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023] Open
Abstract
Over recent decades, the field of cellular senescence has attracted considerable attention due to its association with aging, the development of age-related diseases and cancer. Senescent cells are unable to proliferate, as the pathways responsible for initiating the cell cycle are irreversibly inhibited. Nevertheless, senescent cells accumulate in tissues and develop a pro-inflammatory secretome, known as the senescence-associated secretory phenotype (SASP), which can have serious deleterious effects if not properly regulated. There is increasing evidence suggesting senescent cells contribute to different stages of carcinogenesis in different anatomical sites, mainly due to the paracrine effects of the SASP. Thus, a new therapeutic field, known as senotherapeutics, has developed. In this review, we aim to discuss the molecular mechanisms underlying the senescence response and its relationship with cancer development, focusing on the link between senescence-related inflammation and cancer. We will also discuss different approaches to target senescent cells that might be of use for cancer treatment.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar 2520000, Chile
- Correspondence: ; Tel.: +56-(32)2845108
| | - Daniel W. Lambert
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Oral Biology and Pathology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
21
|
Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Recent advances in the discovery of senolytics. Mech Ageing Dev 2021; 200:111587. [PMID: 34656616 DOI: 10.1016/j.mad.2021.111587] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
The demonstration in model organisms that cellular senescence drives aging and age-related diseases has led to widespread efforts to identify compounds able to selectively kill senescent cells, termed senolytics. Approaches used to identify senolytics include bioinformatic analysis of senescent cell anti-apoptotic pathways (SCAPs) for drug development and screening of drugs libraries on different senescent cell types in culture. Alternatively, cytotoxic compounds can be made specific to senescent cells through a prodrug strategy such as linking the compound to a galactose moiety where toxicity is activated by lysosomal β-galactosidase. Identified senolytics can then be optimized through medicinal chemistry or linking to E3 targeting moieties to facilitate proteolysis of their targets. This review will provide an overview of approaches to identify senolytics and an update of the classes of senolytics identified to date.
Collapse
Affiliation(s)
- Lei Zhang
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Louise E Pitcher
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Vaishali Prahalad
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
22
|
Zhang L, Xing R, Huang Z, Ding L, Zhang L, Li M, Li X, Wang P, Mao J. Synovial Fibrosis Involvement in Osteoarthritis. Front Med (Lausanne) 2021; 8:684389. [PMID: 34124114 PMCID: PMC8187615 DOI: 10.3389/fmed.2021.684389] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Bone changes have always been the focus of research on osteoarthritis, but the number of studies on synovitis has increased only over the last 10 years. Our current understanding is that the mechanism of osteoarthritis involves all the tissues that make up the joints, including nerve sprouting, pannus formation, and extracellular matrix environmental changes in the synovium. These factors together determine synovial fibrosis and may be closely associated with the clinical symptoms of pain, hyperalgesia, and stiffness in osteoarthritis. In this review, we summarize the consensus of clinical work, the potential pathological mechanisms, the possible therapeutic targets, and the available therapeutic strategies for synovial fibrosis in osteoarthritis to gain insight and provide a foundation for further study.
Collapse
Affiliation(s)
- Li Zhang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Runlin Xing
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhengquan Huang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Liang Ding
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Mingchao Li
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaochen Li
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jun Mao
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An Evidence-Based Systematic Review of Human Knee Post-Traumatic Osteoarthritis (PTOA): Timeline of Clinical Presentation and Disease Markers, Comparison of Knee Joint PTOA Models and Early Disease Implications. Int J Mol Sci 2021; 22:1996. [PMID: 33671471 PMCID: PMC7922905 DOI: 10.3390/ijms22041996] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the causality of the post-traumatic osteoarthritis (PTOA) disease process of the knee joint is important for diagnosing early disease and developing new and effective preventions or treatments. The aim of this review was to provide detailed clinical data on inflammatory and other biomarkers obtained from patients after acute knee trauma in order to (i) present a timeline of events that occur in the acute, subacute, and chronic post-traumatic phases and in PTOA, and (ii) to identify key factors present in the synovial fluid, serum/plasma and urine, leading to PTOA of the knee in 23-50% of individuals who had acute knee trauma. In this context, we additionally discuss methods of simulating knee trauma and inflammation in in vivo, ex vivo articular cartilage explant and in vitro chondrocyte models, and answer whether these models are representative of the clinical inflammatory stages following knee trauma. Moreover, we compare the pro-inflammatory cytokine concentrations used in such models and demonstrate that, compared to concentrations in the synovial fluid after knee trauma, they are exceedingly high. We then used the Bradford Hill Framework to present evidence that TNF-α and IL-6 cytokines are causal factors, while IL-1β and IL-17 are credible factors in inducing knee PTOA disease progresssion. Lastly, we discuss beneficial infrastructure for future studies to dissect the role of local vs. systemic inflammation in PTOA progression with an emphasis on early disease.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (R.A.); (J.M.H.); (B.R.)
| |
Collapse
|
24
|
Borghesan M, Hoogaars WMH, Varela-Eirin M, Talma N, Demaria M. A Senescence-Centric View of Aging: Implications for Longevity and Disease. Trends Cell Biol 2020; 30:777-791. [PMID: 32800659 DOI: 10.1016/j.tcb.2020.07.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable cell cycle arrest associated with macromolecular alterations and secretion of proinflammatory cytokines and molecules. From their initial discovery in the 1960s, senescent cells have been hypothesized as potential contributors to the age-associated loss of regenerative potential. Here, we discuss recent evidence that implicates cellular senescence as a central regulatory mechanism of the aging process. We provide a comprehensive overview of age-associated pathologies in which cellular senescence has been implicated. We describe mechanisms by which senescent cells drive aging and diseases, and we discuss updates on exploiting these mechanisms as therapeutic targets. Finally, we critically analyze the use of senotherapeutics and their translation to the clinic, highlighting limitations and suggesting ideas for future applications and developments.
