1
|
Banerjee U, Borbora SM, Guha M, Yadav V, Sanjay V, Singh A, Balaji KN, Chandra N. Inhibition of leukotriene-B4 signalling-mediated host response to tuberculosis is a potential mode of adjunctive host-directed therapy. Immunology 2024; 172:392-407. [PMID: 38504502 DOI: 10.1111/imm.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Treatment of tuberculosis (TB) is faced with several challenges including the long treatment duration, drug toxicity and tissue pathology. Host-directed therapy provides promising avenues to find compounds for adjunctively assisting antimycobacterials in the TB treatment regimen, by promoting pathogen eradication or limiting tissue destruction. Eicosanoids are a class of lipid molecules that are potent mediators of inflammation and have been implicated in aspects of the host response against TB. Here, we have explored the blood transcriptome of pulmonary TB patients to understand the activity of leukotriene B4, a pro-inflammatory eicosanoid. Our study shows a significant upregulation in the leukotriene B4 signalling pathway in active TB patients, which is reversed with TB treatment. We have further utilized our in-house network analysis algorithm, ResponseNet, to identify potential downstream signal effectors of leukotriene B4 in TB patients including STAT1/2 and NADPH oxidase at a systemic as well as local level, followed by experimental validation of the same. Finally, we show the potential of inhibiting leukotriene B4 signalling as a mode of adjunctive host-directed therapy against TB. This study provides a new mode of TB treatment along with mechanistic insights which can be further explored in pre-clinical trials.
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Salik Miskat Borbora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhura Guha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Vikas Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - V Sanjay
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | | | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
2
|
van der Klugt T, van den Biggelaar RHGA, Saris A. Host and bacterial lipid metabolism during tuberculosis infections: possibilities to synergise host- and bacteria-directed therapies. Crit Rev Microbiol 2024:1-21. [PMID: 38916142 DOI: 10.1080/1040841x.2024.2370979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative pathogen of tuberculosis, the most lethal infectious disease resulting in 1.3 million deaths annually. Treatments against Mtb are increasingly impaired by the growing prevalence of antimicrobial drug resistance, which necessitates the development of new antibiotics or alternative therapeutic approaches. Upon infecting host cells, predominantly macrophages, Mtb becomes critically dependent on lipids as a source of nutrients. Additionally, Mtb produces numerous lipid-based virulence factors that contribute to the pathogen's ability to interfere with the host's immune responses and to create a lipid rich environment for itself. As lipids, lipid metabolism and manipulating host lipid metabolism play an important role for the virulence of Mtb, this review provides a state-of-the-art overview of mycobacterial lipid metabolism and concomitant role of host metabolism and host-pathogen interaction therein. While doing so, we will emphasize unexploited bacteria-directed and host-directed drug targets, and highlight potential synergistic drug combinations that hold promise for the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Teun van der Klugt
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Jiang N, Ding W, Zhu X, Chen J, Yang L, Yi X, Zhuang Y, Qian J, Huang J. Lipid-Encapsulated Engineered Bacterial Living Materials Inhibit Cyclooxygenase II to Enhance Doxorubicin Toxicity. BIODESIGN RESEARCH 2024; 6:0038. [PMID: 38919710 PMCID: PMC11197476 DOI: 10.34133/bdr.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
Recently, there has been increasing interest in the use of bacteria for cancer therapy due to their ability to selectively target tumor sites and inhibit tumor growth. However, the complexity of the interaction between bacteria and tumor cells evokes unpredictable therapeutic risk, which induces inflammation, stimulates the up-regulation of cyclooxygenase II (COX-2) protein, and stimulates downstream antiapoptotic gene expression in the tumor microenvironment to reduce the antitumor efficacy of chemotherapy and immunotherapy. In this study, we encapsulated celecoxib (CXB), a specific COX-2 inhibitor, in liposomes anchored to the surface of Escherichia coli Nissle 1917 (ECN) through electrostatic absorption (C@ECN) to suppress ECN-induced COX-2 up-regulation and enhance the synergistic antitumor effect of doxorubicin (DOX). C@ECN improved the antitumor effect of DOX by restraining COX-2 expression. In addition, local T lymphocyte infiltration was induced by the ECN to enhance immunotherapy efficacy in the tumor microenvironment. Considering the biosafety of C@ECN, a hypoxia-induced lysis circuit, pGEX-Pvhb-Lysis, was introduced into the ECN to limit the number of ECNs in vivo. Our results indicate that this system has the potential to enhance the synergistic effect of ECN with chemical drugs to inhibit tumor progression in medical oncology.
