1
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
2
|
Kalarikkal M, Saikia R, Oliveira L, Bhorkar Y, Lonare A, Varshney P, Dhamale P, Majumdar A, Joseph J. Nup358 restricts ER-mitochondria connectivity by modulating mTORC2/Akt/GSK3β signalling. EMBO Rep 2024; 25:4226-4251. [PMID: 39026009 PMCID: PMC11466962 DOI: 10.1038/s44319-024-00204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
ER-mitochondria contact sites (ERMCSs) regulate processes, including calcium homoeostasis, energy metabolism and autophagy. Previously, it was shown that during growth factor signalling, mTORC2/Akt gets recruited to and stabilizes ERMCSs. Independent studies showed that GSK3β, a well-known Akt substrate, reduces ER-mitochondria connectivity by disrupting the VAPB-PTPIP51 tethering complex. However, the mechanisms that regulate ERMCSs are incompletely understood. Here we find that annulate lamellae (AL), relatively unexplored subdomains of ER enriched with a subset of nucleoporins, are present at ERMCSs. Depletion of Nup358, an AL-resident nucleoporin, results in enhanced mTORC2/Akt activation, GSK3β inhibition and increased ERMCSs. Depletion of Rictor, a mTORC2-specific subunit, or exogenous expression of GSK3β, was sufficient to reverse the ERMCS-phenotype in Nup358-deficient cells. We show that growth factor-mediated activation of mTORC2 requires the VAPB-PTPIP51 complex, whereas, Nup358's association with this tether restricts mTORC2/Akt signalling and ER-mitochondria connectivity. Expression of a Nup358 fragment that is sufficient for interaction with the VAPB-PTPIP51 complex suppresses mTORC2/Akt activation and disrupts ERMCSs. Collectively, our study uncovers a novel role for Nup358 in controlling ERMCSs by modulating the mTORC2/Akt/GSK3β axis.
Collapse
Affiliation(s)
- Misha Kalarikkal
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Rimpi Saikia
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Lizanne Oliveira
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Yashashree Bhorkar
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Akshay Lonare
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Pallavi Varshney
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Prathamesh Dhamale
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Amitabha Majumdar
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India.
| |
Collapse
|
3
|
Li JJ, Xin N, Yang C, Tavizon LA, Hong R, Park J, Moore TI, Tharyan RG, Antebi A, Kim HE. Unveiling the Intercompartmental Signaling Axis: Mitochondrial to ER Stress Response (MERSR) and its Impact on Proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556674. [PMID: 38187690 PMCID: PMC10769184 DOI: 10.1101/2023.09.07.556674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Maintaining protein homeostasis is essential for cellular health. Our previous research uncovered a cross-compartmental Mitochondrial to Cytosolic Stress Response, activated by the perturbation of mitochondrial proteostasis, which ultimately results in the improvement of proteostasis in the cytosol. Here, we found that this signaling axis also influences the unfolded protein response of the endoplasmic reticulum (UPR ER ), suggesting the presence of a Mitochondria to ER Stress Response (MERSR). During MERSR, the IRE1 branch of UPR ER is inhibited, introducing a previously unknown regulatory component of MCSR. Moreover, proteostasis is enhanced through the upregulation of the PERK-eIF2α signaling pathway, increasing phosphorylation of eIF2α and improving the ER's ability to handle proteostasis. MERSR activation in both polyglutamine and amyloid-beta peptide-expressing C. elegans disease models also led to improvement in both aggregate burden and overall disease outcome. These findings shed light on the coordination between the mitochondria and the ER in maintaining cellular proteostasis and provide further evidence for the importance of intercompartmental signaling.
