1
|
Xu J, Li Y, Yao S, Jin X, Yang M, Guo Q, Qiu R, Lei B. Preservation of Mitochondrial Function by SkQ1 in Skin Fibroblasts Derived from Patients with Leber's Hereditary Optic Neuropathy Is Associated with the PINK1/PRKN-Mediated Mitophagy. Biomedicines 2024; 12:2020. [PMID: 39335534 PMCID: PMC11428814 DOI: 10.3390/biomedicines12092020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Increased or altered mitochondrial ROS production in the retinal ganglion cells is regarded as the chief culprit of the disease-causing Leber's hereditary optic neuropathy (LHON). SkQ1 is a rechargeable mitochondria-targeted antioxidant with high specificity and efficiency. SkQ1 has already been used to treat LHON patients, and a phase 2a randomized clinical trial of SkQ1 has demonstrated improvements in eyesight. However, the underlying mechanism of SkQ1 in LHON remains unclear. This study aimed to assess the effects and molecular mechanism of SkQ1 in the preservation of mitochondrial function using skin fibroblasts derived from LHON patients. Our study found that SkQ1 could reduce ROS production and stabilize the mitochondrial membrane. Mechanistically, through network pharmacology and molecular docking, we identified the key targets of SkQ1 as SOD2 and PINK1, which play crucial roles in redox and mitophagy. SkQ1 interacted with PINK1 and downregulated its expression to balance mitochondrial homeostasis. Collectively, the findings of our study reveal that by regulating PINK1/PRKN-mediated mitophagy, SkQ1 preserves mitochondrial function in LHON fibroblasts. The data indicate that SkQ1 may be a novel therapeutic intervention to prevent the progression of LHON.
Collapse
Affiliation(s)
- Jin Xu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451163, China
| | - Yan Li
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451163, China
| | - Shun Yao
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451163, China
| | - Xiuxiu Jin
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451163, China
| | - Mingzhu Yang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451163, China
| | - Qingge Guo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Ruiqi Qiu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451163, China
| | - Bo Lei
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451163, China
| |
Collapse
|
2
|
Pasqualotto BA, Nelson A, Deheshi S, Sheldon CA, Vogl AW, Rintoul GL. Impaired mitochondrial morphological plasticity and failure of mitophagy associated with the G11778A mutation of LHON. Biochem Biophys Res Commun 2024; 721:150119. [PMID: 38768545 DOI: 10.1016/j.bbrc.2024.150119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Mitochondrial dynamics were examined in human dermal fibroblasts biopsied from a confirmed Leber's Hereditary Optic Neuropathy (LHON) patient with a homoplasmic G11778A mutation of the mitochondrial genome. Expression of the G11778A mutation did not impart any discernible difference in mitochondrial network morphology using widefield fluorescence microscopy. However, at the ultrastructural level, cells expressing this mutation exhibited an impairment of mitochondrial morphological plasticity when forced to utilize oxidative phosphorylation (OXPHOS) by transition to glucose-free, galactose-containing media. LHON fibroblasts also displayed a transient increase in mitophagy upon transition to galactose media. These results provide new insights into the consequences of the G11778A mutation of LHON and the pathological mechanisms underlying this disease.
Collapse
Affiliation(s)
- Bryce A Pasqualotto
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Alexa Nelson
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Samineh Deheshi
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Claire A Sheldon
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Canada
| | - A Wayne Vogl
- Life Sciences Institute and the Department of Cellular & Physiological Sciences, University of British Columbia, Canada
| | - Gordon L Rintoul
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
3
|
Vrisakis JL, Fraser CL, Shahnam A, Nindra U, Grimison P. A case for the use of chemotherapy in hereditary mitochondrial optic neuropathies: Successful administration of cisplatin/etoposide in a male patient with testicular seminoma and Leber's hereditary optic neuropathy. Clin Case Rep 2024; 12:e9045. [PMID: 38979087 PMCID: PMC11228619 DOI: 10.1002/ccr3.9045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/22/2024] [Indexed: 07/10/2024] Open
Abstract
We report on the successful use of chemotherapy for treatment of stage 2B testicular seminoma in a carrier of the Leber's hereditary optic neuropathy 11778 mitochondrial mutation. Neurotoxic chemotherapy may not prompt disease conversion.
Collapse
Affiliation(s)
- Jean-Luc Vrisakis
- Department of Medicine Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Clare L Fraser
- Department of Medicine and Health, Save Sight Institute University of Sydney Sydney New South Wales Australia
- Department of Ophthalmology Sydney and Sydney Eye Hospital Sydney New South Wales Australia
| | - Adel Shahnam
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - Udit Nindra
- Cancer Therapy Centre Liverpool Hospital Sydney New South Wales Australia
| | - Peter Grimison
- Department of Medical Oncology Chris O'Brien Lifehouse Sydney New South Wales Australia
- Department of Medicine and Health, Sydney Medical School University of Sydney Sydney New South Wales Australia
| |
Collapse
|
4
|
Pasqualotto BA, Tegeman C, Frame AK, McPhedrain R, Halangoda K, Sheldon CA, Rintoul GL. Galactose-replacement unmasks the biochemical consequences of the G11778A mitochondrial DNA mutation of LHON in patient-derived fibroblasts. Exp Cell Res 2024; 439:114075. [PMID: 38710404 DOI: 10.1016/j.yexcr.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a visual impairment associated with mutations of mitochondrial genes encoding elements of the electron transport chain. While much is known about the genetics of LHON, the cellular pathophysiology leading to retinal ganglion cell degeneration and subsequent vision loss is poorly understood. The impacts of the G11778A mutation of LHON on bioenergetics, redox balance and cell proliferation were examined in patient-derived fibroblasts. Replacement of glucose with galactose in the culture media reveals a deficit in the proliferation of G11778A fibroblasts, imparts a reduction in ATP biosynthesis, and a reduction in capacity to accommodate exogenous oxidative stress. While steady-state ROS levels were unaffected by the LHON mutation, cell survival was diminished in response to exogenous H2O2.