Collapse
Affiliation(s)
- Ning Jiang
- State Key Laboratory of Bioreactor Engineering,
East China University of Science and Technology (ECUST), Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB),
East China University of Science and Technology, Shanghai 200237, China
| | - Wanqing Ding
- State Key Laboratory of Bioreactor Engineering,
East China University of Science and Technology (ECUST), Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB),
East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojuan Zhu
- State Key Laboratory of Bioreactor Engineering,
East China University of Science and Technology (ECUST), Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB),
East China University of Science and Technology, Shanghai 200237, China
| | - Jianshu Chen
- State Key Laboratory of Bioreactor Engineering,
East China University of Science and Technology (ECUST), Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB),
East China University of Science and Technology, Shanghai 200237, China
| | - Lin Yang
- College of Life Science,
Jiangxi Normal University (JXNU), Nanchang 330022, China
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering,
East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering,
East China University of Science and Technology (ECUST), Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB),
East China University of Science and Technology, Shanghai 200237, China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering,
East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering,
East China University of Science and Technology (ECUST), Shanghai 200237, China
- College of Life Science,
Jiangxi Normal University (JXNU), Nanchang 330022, China
| |
Collapse
|
4
|
Vu A, Glassman I, Campbell G, Yeganyan S, Nguyen J, Shin A, Venketaraman V. Host Cell Death and Modulation of Immune Response against Mycobacterium tuberculosis Infection. Int J Mol Sci 2024; 25:6255. [PMID: 38892443 PMCID: PMC11172987 DOI: 10.3390/ijms25116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a prevalent infectious disease affecting populations worldwide. A classic trait of TB pathology is the formation of granulomas, which wall off the pathogen, via the innate and adaptive immune systems. Some key players involved include tumor necrosis factor-alpha (TNF-α), foamy macrophages, type I interferons (IFNs), and reactive oxygen species, which may also show overlap with cell death pathways. Additionally, host cell death is a primary method for combating and controlling Mtb within the body, a process which is influenced by both host and bacterial factors. These cell death modalities have distinct molecular mechanisms and pathways. Programmed cell death (PCD), encompassing apoptosis and autophagy, typically confers a protective response against Mtb by containing the bacteria within dead macrophages, facilitating their phagocytosis by uninfected or neighboring cells, whereas necrotic cell death benefits the pathogen, leading to the release of bacteria extracellularly. Apoptosis is triggered via intrinsic and extrinsic caspase-dependent pathways as well as caspase-independent pathways. Necrosis is induced via various pathways, including necroptosis, pyroptosis, and ferroptosis. Given the pivotal role of host cell death pathways in host defense against Mtb, therapeutic agents targeting cell death signaling have been investigated for TB treatment. This review provides an overview of the diverse mechanisms underlying Mtb-induced host cell death, examining their implications for host immunity. Furthermore, it discusses the potential of targeting host cell death pathways as therapeutic and preventive strategies against Mtb infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (G.C.); (A.S.)
| |
Collapse
|
5
|
Nore KG, Louet C, Bugge M, Gidon A, Jørgensen MJ, Jenum S, Dyrhol-Riise AM, Tonby K, Flo TH. The Cyclooxygenase 2 Inhibitor Etoricoxib as Adjunctive Therapy in Tuberculosis Impairs Macrophage Control of Mycobacterial Growth. J Infect Dis 2024; 229:888-897. [PMID: 37721470 PMCID: PMC10938220 DOI: 10.1093/infdis/jiad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/26/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Current tuberculosis treatment regimens could be improved by adjunct host-directed therapies (HDT) targeting host responses. We investigated the antimycobacterial capacity of macrophages from patients with tuberculosis in a phase 1/2 randomized clinical trial (TBCOX2) of the cyclooxygenase-2 inhibitor etoricoxib. METHODS Peripheral blood mononuclear cells from 15 patients with tuberculosis treated with adjunctive COX-2i and 18 controls (standard therapy) were collected on day 56 after treatment initiation. The ex vivo capacity of macrophages to control mycobacterial infection was assessed by challenge with Mycobacterium avium, using an in vitro culture model. Macrophage inflammatory responses were analyzed by gene expression signatures, and concentrations of cytokines were analyzed in supernatants by multiplex. RESULTS Macrophages from patients receiving adjunctive COX-2i treatment had higher M. avium loads than controls after 6 days, suggesting an impaired capacity to control mycobacterial infection compared to macrophages from the control group. Macrophages from the COX-2i group had lower gene expression of TNF, IL-1B, CCL4, CXCL9, and CXCL10 and lowered production of cytokines IFN-β and S100A8/A9 than controls. CONCLUSIONS Our data suggest potential unfavorable effects with impaired macrophage capacity to control mycobacterial growth in patients with tuberculosis receiving COX-2i treatment. Larger clinical trials are required to analyze the safety of COX-2i as HDT in patients with tuberculosis. CLINICAL TRIALS REGISTRATION NCT02503839.
Collapse
Affiliation(s)
- Kristin G Nore
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Claire Louet
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Bugge
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexandre Gidon
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infection, St Olav's Hospital, Trondheim, Norway
| |
Collapse
|
6
|
Dobrzyńska M, Moniuszko-Malinowska A, Radziwon P, Pancewicz S, Gęgotek A, Skrzydlewska E. Tick-borne encephalitis virus transmitted singly and in duo with Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum bacteria by ticks as pathogens modifying lipid metabolism in human blood. J Biomed Sci 2024; 31:28. [PMID: 38438941 PMCID: PMC10910801 DOI: 10.1186/s12929-024-01016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Ticks are vectors of various pathogens, including tick-borne encephalitis virus causing TBE and bacteria such as Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum causing e.g. viral-bacterial co-infections (TBE + LB/HGA), which pose diagnostic and therapeutic problems. Since these infections are usually accompanied by inflammation and oxidative stress causing metabolic modifications, including phospholipids, the aim of the study was to assess the level of polyunsaturated fatty acids and their metabolism (ROS- and enzyme-dependent) products in the blood plasma of patients with TBE and TBE + LB/HGA before and after pharmacotherapy. METHODS The total antioxidant status was determined using 2,20-azino-bis-3-ethylbenzothiazolin-6-sulfonic acid. The phospholipid and free fatty acids were analysed by gas chromatography. Lipid peroxidation was estimated by measuring small molecular weight reactive aldehyde, malondialdehyde and neuroprostanes. The reactive aldehyde was determined using gas chromatography coupled with mass spectrometry. The activity of enzymes was examined spectrophotometrically. An analysis of endocannabinoids and eicosanoids was performed using a Shimadzu UPLC system coupled with an electrospray ionization source to a Shimadzu 8060 Triple Quadrupole system. Receptor expression was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS The reduced antioxidant status as a result of infection was accompanied by a decrease in the level of phospholipid arachidonic acid (AA) and docosahexaenoic acid (DHA) in TBE, an increase in DHA in co-infection and in free DHA in TBE with an increase in the level of lipid peroxidation products. The enhanced activity of enzymes metabolizing phospholipids and free PUFAs increased the level of endocannabinoids and eicosanoids, while decreased 15-PGJ2 and PGE2 was accompanied by activation of granulocyte receptors before pharmacotherapy and only tending to normalize after treatment. CONCLUSION Since classical pharmacotherapy does not prevent disorders of phospholipid metabolism, the need to support treatment with antioxidants may be suggested.