Collapse
|
4
|
Dubinin MV, Stepanova AE, Mikheeva IB, Igoshkina AD, Cherepanova AA, Talanov EY, Khoroshavina EI, Belosludtsev KN. Reduction of Mitochondrial Calcium Overload via MKT077-Induced Inhibition of Glucose-Regulated Protein 75 Alleviates Skeletal Muscle Pathology in Dystrophin-Deficient mdx Mice. Int J Mol Sci 2024; 25:9892. [PMID: 39337383 PMCID: PMC11432509 DOI: 10.3390/ijms25189892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Duchenne muscular dystrophy is secondarily accompanied by Ca2+ excess in muscle fibers. Part of the Ca2+ accumulates in the mitochondria, contributing to the development of mitochondrial dysfunction and degeneration of muscles. In this work, we assessed the effect of intraperitoneal administration of rhodacyanine MKT077 (5 mg/kg/day), which is able to suppress glucose-regulated protein 75 (GRP75)-mediated Ca2+ transfer from the sarcoplasmic reticulum (SR) to mitochondria, on the Ca2+ overload of skeletal muscle mitochondria in dystrophin-deficient mdx mice and the concomitant mitochondrial dysfunction contributing to muscle pathology. MKT077 prevented Ca2+ overload of quadriceps mitochondria in mdx mice, reduced the intensity of oxidative stress, and improved mitochondrial ultrastructure, but had no effect on impaired oxidative phosphorylation. MKT077 eliminated quadriceps calcification and reduced the intensity of muscle fiber degeneration, fibrosis level, and normalized grip strength in mdx mice. However, we noted a negative effect of MKT077 on wild-type mice, expressed as a decrease in the efficiency of mitochondrial oxidative phosphorylation, SR stress development, ultrastructural disturbances in the quadriceps, and a reduction in animal endurance in the wire-hanging test. This paper discusses the impact of MKT077 modulation of mitochondrial dysfunction on the development of skeletal muscle pathology in mdx mice.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Calcium/metabolism
- Disease Models, Animal
- Dystrophin/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mitochondria/metabolism
- Mitochondria/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/pathology
- Mitochondria, Muscle/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Oxidative Phosphorylation/drug effects
- Oxidative Stress/drug effects
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/drug effects
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Anastasia E Stepanova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Irina B Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Anastasia D Igoshkina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Alena A Cherepanova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Eugeny Yu Talanov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Ekaterina I Khoroshavina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| |
Collapse
|
5
|
Wang Y, Wang Y, Yin H, Xiao Z, Ren Z, Ma X, Zhang J, Fu X, Zhang F, Zeng L. BI1 Activates Autophagy and Mediates TDP43 to Regulate ALS Pathogenesis. Mol Neurobiol 2024:10.1007/s12035-024-04313-2. [PMID: 38954254 DOI: 10.1007/s12035-024-04313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disease in adults. Currently, there are no known drugs or clinical approaches that have demonstrated efficacy in treating ALS. Mitochondrial function and autophagy have been identified as crucial mechanisms in the development of ALS. While Bax inhibitor 1 (BI1) has been implicated in neurodegenerative diseases, its exact mechanism remains unknown. This study investigates the therapeutic impact of BI1 overexpression on ALS both in vivo and in vitro, revealing its ability to mitigate SOD1G93A-induced apoptosis, nuclear damage, mitochondrial dysfunction, and axonal degeneration of motor neurons. At the same time, BI1 prolongs onset time and lifespan of ALS mice, improves motor function, and alleviates neuronal damage, muscle damage, neuromuscular junction damage among other aspects. The findings indicate that BI1 can inhibit pathological TDP43 morphology and initially stimulate autophagy through interaction with TDP43. This study establishes a solid theoretical foundation for understanding the regulation of autophagy by BI1 and TDP43 while shedding light on the pathogenesis of ALS through their interaction - offering new concepts and targets for clinical implementation and drug development.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yuxiang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Hanlan Yin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zixuan Xiao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zhichao Ren
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xueting Ma
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Jingtian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xueqi Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Fuqiang Zhang
- Scientific Research Centre of China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Linlin Zeng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
6
|
Liu R, Hong W, Hou D, Huang H, Duan C. Decoding Organelle Interactions: Unveiling Molecular Mechanisms and Disease Therapies. Adv Biol (Weinh) 2024; 8:e2300288. [PMID: 38717793 DOI: 10.1002/adbi.202300288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/05/2024] [Indexed: 07/13/2024]
Abstract
Organelles, substructures in the cytoplasm with specific morphological structures and functions, interact with each other via membrane fusion, membrane transport, and protein interactions, collectively termed organelle interaction. Organelle interaction is a complex biological process involving the interaction and regulation of several organelles, including the interaction between mitochondria-endoplasmic reticulum, endoplasmic reticulum-Golgi, mitochondria-lysosomes, and endoplasmic reticulum-peroxisomes. This interaction enables intracellular substance transport, metabolism, and signal transmission, and is closely related to the occurrence, development, and treatment of many diseases, such as cancer, neurodegenerative diseases, and metabolic diseases. Herein, the mechanisms and regulation of organelle interactions are reviewed, which are critical for understanding basic principles of cell biology and disease development mechanisms. The findings will help to facilitate the development of novel strategies for disease prevention, diagnosis, and treatment opportunities.
Collapse
Affiliation(s)
- Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
7
|
Atakpa-Adaji P, Ivanova A, Kujawa K, Taylor CW. KRAP regulates mitochondrial Ca2+ uptake by licensing IP3 receptor activity and stabilizing ER-mitochondrial junctions. J Cell Sci 2024; 137:jcs261728. [PMID: 38786982 PMCID: PMC11234384 DOI: 10.1242/jcs.261728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are high-conductance channels that allow the regulated redistribution of Ca2+ from the endoplasmic reticulum (ER) to the cytosol and, at specialized membrane contact sites (MCSs), to other organelles. Only a subset of IP3Rs release Ca2+ to the cytosol in response to IP3. These 'licensed' IP3Rs are associated with Kras-induced actin-interacting protein (KRAP, also known as ITPRID2) beneath the plasma membrane. It is unclear whether KRAP regulates IP3Rs at MCSs. We show, using simultaneous measurements of Ca2+ concentration in the cytosol and mitochondrial matrix, that KRAP also licenses IP3Rs to release Ca2+ to mitochondria. Loss of KRAP abolishes cytosolic and mitochondrial Ca2+ signals evoked by stimulation of IP3Rs via endogenous receptors. KRAP is located at ER-mitochondrial membrane contact sites (ERMCSs) populated by IP3R clusters. Using a proximity ligation assay between IP3R and voltage-dependent anion channel 1 (VDAC1), we show that loss of KRAP reduces the number of ERMCSs. We conclude that KRAP regulates Ca2+ transfer from IP3Rs to mitochondria by both licensing IP3R activity and stabilizing ERMCSs.