Collapse
Affiliation(s)
- Bryce A Pasqualotto
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Carina Tegeman
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ariel K Frame
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan McPhedrain
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Kolitha Halangoda
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Claire A Sheldon
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gordon L Rintoul
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
5
|
Chou TH, Hao Z, Alba D, Lazo A, Gallo Afflitto G, Eastwood JD, Porciatti V, Guy J, Yu H. Mitochondrially Targeted Gene Therapy Rescues Visual Loss in a Mouse Model of Leber's Hereditary Optic Neuropathy. Int J Mol Sci 2023; 24:17068. [PMID: 38069388 PMCID: PMC10707051 DOI: 10.3390/ijms242317068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a common mitochondrial genetic disease, causing irreversible blindness in young individuals. Current treatments are inadequate, and there is no definitive cure. This study evaluates the effectiveness of delivering wildtype human NADH ubiquinone oxidoreductase subunit 4 (hND4) gene using mito-targeted AAV(MTSAAV) to rescue LHOH mice. We observed a declining pattern in electroretinograms amplitudes as mice aged across all groups (p < 0.001), with significant differences among groups (p = 0.023; Control vs. LHON, p = 0.008; Control vs. Rescue, p = 0.228). Inner retinal thickness and intraocular pressure did not change significantly with age or groups. Compared to LHON mice, those rescued with wildtype hND4 exhibited improved retinal visual acuity (0.29 ± 0.1 cy/deg vs. 0.15 ± 0.1 cy/deg) and increased functional hyperemia response (effect of flicker, p < 0.001, effect of Group, p = 0.004; Interaction Flicker × Group, p < 0.001). Postmortem analysis shows a marked reduction in retinal ganglion cell density in the LHON group compared to the other groups (Effect of Group, p < 0.001, Control vs. LHON, p < 0.001, Control vs. Rescue, p = 0.106). These results suggest that MTSAAV-delivered wildtype hND4 gene rescues, at least in part, visual impairment in an LHON mouse model and has the therapeutic potential to treat this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (T.-H.C.); (Z.H.); (D.A.); (A.L.); (G.G.A.); (J.D.E.); (J.G.)
| | | | - Hong Yu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (T.-H.C.); (Z.H.); (D.A.); (A.L.); (G.G.A.); (J.D.E.); (J.G.)
| |
Collapse
|
6
|
Li SY, Xue RY, Wu H, Pu N, Wei D, Zhao N, Song ZM, Tao Y. Novel Role of Molecular Hydrogen: The End of Ophthalmic Diseases? Pharmaceuticals (Basel) 2023; 16:1567. [PMID: 38004433 PMCID: PMC10674431 DOI: 10.3390/ph16111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/26/2023] Open
Abstract
Molecular hydrogen (H2) is a colorless, odorless, and tasteless gas which displays non-toxic features at high concentrations. H2 can alleviate oxidative damage, reduce inflammatory reactions and inhibit apoptosis cascades, thereby inducing protective and repairing effects on cells. H2 can be transported into the body in the form of H2 gas, hydrogen-rich water (HRW), hydrogen-rich saline (HRS) or H2 produced by intestinal bacteria. Accumulating evidence suggest that H2 is protective against multiple ophthalmic diseases, including cataracts, dry eye disease, diabetic retinopathy (DR) and other fields. In particular, H2 has been tested in the treatment of dry eye disease and corneal endothelial injury in clinical practice. This medical gas has brought hope to patients suffering from blindness. Although H2 has demonstrated promising therapeutic potentials and broad application prospects, further large-scale studies involving more patients are still needed to determine its optimal application mode and dosage. In this paper, we have reviewed the basic characteristics of H2, and its therapeutic effects in ophthalmic diseases. We also focus on the latest progress in the administration approaches and mechanisms underlying these benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zong-Ming Song
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| |
Collapse
|
7
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Oxidative Stress in Antibiotic Toxic Optic Neuropathy Mimicking Acute LHON in a Patient with Exacerbation of Cystic Fibrosis. STRESSES 2023. [DOI: 10.3390/stresses3010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
The striking similarity of disc edema without leakage on fluorescein angiography, which is pathognomonic of Leber hereditary optic neuropathy (LHON), was present in a patient with cystic fibrosis with antibiotic toxic optic neuropathy. This similarity suggested the common effect of oxidative stress on retinal ganglion cells in inherited mitochondrial and antibiotic optic neuropathies. We present the case of a patient with advanced cystic fibrosis on chronic antibiotic treatment who experienced a rapid painless bilateral visual decline over a course of a few weeks. At examination, his corrected visual acuity was reduced to 0.3 in both eyes, with dyschromatopsia and central scotoma. The appearance of the fundus resembled the typical clinical features of acute LHON with hyperemic optic discs and tortuous vessels with no dye leakage from the optic discs on fluorescein angiography. Ganglion cell layer loss was seen on optic coherence tomography, with all findings pointing to LHON. Genetic testing did not reveal any LHON-specific mutations. After extended genetic testing, a heterozygous variant c.209C>T in the OPA3 gene on chromosome 19, g.46032648G>A, classified as a variant of unknown significance, was also found. After discontinuing antibiotics and general improvements in his health, surprisingly, his visual function completely improved. Later, he also received a bilateral lung transplant that further improved his general condition, and his vision remained normal. Excluding LHON, the transient optic neuropathy in our patient could be mainly due to antibiotic toxicity of linezolid and ciprofloxacin, which have been linked to mitochondrial dysfunction and advanced cystic fibrosis with hypoxic status. We suggest the possibility that patients with cystic fibrosis may be more prone to developing mitochondrial optic neuropathy, especially with additional risk factors such as chronic antibiotic therapy, which affect mitochondrial function, and can perhaps serve as a model for LHON.