Collapse
Affiliation(s)
- Marta Dobrzyńska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, M. Sklodowskiej-Curie 23, 15-950, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| |
Collapse
|
7
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
8
|
Carranza C, Sartillo-Mendoza LG, Carreto-Binaghi LE, Muñoz-Torrico M, Guzmán-Beltrán S, Torres M, Gonzalez Y, Juárez E. Exploring COX-2 inhibitors in tuberculosis: A whole-blood model approach for immune response and adjunt therapy evaluation. Tuberculosis (Edinb) 2023; 143:102418. [PMID: 37813014 DOI: 10.1016/j.tube.2023.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Pulmonary tuberculosis (TB) inflammation is an underestimated disease complication which anti-inflammatory drugs may alleviate. This study explored the potential use of the COX-2 inhibitors acetylsalicylic acid (ASA) and celecoxib in 12 TB patients and 12 healthy controls using a whole-blood ex vivo model where TNFα, PGE2, and LTB4 plasma levels were quantitated by ELISA; we also measured COX-2, 5-LOX, 12-LOX, and 15-LOX gene expression. We observed a significant TNFα production in response to stimulation with LPS or M. tuberculosis (Mtb). Celecoxib, but not ASA, reduced TNFα and PGE2 production, while increasing LTB4 in patients after infection with Mtb. Gene expression of COX-2 and 5-LOX was higher in controls, while 12-LOX was significantly higher in patients. 15-LOX expression was similar in both groups. We concluded that COX-2 inhibitors downregulate inflammation after Mtb infection, and our methodology offers a straightforward time-efficient approach for evaluating different drugs in this context. Further research is warranted to elucidate the underlying mechanisms and assess the potential clinical benefit.
Collapse
Affiliation(s)
- Claudia Carranza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, CDMX, Mexico
| | - Luis G Sartillo-Mendoza
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, CDMX, Mexico; Facultad de Medicina, BUAP, Puebla, Mexico; Becario de la Dirección General de Calidad y Educación en Salud, Secretaría de Salud, CDMX, Mexico
| | - Laura E Carreto-Binaghi
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, CDMX, Mexico
| | - Marcela Muñoz-Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, CDMX, Mexico
| | - Silvia Guzmán-Beltrán
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, CDMX, Mexico
| | - Martha Torres
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, CDMX, Mexico
| | - Yolanda Gonzalez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, CDMX, Mexico
| | - Esmeralda Juárez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, CDMX, Mexico.
| |
Collapse
|
9
|
Saini S, Gangwar A, Sharma R. Harnessing host-pathogen interactions for innovative drug discovery and host-directed therapeutics to tackle tuberculosis. Microbiol Res 2023; 275:127466. [PMID: 37531813 DOI: 10.1016/j.micres.2023.127466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Tuberculosis (TB) is a highly contagious bacterial infection caused by Mycobacterium tuberculosis (Mtb), which has been ranked as the second leading cause of death worldwide from a single infectious agent. As an intracellular pathogen, Mtb has well adapted to the phagocytic host microenvironment, influencing diverse host processes such as gene expression, trafficking, metabolism, and signaling pathways of the host to its advantage. These responses are the result of dynamic interactions of the bacteria with the host cell signaling pathways, whereby the bacteria attenuate the host cellular processes for their survival. Specific host genes and the mechanisms involved in the entry and subsequent stabilization of M. tuberculosis intracellularly have been identified in various genetic and chemical screens recently. The present understanding of the co-evolution of Mtb and macrophage system presented us the new possibilities for exploring host-directed therapeutics (HDT). Here, we discuss the host-pathogen interaction for Mtb, including the pathways adapted by Mtb to escape immunity. The review sheds light on different host-directed therapies (HDTs) such as repurposed drugs and vitamins, along with their targets such as granuloma, autophagy, extracellular matrix, lipids, and cytokines, among others. The article also examines the available clinical data on these drug molecules. In conclusion, the review presents a perspective on the current knowledge in the field of HDTs and the need for additional research to overcome the challenges associated HDTs.
Collapse
Affiliation(s)
- Sapna Saini
- Infectious Diseases Division, CSIR, Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Gangwar
- Infectious Diseases Division, CSIR, Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR, Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Yen NTH, Anh NK, Jayanti RP, Phat NK, Vu DH, Ghim JL, Ahn S, Shin JG, Oh JY, Phuoc Long N, Kim DH. Multimodal plasma metabolomics and lipidomics in elucidating metabolic perturbations in tuberculosis patients with concurrent type 2 diabetes. Biochimie 2023:S0300-9084(23)00086-X. [PMID: 37062470 DOI: 10.1016/j.biochi.2023.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Type 2 diabetes mellitus (DM) poses a major burden for the treatment and control of tuberculosis (TB). Characterization of the underlying metabolic perturbations in DM patients with TB infection would yield insights into the pathophysiology of TB-DM, thus potentially leading to improvements in TB treatment. In this study, a multimodal metabolomics and lipidomics workflow was applied to investigate plasma metabolic profiles of patients with TB and TB-DM. Significantly different biological processes and biomarkers in TB-DM vs. TB were identified using a data-driven, knowledge-based framework. Changes in metabolic and signaling pathways related to carbohydrate and amino acid metabolism were mainly captured by amide HILIC column metabolomics analysis, while perturbations in lipid metabolism were identified by the C18 metabolomics and lipidomics analysis. Compared to TB, TB-DM exhibited elevated levels of bile acids and molecules related to carbohydrate metabolism, as well as the depletion of glutamine, retinol, lysophosphatidylcholine, and phosphatidylcholine. Moreover, arachidonic acid metabolism was determined as a potential important factor in the interaction between TB and DM pathophysiology. In a correlation network of the significantly altered molecules, among the central nodes, chenodeoxycholic acid was robustly associated with TB and DM. Fatty acid (22:4) was a component of all significant modules. In conclusion, the integration of multimodal metabolomics and lipidomics provides a thorough picture of the metabolic changes associated with TB-DM. The results obtained from this comprehensive profiling of TB patients with DM advance the current understanding of DM comorbidity in TB infection and contribute to the development of more effective treatment.