Collapse
Affiliation(s)
- M Borghesan
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - W M H Hoogaars
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - M Varela-Eirin
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - N Talma
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - M Demaria
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands.
| |
Collapse
|
25
|
Varela-Eirín M, Carpintero-Fernández P, Sánchez-Temprano A, Varela-Vázquez A, Paíno CL, Casado-Díaz A, Continente AC, Mato V, Fonseca E, Kandouz M, Blanco A, Caeiro JR, Mayán MD. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging (Albany NY) 2020; 12:15882-15905. [PMID: 32745074 PMCID: PMC7485729 DOI: 10.18632/aging.103801] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Articular cartilage and synovial tissue from patients with osteoarthritis (OA) show an overactivity of connexin43 (Cx43) and accumulation of senescent cells associated with disrupted tissue regeneration and disease progression. The aim of this study was to determine the effect of oleuropein on Cx43 and cellular senescence for tissue engineering and regenerative medicine strategies for OA treatment. Oleuropein regulates Cx43 promoter activity and enhances the propensity of hMSCs to differentiate into chondrocytes and bone cells, reducing adipogenesis. This small molecule reduce Cx43 levels and decrease Twist-1 activity in osteoarthritic chondrocytes (OACs), leading to redifferentiation, restoring the synthesis of cartilage ECM components (Col2A1 and proteoglycans), and reducing the inflammatory and catabolic factors mediated by NF-kB (IL-1ß, IL-6, COX-2 and MMP-3), in addition to lowering cellular senescence in OACs, synovial and bone cells. Our in vitro results demonstrate the use of olive-derived polyphenols, such as oleuropein, as potentially effective therapeutic agents to improve chondrogenesis of hMSCs, to induce chondrocyte re-differentiation in OACs and clearing out senescent cells in joint tissues in order to prevent or stop the progression of the disease.
Collapse
Affiliation(s)
- Marta Varela-Eirín
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Paula Carpintero-Fernández
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Agustín Sánchez-Temprano
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Adrián Varela-Vázquez
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Carlos Luis Paíno
- Neurobiology-Research Service, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Antonio Casado-Díaz
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Calañas Continente
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Virginia Mato
- Centre for Medical Informatics and Radiological Diagnosis, Universidade da Coruña, A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, Santiago de Compostela, Spain
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| |
Collapse
|
26
|
Zhang Y, Zhou S, Cai W, Han G, Li J, Chen M, Li H. Hypoxia/reoxygenation activates the JNK pathway and accelerates synovial senescence. Mol Med Rep 2020; 22:265-276. [PMID: 32377698 PMCID: PMC7248463 DOI: 10.3892/mmr.2020.11102] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) may play an important role via senescence in the mechanism of osteoarthritis (OA) development. The synovial membrane is highly sensitive to H/R due to its oxygen consumption feature. Excessive mechanical loads and oxidative stress caused by H/R induce a senescence-associated secretory phenotype (SASP), which is related to the development of OA. The aim of the present study was to investigate the differences of SASP manifestation in synovial tissue masses between tissues from healthy controls and patients with OA. The present study used tumor necrosis factor-α (TNF-α) to pre-treat synovial tissue and fibroblast-like synoviocytes (FLS) to observe the effect of inflammatory cytokines on the synovial membrane before H/R. It was determined that H/R increased interleukin (IL)-1β and IL-6 expression levels in TNF-α-induced cell culture supernatants, increased the proportion of SA-β-gal staining, and increased the expression levels of high mobility group box 1, caspase-8, p16, p21, matrix metalloproteinase (MMP)-3 and MMP-13 in the synovium. Furthermore, H/R opened the mitochondrial permeability transition pore, caused the loss of mitochondrial membrane potential (ΔΨm) and increased the release of reactive oxygen species (ROS). Moreover, H/R caused the expansion of the mitochondrial matrix and rupture of the mitochondrial extracorporeal membrane, with a decrease in the number of cristae. In addition, H/R induced activation of the JNK signaling pathway in FLS to induce cell senescence. Thus, the present results indicated that H/R may cause inflammation and escalate synovial inflammation induced by TNF-α, which may lead to the pathogenesis of OA by increasing changes in synovial SASP and activating the JNK signaling pathway. Therefore, further studies expanding on the understanding of the pathogenesis of H/R etiology in OA are required.
Collapse
Affiliation(s)
- Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weisong Cai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guangtao Han
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mao Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|