Collapse
|
9
|
Warwick AM, Bomze HM, Wang L, Klingeborn M, Hao Y, Stinnett SS, Gospe III SM. Continuous Hypoxia Reduces Retinal Ganglion Cell Degeneration in a Mouse Model of Mitochondrial Optic Neuropathy. Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 36538003 PMCID: PMC9769749 DOI: 10.1167/iovs.63.13.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose To test whether continuous hypoxia is neuroprotective to retinal ganglion cells (RGCs) in a mouse model of mitochondrial optic neuropathy. Methods RGC degeneration was assessed in genetically modified mice in which the floxed gene for the complex I subunit NDUFS4 is deleted from RGCs using Vlgut2-driven Cre recombinase. Beginning at postnatal day 25 (P25), Vglut2-Cre;ndufs4loxP/loxP mice and control littermates were housed under hypoxia (11% oxygen) or kept under normoxia (21% oxygen). Survival of RGC somas and axons was assessed at P60 and P90 via histological analysis of retinal flatmounts and optic nerve cross-sections, respectively. Retinal tissue was also assessed for gliosis and neuroinflammation using western blot and immunofluorescence. Results Consistent with our previous characterization of this model, at least one-third of RGCs had degenerated by P60 in Vglut2-Cre;ndufs4loxP/loxP mice remaining under normoxia. However, continuous hypoxia resulted in complete rescue of RGC somas and axons at this time point, with normal axonal myelination observed on electron microscopy. Though only partial, hypoxia-mediated rescue of complex I-deficient RGC somas and axons remained significant at P90. Hypoxia prevented reactive gliosis at P60, but the retinal accumulation of Iba1+ mononuclear phagocytic cells was not substantially reduced. Conclusions Continuous hypoxia achieved dramatic rescue of early RGC degeneration in mice with severe mitochondrial dysfunction. Although complete rescue was not durable to P90, our observations suggest that investigating the mechanisms underlying hypoxia-mediated neuroprotection of RGCs may identify useful therapeutic strategies for optic neuropathies resulting from less profound mitochondrial impairment, such as Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- Alexander M. Warwick
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Howard M. Bomze
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Luyu Wang
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Ying Hao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sandra S. Stinnett
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sidney M. Gospe III
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
10
|
Traitements médicaux dans la neuropathie optique héréditaire de Leber. J Fr Ophtalmol 2022; 45:S24-S31. [DOI: 10.1016/s0181-5512(22)00447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Spiegel SJ, Sadun AA. Solutions to a Radical Problem: Overview of Current and Future Treatment Strategies in Leber's Hereditary Opic Neuropathy. Int J Mol Sci 2022; 23:13205. [PMID: 36361994 PMCID: PMC9656544 DOI: 10.3390/ijms232113205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is the most common primary mitochondrial DNA disorder. It is characterized by bilateral severe central subacute vision loss due to specific loss of Retinal Ganglion Cells and their axons. Historically, treatment options have been quite limited, but ongoing clinical trials show promise, with significant advances being made in the testing of free radical scavengers and gene therapy. In this review, we summarize management strategies and rational of treatment based on current insights from molecular research. This includes preventative recommendations for unaffected genetic carriers, current medical and supportive treatments for those affected, and emerging evidence for future potential therapeutics.