Collapse
Affiliation(s)
- Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Ky Anh
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Rannissa Puspita Jayanti
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Dinh Hoa Vu
- The National Centre of Drug Information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Jong-Lyul Ghim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Sangzin Ahn
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Jee Youn Oh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
11
|
Anh NK, Phat NK, Yen NTH, Jayanti RP, Thu VTA, Park YJ, Cho YS, Shin JG, Kim DH, Oh JY, Long NP. Comprehensive lipid profiles investigation reveals host metabolic and immune alterations during anti-tuberculosis treatment: Implications for therapeutic monitoring. Biomed Pharmacother 2023; 158:114187. [PMID: 36916440 DOI: 10.1016/j.biopha.2022.114187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
In this study, we investigated the lipidome of tuberculosis patients during standard chemotherapy to discover biosignatures that could aid therapeutic monitoring. UPLC-QToF MS was used to analyze 82 baseline and treatment plasma samples of patients with pulmonary tuberculosis. Subsequently, a data-driven and knowledge-based workflow, including robust annotation, statistical analysis, and functional analysis, was applied to assess lipid profiles during treatment. Overall, the lipids species from 17 lipid subclasses were significantly altered by anti-tuberculosis chemotherapy. Cholesterol ester (CE), monoacylglycerols, and phosphatidylcholine (PC) were upregulated, whereas triacylglycerols, sphingomyelin, and ether-linked phosphatidylethanolamines (PE O-) were downregulated. Notably, PCs demonstrated a clear upward expression pattern during tuberculosis treatment. Several lipid species were identified as potential biomarkers for therapeutic monitoring, such as PC(42:6), PE(O-40:5), CE(24:6), and dihexosylceramide Hex2Cer(34:2;2 O). Functional and lipid gene enrichment analysis revealed alterations in pathways related to lipid metabolism and host immune responses. In conclusion, this study provides a foundation for the use of lipids as biomarkers for clinical management of tuberculosis.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Rannissa Puspita Jayanti
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Vo Thuy Anh Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Young Jin Park
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Jee Youn Oh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea.
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
12
|
Udinia S, Suar M, Kumar D. Host-directed therapy against tuberculosis: Concept and recent developments. J Biosci 2023; 48:54. [PMID: 38088376 DOI: 10.1007/s12038-023-00374-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/28/2023] [Indexed: 01/04/2025]
Abstract
Tuberculosis (TB) continues to remain at the forefront of the infectious disease burden globally, albeit with some aberrations during the COVID-19 pandemic. Among many factors, the emergence of drug resistance or antimicrobial resistance (AMR) has necessitated a renewed focus on developing novel and repurposed drugs against TB. Host-directed therapy (HDT) has emerged as an attractive alternative and a complementary strategy to the conventional antibiotic-based therapy of tuberculosis since HDT enjoys the advantage of disarming the pathogen of its ability to develop drug resistance. Considering the imminent threat of AMR across the spectrum of bacterial pathogens, HDT promises to overcome the drug shortage against superbugs. While all these make HDT a very attractive strategy, identifying the right set of host targets to develop HDT remains a challenge, despite remarkable development in the field over the past decade. In this review, we examine the host mechanisms, that either inadvertently or through targeted perturbation by the pathogen, help TB pathogenesis, and we discuss the latest developments in the targeting of some of the key pathways to achieve newer TB therapeutics.
Collapse
Affiliation(s)
- Sonakshi Udinia
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
13
|
Jeong EK, Lee HJ, Jung YJ. Host-Directed Therapies for Tuberculosis. Pathogens 2022; 11:1291. [PMID: 36365041 PMCID: PMC9697779 DOI: 10.3390/pathogens11111291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 02/04/2024] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, consistently threatening public health. Conventional tuberculosis treatment requires a long-term treatment regimen and is associated with side effects. The efficacy of antitubercular drugs has decreased with the emergence of drug-resistant TB; therefore, the development of new TB treatment strategies is urgently needed. In this context, we present host-directed therapy (HDT) as an alternative to current tuberculosis therapy. Unlike antitubercular drugs that directly target Mycobacterium tuberculosis (Mtb), the causative agent of TB, HDT is an approach for treating TB that appropriately modulates host immune responses. HDT primarily aims to enhance the antimicrobial activity of the host in order to control Mtb infection and attenuate excessive inflammation in order to minimize tissue damage. Recently, research based on the repositioning of drugs for use in HDT has been in progress. Based on the overall immune responses against Mtb infection and the immune-evasion mechanisms of Mtb, this review examines the repositioned drugs available for HDT and their mechanisms of action.
Collapse
Affiliation(s)
- Eui-Kwon Jeong
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 24341, Korea
| | - Hyo-Ji Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Yu-Jin Jung
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 24341, Korea
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
14
|
Groth M, Skrzydlewska E, Dobrzyńska M, Pancewicz S, Moniuszko-Malinowska A. Redox Imbalance and Its Metabolic Consequences in Tick-Borne Diseases. Front Cell Infect Microbiol 2022; 12:870398. [PMID: 35937690 PMCID: PMC9353526 DOI: 10.3389/fcimb.2022.870398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
One of the growing global health problems are vector-borne diseases, including tick-borne diseases. The most common tick-borne diseases include Lyme disease, tick-borne encephalitis, human granulocytic anaplasmosis, and babesiosis. Taking into account the metabolic effects in the patient's body, tick-borne diseases are a significant problem from an epidemiological and clinical point of view. Inflammation and oxidative stress are key elements in the pathogenesis of infectious diseases, including tick-borne diseases. In consequence, this leads to oxidative modifications of the structure and function of phospholipids and proteins and results in qualitative and quantitative changes at the level of lipid mediators arising in both reactive oxygen species (ROS) and ROS enzyme-dependent reactions. These types of metabolic modifications affect the functioning of the cells and the host organism. Therefore, links between the severity of the disease state and redox imbalance and the level of phospholipid metabolites are being searched, hoping to find unambiguous diagnostic biomarkers. Assessment of molecular effects of oxidative stress may also enable the monitoring of the disease process and treatment efficacy.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Marta Dobrzyńska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
15
|
Leukotriene B 4 loaded in microspheres regulate the expression of genes related to odontoblastic differentiation and biomineralization by dental pulp stem cells. BMC Oral Health 2022; 22:45. [PMID: 35197043 PMCID: PMC8864908 DOI: 10.1186/s12903-022-02083-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Leukotriene B4 (LTB4) is a potent lipid mediator that stimulate the immune response. Because dental pulp inflammation and dentin repair are intrinsically related responses, the aim of this research was to investigate the potential of LTB4 in inducing differentiation of dental pulp stem cells.
Methods Microspheres (MS) loaded with LTB4 were prepared using an oil emulsion solvent extraction evaporation process and sterility, characterization, efficiency of LTB4 encapsulation and in vitro LTB4 release assay were investigated. Mouse dental pulp stem cells (OD-21) were stimulated with soluble LTB4 or MS loaded with LTB4 (0.01 and 0.1 μM). Cytotoxicity and cell viability was determined by lactate dehydrogenase and methylthiazol tetrazolium assays. Gene expression were measured by quantitative reverse transcription polymerase chain reaction after 3, 6, 24, 48 and 72 h. Mineralized nodule formation was assessed after 28 days of OD-21 cell stimulation with LTB4 in mineralized media or not. Groups were compared using one-way ANOVA test followed by Dunnett’s post-test (α = 0.05).
Results Treatment with LTB4 or MS loaded with LTB4 (0.01 and 0.1 µm-μM) were not cytotoxic to OD-21 cells. Treatment with LTB4 modulated the expression of the Ibsp (integrin binding sialoprotein) and Runx2 (runt-related transcription factor 2) genes differently depending on the experimental period analyzed. Interestingly LTB4 loaded in microspheres (0.1 μM) allowed long term dental pulp cell differentiation and biomineralization. Conclusion LTB4, soluble or loaded in MS, were not cytotoxic and modulated the expression of the Ibsp and Runx2 genes in cultured OD-21 cells. When LTB4 was incorporated into MS, odontoblast differentiation and mineralization was induced in long term culture.
Collapse
|
16
|
Llibre A, Dedicoat M, Burel JG, Demangel C, O’Shea MK, Mauro C. Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Front Immunol 2021; 12:747387. [PMID: 34630426 PMCID: PMC8495197 DOI: 10.3389/fimmu.2021.747387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial diseases are a major public health challenge. Their causative agents include, in order of impact, members of the Mycobacterium tuberculosis complex (causing tuberculosis), Mycobacterium leprae (causing leprosy), and non-tuberculous mycobacterial pathogens including Mycobacterium ulcerans. Macrophages are mycobacterial targets and they play an essential role in the host immune response to mycobacteria. This review aims to provide a comprehensive understanding of the immune-metabolic adaptations of the macrophage to mycobacterial infections. This metabolic rewiring involves changes in glycolysis and oxidative metabolism, as well as in the use of fatty acids and that of metals such as iron, zinc and copper. The macrophage metabolic adaptations result in changes in intracellular metabolites, which can post-translationally modify proteins including histones, with potential for shaping the epigenetic landscape. This review will also cover how critical tuberculosis co-morbidities such as smoking, diabetes and HIV infection shape host metabolic responses and impact disease outcome. Finally, we will explore how the immune-metabolic knowledge gained in the last decades can be harnessed towards the design of novel diagnostic and therapeutic tools, as well as vaccines.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Julie G. Burel
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Matthew K. O’Shea
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Sheppe AEF, Santelices J, Czyz DM, Edelmann MJ. Yersinia pseudotuberculosis YopJ Limits Macrophage Response by Downregulating COX-2-Mediated Biosynthesis of PGE2 in a MAPK/ERK-Dependent Manner. Microbiol Spectr 2021; 9:e0049621. [PMID: 34319170 PMCID: PMC8552654 DOI: 10.1128/spectrum.00496-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an essential immunomodulatory lipid released by cells in response to infection with many bacteria, yet its function in macrophage-mediated bacterial clearance is poorly understood. Yersinia overall inhibits the inflammatory circuit, but its effect on PGE2 production is unknown. We hypothesized that one of the Yersinia effector proteins is responsible for the inhibition of PGE2 biosynthesis. We identified that yopB-deficient Y. enterocolitica and Y. pseudotuberculosis deficient in the secretion of virulence proteins via a type 3 secretion system (T3SS) failed to inhibit PGE2 biosynthesis in macrophages. Consistently, COX-2-mediated PGE2 biosynthesis is upregulated in cells treated with heat-killed or T3SS-deficient Y. pseudotuberculosis but diminished in the presence of a MAPK/ERK inhibitor. Mutants expressing catalytically inactive YopJ induce similar levels of PGE2 as heat-killed or ΔyopB Y. pseudotuberculosis, reversed by YopJ complementation. Shotgun proteomics discovered host pathways regulated in a YopJ-mediated manner, including pathways regulating PGE2 synthesis and oxidative phosphorylation. Consequently, this study identified that YopJ-mediated inhibition of MAPK signal transduction serves as a mechanism targeting PGE2, an alternative means of inflammasome inhibition by Yersinia. Finally, we showed that EP4 signaling supports macrophage function in clearing intracellular bacteria. In summary, our unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription, thereby enhancing the intracellular survival of yersiniae. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic molecule to improve the outcomes of specific bacterial infections. Since other pathogens encode YopJ homologs, this mechanism is expected to be present in other infections. IMPORTANCE PGE2 is a critical immunomodulatory lipid, but its role in bacterial infection and pathogen clearance is poorly understood. We previously demonstrated that PGE2 leads to macrophage polarization toward the M1 phenotype and stimulates inflammasome activation in infected macrophages. Finally, we also discovered that PGE2 improved the clearance of Y. enterocolitica. The fact that Y. enterocolitica hampers PGE2 secretion in a type 3 secretion system (T3SS)-dependent manner and because PGE2 appears to assist macrophage in the clearance of this bacterium indicates that targeting of the eicosanoid pathway by Yersinia might be an adaption used to counteract host defenses. Our study identified a mechanism used by Yersinia that obstructs PGE2 biosynthesis in human macrophages. We showed that Y. pseudotuberculosis interferes with PGE2 biosynthesis by using one of its T3SS effectors, YopJ. Specifically, YopJ targets the host COX-2 enzyme responsible for PGE2 biosynthesis, which happens in a MAPK/ER-dependent manner. Moreover, in a shotgun proteomics study, we also discovered other pathways that catalytically active YopJ targets in the infected macrophages. YopJ was revealed to play a role in limiting host LPS responses, including repression of EGR1 and JUN proteins, which control transcriptional activation of proinflammatory cytokine production such as interleukin-1β. Since YopJ has homologs in other bacterial species, there are likely other pathogens that target and inhibit PGE2 biosynthesis. In summary, our study's unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Austin E. F. Sheppe