Collapse
Affiliation(s)
- Samuel J. Spiegel
- Gavin Herbert Eye Institute, University of California, Irvine, CA 92617, USA
| | - Alfredo A. Sadun
- Jules Stein and Doheny Eye Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Abstract
In 2001, the first large animal was successfully treated with a gene therapy that restored its vision. Lancelot, the Briard dog that was treated, suffered from a human childhood blindness called Leber's congenital amaurosis type 2. Sixteen years later, the gene therapy was approved by the U.S. Food and Drug Administration. The success of this gene therapy in dogs led to a fast expansion of the ocular gene therapy field. By now every class of inherited retinal dystrophy has been treated in at least one animal model and many clinical trials have been initiated in humans. In this study, we review the status of viral gene therapies for the retina, with a focus on ongoing human clinical trials. It is likely that in the next decade we will see several new viral gene therapies approved.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- University of Massachusetts Medical School, Ophthalmology, Worcester, Massachusetts, United States;
| | - Claudio Punzo
- University of Massachusetts Medical School, Ophthalmology, 368 Plantation Street, Albert Sherman Center, AS6-2041, Worcester, Massachusetts, United States, 01605;
| |
Collapse
|
13
|
Liutkeviciene R, Mikalauskaite R, Gedvilaite G, Glebauskiene B, Kriauciuniene L, Žemaitienė R. Relative Leukocyte Telomere Length and Telomerase Complex Regulatory Markers Association with Leber's Hereditary Optic Neuropathy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091240. [PMID: 36143917 PMCID: PMC9504758 DOI: 10.3390/medicina58091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Background and Objectives: To evaluate the association of relative leukocyte telomere length (RLTL) and telomerase complex regulatory markers with Leber’s hereditary optic neuropathy (LHON). Material and Methods: A case-control study was performed in patients with LHON (≥18 years) and healthy subjects. The diagnosis of LHON was based on a genetic blood test (next-generation sequencing with Illumina MiSeq, computer analysis: BWA2.1 Illumina BaseSpace, Alamut, and mtDNA Variant analyzer 1000 were performed) and diagnostic criteria approved by the LHON disease protocol. Statistical analysis was performed using the standard statistical software package, IBM SPSS Statistics 27. Statistically significant results were considered when p < 0.05. Results: Significantly longer RLTL was observed in LHON patients than in healthy controls (p < 0.001). RLTL was significantly longer in women and men with LOHN than in healthy women and men in the control group (p < 0.001 and p = 0.003, respectively). In the elderly group (>32 years), RLTL was statistically significantly longer in LHON patients compared with healthy subjects (p < 0.001). The GG genotype of the TERC rs12696304 polymorphism was found to be statistically significantly higher in the LHON group (p = 0.041), and the C allele in the TERC rs12696304 polymorphism was found to be statistically significantly less common in the LHON group (p < 0.001). The RLTL of LHON patients was found to be statistically significantly longer in the TERC rs12696304 polymorphism in all tested genotypes (CC, p = 0.005; CG, p = 0.008; GG, p = 0.025), TEP1 rs1760904 polymorphism in the GA genotype (p < 0.001), and TEP1 gene rs1713418 in the AA and AG genotypes (p = 0.011 and p < 0.001, respectively). Conclusions: The RLTL in LHON patients was found to be longer than in healthy subjects regardless of treatment with idebenone. The TERC rs12696304 polymorphism, of all studied polymorphisms, was the most significantly associated with changes in LHON and telomere length.
Collapse
Affiliation(s)
- Rasa Liutkeviciene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Mikalauskaite
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Correspondence:
| | - Brigita Glebauskiene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Reda Žemaitienė
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
14
|
Nie Z, Wang C, Chen J, Ji Y, Zhang H, Zhao F, Zhou X, Guan MX. Abnormal morphology and function in retinal ganglion cells derived from patients-specific iPSCs generated from individuals with Leber's hereditary optic neuropathy. Hum Mol Genet 2022; 32:231-243. [PMID: 35947995 PMCID: PMC9840204 DOI: 10.1093/hmg/ddac190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 01/19/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease that results from degeneration of retinal ganglion cells (RGC). Mitochondrial ND4 11778G > A mutation, which affects structural components of complex I, is the most prevalent LHON-associated mitochondrial DNA (mtDNA) mutation worldwide. The m.11778G > A mutation is the primary contributor underlying the development of LHON and X-linked PRICKLE3 allele (c.157C > T, p.Arg53Trp) linked to biogenesis of ATPase interacts with m.11778G > A mutation to cause LHON. However, the lack of appropriate cell and animal models of LHON has been significant obstacles for deep elucidation of disease pathophysiology, specifically the tissue-specific effects. Using RGC-like cells differentiated from induced pluripotent stem cells (iPSCs) from members of one Chinese family (asymptomatic subjects carrying only m.11778G > A mutation or PRICKLE3 p.Arg53Trp mutation, symptomatic individuals bearing both m.11778G > A and PRICKLE3 p.Arg53Trp mutations and control lacking these mutations), we demonstrated the deleterious effects of mitochondrial dysfunctions on the morphology and functions of RGCs. Notably, iPSCs bearing only m.11778G > A or p.Arg53Trp mutation exhibited mild defects in differentiation to RGC-like cells. The RGC-like cells carrying only m.11778G > A or p.Arg53Trp mutation displayed mild defects in RGC morphology, including the area of soma and numbers of neurites, electrophysiological properties, ATP contents and apoptosis. Strikingly, those RGC-like cells derived from symptomatic individuals harboring both m.11778G > A and p.Arg53Trp mutations displayed greater defects in the development, morphology and functions than those in cells bearing single mutation. These findings provide new insights into pathophysiology of LHON arising from RGC deficiencies caused by synergy between m.11778G > A and PRICKLE3 p.Arg53Trp mutation.
Collapse
Affiliation(s)
| | | | | | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China,Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongxing Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Fuxin Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- To whom correspondence should be addressed at: Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China. Tel: 86-571-88206916; Fax: 86-571-88982377;
| |
Collapse
|
15
|
Singh P, Bahr T, Zhao X, Hu P, Daadi M, Huang T, Bai Y. Creating Cell Model 2.0 Using Patient Samples Carrying a Pathogenic Mitochondrial DNA Mutation: iPSC Approach for LHON. Methods Mol Biol 2022; 2549:219-231. [PMID: 34669166 DOI: 10.1007/7651_2021_384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Leber's Hereditary Optic Neuropathy is the most prevalent mitochondrial neurological disease caused by mutations in mitochondrial DNA encoded respiratory complex I subunits. Although the genetic origin for Leber's hereditary optic neuropathy was identified about 30 years ago, the underlying pathogenesis is still unclear primarily due to the lack of a relevant system or cell model. Current models are limited to lymphoblasts, fibroblasts, or cybrid cell lines. As the disease phenotype is limited to retinal ganglion cells, induced pluripotent stem cells will serve as an excellent model for studying this tissue-specific disease, elucidating its underlying molecular mechanisms, and identifying novel therapeutic targets. Here, we describe a detailed protocol for the generation of retinal ganglion cells, and also cardiomyocytes for proof of iPSC pluripotency.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tyler Bahr
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Xiaoxu Zhao
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Peiqing Hu
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marcel Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - TaoSheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
16
|
Hanaford AR, Cho YJ, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis 2022; 17:217. [PMID: 35668433 PMCID: PMC9169410 DOI: 10.1186/s13023-022-02324-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Collapse
Affiliation(s)
- Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Reserach Institute, Seattle, WA, 98101, USA.
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Pediatric Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Molecular Immunology and Microbiology, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| |
Collapse
|
17
|
Porciatti V, Chou TH. Using Noninvasive Electrophysiology to Determine Time Windows of Neuroprotection in Optic Neuropathies. Int J Mol Sci 2022; 23:5751. [PMID: 35628564 PMCID: PMC9145583 DOI: 10.3390/ijms23105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
The goal of neuroprotection in optic neuropathies is to prevent loss of retinal ganglion cells (RGCs) and spare their function. The ideal time window for initiating neuroprotective treatments should be the preclinical period at which RGCs start losing their functional integrity before dying. Noninvasive electrophysiological tests such as the Pattern Electroretinogram (PERG) can assess the ability of RGCs to generate electrical signals under a protracted degenerative process in both clinical conditions and experimental models, which may have both diagnostic and prognostic values and provide the rationale for early treatment. The PERG can be used to longitudinally monitor the acute and chronic effects of neuroprotective treatments. User-friendly versions of the PERG technology are now commercially available for both clinical and experimental use.
Collapse
|
18
|
Bahr T, Katuri J, Liang T, Bai Y. Mitochondrial chaperones in human health and disease. Free Radic Biol Med 2022; 179:363-374. [PMID: 34780988 PMCID: PMC8893670 DOI: 10.1016/j.freeradbiomed.2021.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
Molecular chaperones are a family of proteins that maintain cellular protein homeostasis through non-covalent peptide folding and quality control mechanisms. The chaperone proteins found within mitochondria play significant protective roles in mitochondrial biogenesis, quality control, and stress response mechanisms. Defective mitochondrial chaperones have been implicated in aging, neurodegeneration, and cancer. In this review, we focus on the two most prominent mitochondrial chaperones: mtHsp60 and mtHsp70. These proteins demonstrate different cellular localization patterns, interact with different targets, and have different functional activities. We discuss the structure and function of these prominent mitochondrial chaperone proteins and give an update on newly discovered regulatory mechanisms and disease implications.
Collapse
Affiliation(s)
- Tyler Bahr
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Joshua Katuri
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Ting Liang
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Yidong Bai
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
19
|
Heuer B, Seibert DC. Understanding the nomenclature of mitochondrial DNA mutations through examples of two specific disease entities: Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes and Leber hereditary optic neuropathy. J Am Assoc Nurse Pract 2022; 34:217-219. [PMID: 35120083 DOI: 10.1097/jxx.0000000000000693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Mitochondrial diseases are genetic disorders that can arise either from maternally inherited mitochondrial DNA (mtDNA) or from mutations in nuclear DNA. This article is the second in a series of papers reviewing mitochondrial genetics and several of the disorders associated with mitochondrial gene variants. With a prevalence of 1:∼4,300 persons, mitochondrial disorders are diagnostic entities with which nurse practitioners should be familiar. In describing genetic mutations, numbering nucleotides (nuclear or mtDNA) is critical for communicating exactly where a variation has occurred in a stretch of nucleotides. This article discusses the nomenclature associated with mtDNA mutations, using the examples of mutations causing mitochondrial encephalopathy with lactic acidosis and stroke-like episodes and Leber hereditary optic neuropathy. Pathophysiology, symptoms, and treatment options for these disease entities are discussed.