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - John Santelices
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections. Infect Immun 2021; 89:e0009521. [PMID: 34031130 DOI: 10.1128/iai.00095-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eicosanoids are lipid-based signaling molecules that play a unique role in innate immune responses. The multiple types of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), allow the innate immune cells to respond rapidly to bacterial invaders. Bacterial pathogens alter cyclooxygenase (COX)-derived prostaglandins (PGs) in macrophages, such as PGE2 15d-PGJ2, and lipoxygenase (LOX)-derived leukotriene LTB4, which has chemotactic functions. The PG synthesis and secretion are regulated by substrate availability of arachidonic acid and by the COX-2 enzyme, and the expression of this protein is regulated at multiple levels, both transcriptionally and posttranscriptionally. Bacterial pathogens use virulence strategies such as type three secretion systems (T3SSs) to deliver virulence factors altering the expression of eicosanoid-specific biosynthetic enzymes, thereby modulating the host response to bacterial lipopolysaccharides (LPS). Recent advances have identified a novel role of eicosanoids in inflammasome activation during intracellular infection with bacterial pathogens. Specifically, PGE2 was found to enhance inflammasome activation, driving the formation of pore-induced intracellular traps (PITs), thus trapping bacteria from escaping the dying cell. Finally, eicosanoids and IL-1β released from macrophages are implicated in the efferocytosis of neighboring neutrophils. Neutrophils play an essential role in phagocytosing and degrading PITs and associated bacteria to restore homeostasis. This review focuses on the novel functions of host-derived eicosanoids in the host-pathogen interactions.
Collapse
|
19
|
Jøntvedt Jørgensen M, Nore KG, Aass HCD, Layre E, Nigou J, Mortensen R, Tasken K, Kvale D, Jenum S, Tonby K, Dyrhol-Riise AM. Plasma LOX-Products and Monocyte Signaling Is Reduced by Adjunctive Cyclooxygenase-2 Inhibitor in a Phase I Clinical Trial of Tuberculosis Patients. Front Cell Infect Microbiol 2021; 11:669623. [PMID: 34307194 PMCID: PMC8299478 DOI: 10.3389/fcimb.2021.669623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Eicosanoids and intracellular signaling pathways are potential targets for host-directed therapy (HDT) in tuberculosis (TB). We have explored the effect of cyclooxygenase 2 inhibitor (COX-2i) treatment on eicosanoid levels and signaling pathways in monocytes. Methods Peripheral blood mononuclear cells isolated from TB patients included in a randomized phase I clinical trial of standard TB treatment with (n=21) or without (n=18) adjunctive COX-2i (etoricoxib) were analyzed at baseline, day 14 and day 56. Plasma eicosanoids were analyzed by ELISA and liquid chromatography-mass spectrometry (LC-MS), plasma cytokines by multiplex, and monocyte signaling by phospho-flow with a defined set of phospho-specific antibodies. Results Lipoxygenase (LOX)-derived products (LXA4 and 12-HETE) and pro-inflammatory cytokines were associated with TB disease severity and were reduced during TB therapy, possibly accelerated by adjunctive COX-2i. Phosphorylation of p38 MAPK, NFkB, Erk1/2, and Akt in monocytes as well as plasma levels of MIG/CXCL9 and procalcitonin were reduced in the COX-2i group compared to controls. Conclusion COX-2i may reduce excess inflammation in TB via the LOX-pathway in addition to modulation of phosphorylation patterns in monocytes. Immunomodulatory effects of adjunctive COX-2i in TB should be further investigated before recommended for use as a HDT strategy.
Collapse
Affiliation(s)
- Marthe Jøntvedt Jørgensen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Kristin G Nore
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Emilie Layre
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Kjetil Tasken
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Deparment of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Dag Kvale
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
20
|
Pellegrini JM, Martin C, Morelli MP, Schander JA, Tateosian NL, Amiano NO, Rolandelli A, Palmero DJ, Levi A, Ciallella L, Colombo MI, García VE. PGE2 displays immunosuppressive effects during human active tuberculosis. Sci Rep 2021; 11:13559. [PMID: 34193890 PMCID: PMC8245456 DOI: 10.1038/s41598-021-92667-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023] Open
Abstract
Prostaglandin E2 (PGE2), an active lipid compound derived from arachidonic acid, regulates different stages of the immune response of the host during several pathologies such as chronic infections or cancer. In fact, manipulation of PGE2 levels was proposed as an approach for countering the Type I IFN signature of tuberculosis (TB). However, very limited information regarding the PGE2 pathway in patients with active TB is currently available. In the present work, we demonstrated that PGE2 exerts a potent immunosuppressive action during the immune response of the human host against Mycobacterium tuberculosis (Mtb) infection. Actually, we showed that PGE2 significantly reduced the surface expression of several immunological receptors, the lymphoproliferation and the production of proinflammatory cytokines. In addition, PGE2 promoted autophagy in monocytes and neutrophils cultured with Mtb antigens. These results suggest that PGE2 might be attenuating the excessive inflammatory immune response caused by Mtb, emerging as an attractive therapeutic target. Taken together, our findings contribute to the knowledge of the role of PGE2 in the human host resistance to Mtb and highlight the potential of this lipid mediator as a tool to improve anti-TB treatment.