Collapse
Affiliation(s)
- Beth Heuer
- Department of Nursing, Temple University, College of Public Health, Philadelphia, Pennsylvania
| | - Diane C Seibert
- Daniel K. Inouye Graduate School of Nursing, Bethesda, Maryland
| |
Collapse
|
20
|
Liang T, Dunn J, Zou X, Nayak B, Ikeno Y, Fan L, Bai Y. Characterizing the Electron Transport Chain: Functional Approach Using Extracellular Flux Analyzer on Mouse Tissue Samples. Methods Mol Biol 2022; 2497:117-128. [PMID: 35771439 DOI: 10.1007/978-1-0716-2309-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Seahorse Extracellular Flux Analyzer enables the high-throughput characterization of oxidative phosphorylation capacity based on the electron transport chain organization and regulation with relatively small amount of material. This development over the traditional polarographic Clark-type electrode approaches make it possible to analyze the respiratory features of mitochondria isolated from tissue samples of particular animal models. Here we provide a description of an optimized approach to carry out multi-well measurement of O2 consumption, with the Agilent Seahorse XFe96 analyzer on mouse brain and muscles to determine the tissue-specific oxidative phosphorylation properties. Protocols include the preparation of the tissue samples, isolation of mitochondria, and analysis of their function; in particular, the preparation and optimization of the reagents and samples.
Collapse
Affiliation(s)
- Ting Liang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jay Dunn
- Agilent Technologies, Inc, Santa Clara, CA, USA
| | - Xin Zou
- Department of Pulmonary and Critical Care Medicine, Longyuan First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bijaya Nayak
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yuji Ikeno
- Department of Pathology, Barshop Institute of Longevity and Aging Research, University of Texas Health San Antonio, and Geriatric Research Education and Clinical Center (GRECC), Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai, China
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
21
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Peron C, Maresca A, Cavaliere A, Iannielli A, Broccoli V, Carelli V, Di Meo I, Tiranti V. Exploiting hiPSCs in Leber's Hereditary Optic Neuropathy (LHON): Present Achievements and Future Perspectives. Front Neurol 2021; 12:648916. [PMID: 34168607 PMCID: PMC8217617 DOI: 10.3389/fneur.2021.648916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023] Open
Abstract
More than 30 years after discovering Leber's hereditary optic neuropathy (LHON) as the first maternally inherited disease associated with homoplasmic mtDNA mutations, we still struggle to achieve effective therapies. LHON is characterized by selective degeneration of retinal ganglion cells (RGCs) and is the most frequent mitochondrial disease, which leads young people to blindness, in particular males. Despite that causative mutations are present in all tissues, only a specific cell type is affected. Our deep understanding of the pathogenic mechanisms in LHON is hampered by the lack of appropriate models since investigations have been traditionally performed in non-neuronal cells. Effective in-vitro models of LHON are now emerging, casting promise to speed our understanding of pathophysiology and test therapeutic strategies to accelerate translation into clinic. We here review the potentials of these new models and their impact on the future of LHON patients.
Collapse
Affiliation(s)
- Camille Peron
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Andrea Cavaliere
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Iannielli
- San Raffaele Scientific Institute, Milan, Italy.,National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Vania Broccoli
- San Raffaele Scientific Institute, Milan, Italy.,National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences-DIBINEM, University of Bologna, Bologna, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
23
|
Hage R, Vignal-Clermont C. Leber Hereditary Optic Neuropathy: Review of Treatment and Management. Front Neurol 2021; 12:651639. [PMID: 34122299 PMCID: PMC8187781 DOI: 10.3389/fneur.2021.651639] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disease that specifically targets the retinal ganglion cells by reducing their ability to produce enough energy to sustain. The mutations of the mitochondrial DNA that cause LHON are silent until an unknown trigger causes bilateral central visual scotoma. After the onset of loss of vision, most patients experience progressive worsening within the following months. Few of them regain some vision after a period of ~1 year. Management of LHON patients has been focused on understanding the triggers of the disease and its pathophysiology to prevent the onset of visual loss in a carrier. Medical treatment is recommended once visual loss has started in at least one eye. Research evaluated drugs that are thought to be able to restore the mitochondrial electron transport chain of the retinal ganglion cells. Significant advances were made in evaluating free radical cell scavengers and gene therapy as potential treatments for LHON. Although encouraging the results of clinical trial have been mixed in stopping the worsening of visual loss. In patients with chronic disease of over 1 year, efficient treatment that restores vision is yet to be discovered. In this review, we summarize the management strategies for patients with LHON before, during, and after the loss of vision, explain the rationale and effectiveness of previous and current treatments, and report findings about emerging treatments.
Collapse
Affiliation(s)
- Rabih Hage
- Neuro-ophthalmology Department, Hôpital Fondation Rothschild, Paris, France
| | | |
Collapse
|
24
|
Gilhooley MJ, Owen N, Moosajee M, Yu Wai Man P. From Transcriptomics to Treatment in Inherited Optic Neuropathies. Genes (Basel) 2021; 12:147. [PMID: 33499292 PMCID: PMC7912133 DOI: 10.3390/genes12020147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Inherited optic neuropathies, including Leber Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), are monogenetic diseases with a final common pathway of mitochondrial dysfunction leading to retinal ganglion cell (RGC) death and ultimately loss of vision. They are, therefore, excellent models with which to investigate this ubiquitous disease process-implicated in both common polygenetic ocular diseases (e.g., Glaucoma) and late-onset central nervous system neurodegenerative diseases (e.g., Parkinson disease). In recent years, cellular and animal models of LHON and DOA have matured in parallel with techniques (such as RNA-seq) to determine and analyze the transcriptomes of affected cells. This confluence leaves us at a particularly exciting time with the potential for the identification of novel pathogenic players and therapeutic targets. Here, we present a discussion of the importance of inherited optic neuropathies and how transcriptomic techniques can be exploited in the development of novel mutation-independent, neuroprotective therapies.
Collapse
Affiliation(s)
- Michael James Gilhooley
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
- The Francis Crick Institute, 1 Midland Road, Somers Town, London NW1 1AT, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Patrick Yu Wai Man
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
- Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
25
|
Bocca C, Le Paih V, Chao de la Barca JM, Kouassy Nzoughet J, Amati-Bonneau P, Blanchet O, Védie B, Géromin D, Simard G, Procaccio V, Bonneau D, Lenaers G, Orssaud C, Reynier P. A plasma metabolomic signature of Leber hereditary optic neuropathy showing taurine and nicotinamide deficiencies. Hum Mol Genet 2021; 30:21-29. [PMID: 33437983 PMCID: PMC8033144 DOI: 10.1093/hmg/ddab013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is the most common disorder due to mitochondrial DNA mutations and complex I deficiency. It is characterized by an acute vision loss, generally in young adults, with a higher penetrance in males. How complex I dysfunction induces the peculiar LHON clinical presentation remains an unanswered question. To gain an insight into this question, we carried out a non-targeted metabolomic investigation using the plasma of 18 LHON patients, during the chronic phase of the disease, comparing them to 18 healthy controls. A total of 500 metabolites were screened of which 156 were accurately detected. A supervised Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) highlighted a robust model for disease prediction with a Q2 (cum) of 55.5%, with a reliable performance during the permutation test (cross-validation analysis of variance, P-value = 5.02284e-05) and a good prediction of a test set (P = 0.05). This model highlighted 10 metabolites with variable importance in the projection (VIP) > 0.8. Univariate analyses revealed nine discriminating metabolites, six of which were the same as those found in the Orthogonal Projections to Latent Structures Discriminant Analysis model. In total, the 13 discriminating metabolites identified underlining dietary metabolites (nicotinamide, taurine, choline, 1-methylhistidine and hippurate), mitochondrial energetic substrates (acetoacetate, glutamate and fumarate) and purine metabolism (inosine). The decreased concentration of taurine and nicotinamide (vitamin B3) suggest interesting therapeutic targets, given their neuroprotective roles that have already been demonstrated for retinal ganglion cells. Our results show a reliable predictive metabolomic signature in the plasma of LHON patients and highlighted taurine and nicotinamide deficiencies.
Collapse
Affiliation(s)
- Cinzia Bocca
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Victor Le Paih
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Juan Manuel Chao de la Barca
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | | | - Patrizia Amati-Bonneau
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Odile Blanchet
- Centre de Ressources Biologiques, BB-0033-00038, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Benoit Védie
- Plateformes Centre de Ressources Biologiques et Tumorothèque, BB-0033-00063, Hôpital Européen Georges Pompidou, Paris, France.,Hôpital Européen Georges Pompidou, Département de Biochimie, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, Paris, France
| | - Daniela Géromin
- Plateformes Centre de Ressources Biologiques et Tumorothèque, BB-0033-00063, Hôpital Européen Georges Pompidou, Paris, France
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Vincent Procaccio
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Dominique Bonneau
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Guy Lenaers
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Christophe Orssaud
- Unité Fonctionnelle d'Ophtalmologie, CRMR Ophtara, Hôpital Européen Georges Pompidou (HEGP), GH Paris Centre, Assistance Publique - Hôpitaux de Paris (AP-HP), 75015 Paris, France.,Service d'Ophtalmologie, Ophtara Hôpital Necker-Enfants Malades, GH Paris Centre, AP-HP, 149, rue de Sèvres, 75015 Paris, France
| | - Pascal Reynier
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| |
Collapse
|
26
|
Jiang Z, Bahr T, Zhou C, Jin T, Chen H, Song S, Ikeno Y, Tian H, Bai Y. Diagnostic value of circulating cell-free mtDNA in patients with suspected thyroid cancer: ND4/ND1 ratio as a new potential plasma marker. Mitochondrion 2020; 55:145-153. [PMID: 33035689 PMCID: PMC9680688 DOI: 10.1016/j.mito.2020.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy, and its incidence continues to rise. For clinicians with cancer patients, choosing and interpreting diagnostic laboratory studies has become increasingly important. Previously, changes in plasma free mitochondrial DNA levels have been found in colorectal, breast, lung, and urinary cancers, and have demonstrated diagnostic value. In this study, we investigated whether the occurrence and development of thyroid cancer might be predicted using mtDNA copy number (ND1), mtDNA integrity (ND4/ND1) and levels of cell-free nDNA (GAPDH). We analyzed ND1, ND4, and GAPDH levels in plasma and blood cells from 75 patients with thyroid cancer, 40 patients with nodular goiter, and 107 normal controls using real-time PCR. Although both the thyroid nodule and thyroid cancer patients had significantly increased ND1 levels, the ND4/ND1 ratio in the thyroid cancer group was higher than the thyroid nodule group (P < 0.05), and significantly higher than the normal control group (P < 0.01). Plasma levels of nuclear DNA (GAPDH) in the thyroid cancer group were also higher compared to normal (P < 0.05). These results indicate that increased intactness of plasma free mtDNA is associated with increased levels of plasma cell-free nDNA, and that the ND4/ND1 ratio has the potential to be a new detection indicator in thyroid cancer. Furthermore, we classified thyroid cancer patients according to clinical data including age, tumor size, and metastasis. We found significantly higher levels of GAPDH in malignant tissues. Because ND4/ND1 correlated with plasma GAPDH in the plasma studies, this also suggests a potential relationship between ND4 intactness and thyroid tumor tissue size. Taken together, our findings suggest a tumor-specific process involving increased release of intact mtDNA, detectable in the plasma, which differentiates normal patients from patients with thyroid cancer.