Collapse
Affiliation(s)
- Joaquín Miguel Pellegrini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Candela Martin
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - María Paula Morelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Julieta Aylen Schander
- Laboratorio de Fisiopatología de La Preñez y El Parto, Centro de Estudios Farmacológicos Y Botánicos , CONICET-UBA, Buenos Aires, Argentina
| | - Nancy Liliana Tateosian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Nicolás Oscar Amiano
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Agustín Rolandelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Domingo Juan Palmero
- División Tisioneumonología, Hospital F.J. Muñiz, Uspallata 2272, (C1282AEN), Buenos Aires, Argentina
| | - Alberto Levi
- División Tisioneumonología, Hospital F.J. Muñiz, Uspallata 2272, (C1282AEN), Buenos Aires, Argentina
| | - Lorena Ciallella
- División Tisioneumonología, Hospital F.J. Muñiz, Uspallata 2272, (C1282AEN), Buenos Aires, Argentina
| | - María Isabel Colombo
- Instituto de Histología y Embriología de Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, CP 5500, Mendoza, Argentina
| | - Verónica Edith García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina.
| |
Collapse
|
21
|
Nienaber A, Hayford FEA, Variava E, Martinson N, Malan L. The Manipulation of the Lipid Mediator Metabolism as Adjunct Host-Directed Therapy in Tuberculosis. Front Immunol 2021; 12:623941. [PMID: 33777003 PMCID: PMC7994275 DOI: 10.3389/fimmu.2021.623941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Host-directed therapies (HDTs) enhance the host response to tuberculosis (TB) infection to reduce disease severity. For instance, the manipulation of lipid mediator production diminishes the hyperactive immune response which is a known pathological feature of TB that generates lung tissue damage. Non-steroidal anti-inflammatory drugs (NSAIDs) and omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) are examples of such HDTs. In this mini-review, we recapitulate the literature available on the effects of NSAIDs and n-3 LCPUFA in TB as well as the immunological pathways underpinning these effects. Many NSAIDs have a great deal of data describing their effects and safety and in many jurisdictions are inexpensive, and sold over the counter in neighborhood convenience stores and supermarkets. The potential benefits of NSAIDs in TB are well-documented in pre-clinical studies. The reduction of pro-inflammatory lipid mediator production by inhibiting cyclooxygenase (COX) pathways with NSAIDs has been found to improve lung histopathology, bacterial control, and survival. Additionally, n-3 LCPUFA and its novel bioactive metabolites produced by COX and lipoxygenase (LOX) have been identified as safe and effective pro-resolving and antibacterial pharmaconutrients. Nevertheless, heterogeneous results have been reported in pre-clinical TB studies. Recently, the importance of the correct timing of NSAIDs and n-3 LCPUFA administration in TB has also been highlighted. This mini-review will provide a better understanding of the potential contribution of these therapies toward reducing inflammatory lung damage and improving bactericidal activity, especially during later stages of TB infection. It further highlights that clinical trials are required to confirm benefit and safety in TB patients.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Frank E A Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Department of Nutrition and Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ebrahim Variava
- Perinatal HIV Research Unit, University of Witwatersrand, Soweto, South Africa.,Department of Internal Medicine, Klerksdorp Tshepong Hospital Complex, North West Department of Health, Klerksdorp, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of Witwatersrand, Soweto, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
22
|
Kilinç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to combat mycobacterial infections. Immunol Rev 2021; 301:62-83. [PMID: 33565103 PMCID: PMC8248113 DOI: 10.1111/imr.12951] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
Upon infection, mycobacteria, such as Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM), are recognized by host innate immune cells, triggering a series of intracellular processes that promote mycobacterial killing. Mycobacteria, however, have developed multiple counter‐strategies to persist and survive inside host cells. By manipulating host effector mechanisms, including phagosome maturation, vacuolar escape, autophagy, antigen presentation, and metabolic pathways, pathogenic mycobacteria are able to establish long‐lasting infection. Counteracting these mycobacteria‐induced host modifying mechanisms can be accomplished by host‐directed therapeutic (HDT) strategies. HDTs offer several major advantages compared to conventional antibiotics: (a) HDTs can be effective against both drug‐resistant and drug‐susceptible bacteria, as well as potentially dormant mycobacteria; (b) HDTs are less likely to induce bacterial drug resistance; and (c) HDTs could synergize with, or shorten antibiotic treatment by targeting different pathways. In this review, we will explore host‐pathogen interactions that have been identified for Mtb for which potential HDTs impacting both innate and adaptive immunity are available, and outline those worthy of future research. We will also discuss possibilities to target NTM infection by HDT, although current knowledge regarding host‐pathogen interactions for NTM is limited compared to Mtb. Finally, we speculate that combinatorial HDT strategies can potentially synergize to achieve optimal mycobacterial host immune control.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Fraga-Silva TFDC, Maruyama SR, Sorgi CA, Russo EMDS, Fernandes APM, de Barros Cardoso CR, Faccioli LH, Dias-Baruffi M, Bonato VLD. COVID-19: Integrating the Complexity of Systemic and Pulmonary Immunopathology to Identify Biomarkers for Different Outcomes. Front Immunol 2021; 11:599736. [PMID: 33584667 PMCID: PMC7878380 DOI: 10.3389/fimmu.2020.599736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few months, the coronavirus disease 2019 (COVID-19) pandemic has affected millions of people worldwide and has provoked an exceptional effort from the scientific community to understand the disease. Clinical evidence suggests that severe COVID-19 is associated with both dysregulation of damage tolerance caused by pulmonary immunopathology and high viral load. In this review article, we describe and discuss clinical studies that show advances in the understanding of mild and severe illness and we highlight major points that are critical for improving the comprehension of different clinical outcomes. The understanding of pulmonary immunopathology will contribute to the identification of biomarkers in an attempt to classify mild, moderate, severe and critical COVID-19 illness. The interface of pulmonary immunopathology and the identification of biomarkers are critical for the development of new therapeutic strategies aimed to reduce the systemic and pulmonary hyperinflammation in severe COVID-19.