Collapse
Affiliation(s)
- Zhiying Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China; Department of Clinical Laboratory, Nanjing Jiangbei People's Hospital Affiliated of Nantong University, China
| | - Tyler Bahr
- University of Texas Health San Antonio, United States
| | - Chen Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Tao Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Hao Chen
- The Sixth People's Hospital, Shanghai Jiaotong University, China
| | - Shujie Song
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Yuji Ikeno
- University of Texas Health San Antonio, United States
| | - Hengli Tian
- The Sixth People's Hospital, Shanghai Jiaotong University, China
| | - Yidong Bai
- University of Texas Health San Antonio, United States.
| |
Collapse
|
27
|
Sharma H, Singh D, Mahant A, Sohal SK, Kesavan AK, Samiksha. Development of mitochondrial replacement therapy: A review. Heliyon 2020; 6:e04643. [PMID: 32984570 PMCID: PMC7492815 DOI: 10.1016/j.heliyon.2020.e04643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial replacement therapy (MRT) is a new form of reproductive invitro fertilization (IVF) which works on the principle of replacing a women's abnormal mitochondrial DNA (mt-DNA) with the donor's healthy one. MRT include different techniques like spindles transfer (ST), pronuclear transfer (PNT) or polar body transfer (PBT). Transmission of defective mitochondrial DNA to the next generation can also be prevented by using these approaches. The development of healthy baby free from genetic disorders and to terminate the lethal mitochondrial disorders are the chief motive of this technique. In aged individuals, through in vitro fertilization, MRT provides the substitution of defective cytoplasm with cured one to enhance the expectation of pregnancy rates. However, moral, social, and cultural objections have restricted its exploration. Therefore, this review summarizes the various methods involved in MRT, its global status, its exaggerated censure over the years which depicts a strong emphasis for social acceptance and clinical application in the world of medical science.
Collapse
Affiliation(s)
- Hitika Sharma
- Department of Zoology, Khalsa College Amritsar, Punjab, 143005, India
| | - Drishtant Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Anup Kumar Kesavan
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Samiksha
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| |
Collapse
|
28
|
Ji Y, Zhang J, Lu Y, Yi Q, Chen M, Xie S, Mao X, Xiao Y, Meng F, Zhang M, Yang R, Guan MX. Complex I mutations synergize to worsen the phenotypic expression of Leber's hereditary optic neuropathy. J Biol Chem 2020; 295:13224-13238. [PMID: 32723871 DOI: 10.1074/jbc.ra120.014603] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternal inheritance of eye disease because of the mitochondrial DNA (mtDNA) mutations. We previously discovered a 3866T>C mutation within the gene for the ND1 subunit of complex I as possibly amplifying disease progression for patients bearing the disease-causing 11778G>A mutation within the gene for the ND4 subunit of complex I. However, whether and how the ND1 mutation exacerbates the ND4 mutation were unknown. In this report, we showed that four Chinese families bearing both m.3866T>C and m.11778G>A mutations exhibited higher penetrances of LHON than 6 Chinese pedigrees carrying only the m.3866T>C mutation or families harboring only the m.11778G>A mutation. The protein structure analysis revealed that the m.3866T>C (I187T) and m.11778G>A (R340H) mutations destabilized the specific interactions with other residues of ND1 and ND4, thereby altering the structure and function of complex I. Cellular data obtained using cybrids, constructed by transferring mitochondria from the Chinese families into mtDNA-less (ρ°) cells, demonstrated that the mutations perturbed the stability, assembly, and activity of complex I, leading to changes in mitochondrial ATP levels and membrane potential and increasing the production of reactive oxygen species. These mitochondrial dysfunctions promoted the apoptotic sensitivity of cells and decreased mitophagy. Cybrids bearing only the m.3866T>C mutation displayed mild mitochondrial dysfunctions, whereas those harboring both m.3866T>C and m.11778G>A mutations exhibited greater mitochondrial dysfunctions. These suggested that the m.3866T>C mutation acted in synergy with the m.11778G>A mutation, aggravating mitochondrial dysfunctions and contributing to higher penetrance of LHON in these families carrying both mtDNA mutations.
Collapse
Affiliation(s)
- Yanchun Ji
- Department of Genetics and Metabolic Diseases, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Lu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuzi Yi
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengquan Chen
- Department of Lab Medicine, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Shipeng Xie
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Xiaoting Mao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Xiao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Department of Genetics and Metabolic Diseases, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Rulai Yang
- Department of Genetics and Metabolic Diseases, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China; Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|