Collapse
Affiliation(s)
- Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Sandra Regina Maruyama
- Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Carlos Arterio Sorgi
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Elisa Maria de Sousa Russo
- Department of Clinical Analysis, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ana Paula Morais Fernandes
- Department of General and Specialized Nursing, School of Nursing of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Department of Clinical Analysis, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Lucia Helena Faccioli
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Department of Clinical Analysis, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
24
|
Malta-Santos H, Fukutani KF, Sorgi CA, Queiroz ATL, Nardini V, Silva J, Lago A, Carvalho LP, Machado PLR, Bozza PT, França-Costa J, Faccioli LH, Carvalho EM, Andrade BB, Borges VM. Multi-omic Analyses of Plasma Cytokines, Lipidomics, and Transcriptomics Distinguish Treatment Outcomes in Cutaneous Leishmaniasis. iScience 2020; 23:101840. [PMID: 33313489 PMCID: PMC7721649 DOI: 10.1016/j.isci.2020.101840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmania braziliensis infection frequently results in cutaneous leishmaniasis (CL). An increase in incidence of drug-resistant CL leading to treatment failure has been reported. Identification of reliable predictors of treatment outcomes is necessary to optimize patient care. Here, we performed a prospective case-control study in which plasma levels of cytokines and lipid mediators were assessed at different time points during antileishmanial therapy in patients with CL from Brazil. Multidimensional analyses were employed to describe a combination of biomarkers able to predict and characterize treatment failure. We found a biosignature influenced mainly by plasma levels of lipid mediators that accurately predicted treatment failure. Furthermore, transcriptomic analysis of a publicly available data set revealed that expression levels of genes related to lipid metabolism measured in skin lesions could distinguish treatment outcomes in CL. Thus, activation of pathways linked to lipid biosynthesis predicts treatment failure in CL. The biomarkers identified may be further explored as therapeutic targets.
Collapse
Affiliation(s)
- Hayna Malta-Santos
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Kiyoshi F Fukutani
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Salvador, Brazil
| | - Carlos A Sorgi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Artur T L Queiroz
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Salvador, Brazil
| | - Viviane Nardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Juliana Silva
- Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Alex Lago
- Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucas P Carvalho
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Paulo L R Machado
- Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jaqueline França-Costa
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucia H Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Edgar M Carvalho
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Bruno B Andrade
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Valéria M Borges
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
25
|
Nore KG, Jørgensen MJ, Dyrhol-Riise AM, Jenum S, Tonby K. Elevated Levels of Anti-Inflammatory Eicosanoids and Monocyte Heterogeneity in Mycobacterium tuberculosis Infection and Disease. Front Immunol 2020; 11:579849. [PMID: 33304347 PMCID: PMC7693556 DOI: 10.3389/fimmu.2020.579849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Eicosanoids modulate both innate and adaptive immune responses in Mycobacterium tuberculosis (Mtb) infection and have been suggested as possible Host Directed Therapy (HDT) targets, but more knowledge of eicosanoid dynamics in Mtb infection is required. We investigated the levels and ratios of eicosanoid mediators and their cellular sources, monocyte subsets and CD4 T cells in Tuberculosis (TB) patients with various clinical states of Mtb infection. Patients consenting to prospective enrolment in a TB quality registry and biorepository, 16 with pulmonary TB (before and at-end-of treatment), 14 with extrapulmonary TB and 17 latently infected (LTBI) were included. Plasma levels of Prostaglandin E2 (PGE2), Lipoxin A4 (LXA4), and Leukotriene B4 (LTB4) were measured by enzyme-linked immunosorbent assay. Monocyte subsets and CD4 T cells and their expression of Cyclooxygenase-2 (COX-2), Prostaglandin receptor EP2 (EP2), and 5-Lipoxygenase (5-LOX) were analyzed by flow cytometry with and without Purified Protein Derivate (PPD)-stimulation. Pulmonary TB patients had elevated levels of the anti-inflammatory mediator LXA4 at diagnosis compared to LTBI (p < 0.01), while levels of PGE2 and LTB4 showed no difference between clinical states of Mtb infection. LTB4 was the only mediator to be reduced upon treatment (p < 0.05), along with the ratio LTB4/LXA4 (p < 0.01). Pulmonary TB patients had higher levels of total monocytes at diagnosis compared to end-of-treatment and LTBI (both p < 0.05), and a relative increase in the classical monocyte subset. All monocyte subsets had low basal expression of COX-2 and 5-LOX, which were markedly increased upon PPD stimulation. By contrast, the expression of EP2 was reduced upon stimulation. CD4 T cells expressed low basal COX-2 activity that increased modestly upon stimulation, whereas their basal expression of 5-LOX was considerable. In conclusion, the level of eicosanoids in plasma seem to vary between clinical states of Mtb infection. Mediators in the eicosanoid system are present in monocytes and CD4 T cells. The expression of eicosanoids in monocytes are responsive to mycobacterial stimulation independent of Mtb disease state, but subsets are heterogeneous with regard to eicosanoid-mediator expression. Further exploration of eicosanoid mediators as targets for HDT in TB are warranted.
Collapse
Affiliation(s)
- Kristin Grotle Nore
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marthe Jøntvedt Jørgensen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|