Collapse
Affiliation(s)
- Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Adelina Ivanova
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Karolina Kujawa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Colin W. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
8
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
9
|
Wang Q, Li L, Gao X, Zhang C, Xu C, Song L, Li J, Sun X, Mao F, Wang Y. Targeting GRP75 with a Chlorpromazine Derivative Inhibits Endometrial Cancer Progression Through GRP75-IP3R-Ca 2+-AMPK Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304203. [PMID: 38342610 PMCID: PMC11022737 DOI: 10.1002/advs.202304203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/18/2024] [Indexed: 02/13/2024]
Abstract
Tumors often overexpress glucose-regulated proteins, and agents that interfere with the production or activity of these proteins may represent novel cancer treatments. The chlorpromazine derivative JX57 exhibits promising effects against endometrial cancer with minimal extrapyramidal side effects; however, its mechanisms of action are currently unknown. Here, glucose-regulated protein 75 kD (GRP75) is identified as a direct target of JX57 using activity-based protein profiling and loss-of-function experiments. The findings show that GRP75 is necessary for the biological activity of JX57, as JX57 exhibits moderate anticancer properties in GRP75-deficient cancer cells, both in vitro and in vivo. High GRP75 expression is correlated with poor differentiation and poor survival in patients with endometrial cancer, whereas the knockdown of GRP75 can significantly suppress tumor growth. Mechanistically, the direct binding of JX57 to GRP75 impairs the structure of the mitochondria-associated endoplasmic reticulum membrane and disrupts the endoplasmic reticulum-mitochondrial calcium homeostasis, resulting in a mitochondrial energy crisis and AMP-activated protein kinase activation. Taken together, these findings highlight GRP75 as a potential prognostic biomarker and direct therapeutic target in endometrial cancer and suggest that the chlorpromazine derivative JX57 can potentially be a new therapeutic option for endometrial cancer.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Lijuan Li
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Xiaoyan Gao
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Chunxue Zhang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Chen Xu
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Lingyi Song
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Jian Li
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Xiao Sun
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Fei Mao
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Yudong Wang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| |
Collapse
|
10
|
Wilson EL, Yu Y, Leal NS, Woodward JA, Patikas N, Morris JL, Field SF, Plumbly W, Paupe V, Chowdhury SR, Antrobus R, Lindop GE, Adia YM, Loh SHY, Prudent J, Martins LM, Metzakopian E. Genome-wide CRISPR/Cas9 screen shows that loss of GET4 increases mitochondria-endoplasmic reticulum contact sites and is neuroprotective. Cell Death Dis 2024; 15:203. [PMID: 38467609 PMCID: PMC10928201 DOI: 10.1038/s41419-024-06568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Organelles form membrane contact sites between each other, allowing for the transfer of molecules and signals. Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) are cellular subdomains characterized by close apposition of mitochondria and ER membranes. They have been implicated in many diseases, including neurodegenerative, metabolic, and cardiac diseases. Although MERCS have been extensively studied, much remains to be explored. To uncover novel regulators of MERCS, we conducted a genome-wide, flow cytometry-based screen using an engineered MERCS reporter cell line. We found 410 genes whose downregulation promotes MERCS and 230 genes whose downregulation decreases MERCS. From these, 29 genes were selected from each population for arrayed screening and 25 were validated from the high population and 13 from the low population. GET4 and BAG6 were highlighted as the top 2 genes that upon suppression increased MERCS from both the pooled and arrayed screens, and these were subjected to further investigation. Multiple microscopy analyses confirmed that loss of GET4 or BAG6 increased MERCS. GET4 and BAG6 were also observed to interact with the known MERCS proteins, inositol 1,4,5-trisphosphate receptors (IP3R) and glucose-regulated protein 75 (GRP75). In addition, we found that loss of GET4 increased mitochondrial calcium uptake upon ER-Ca2+ release and mitochondrial respiration. Finally, we show that loss of GET4 rescues motor ability, improves lifespan and prevents neurodegeneration in a Drosophila model of Alzheimer's disease (Aβ42Arc). Together, these results suggest that GET4 is involved in decreasing MERCS and that its loss is neuroprotective.
Collapse
Affiliation(s)
- Emma L Wilson
- UK Dementia Research Institute, University of Cambridge, Clifford Albutt building, Cambridge biomedical campus, Cambridge, CB2 0AH, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nuno S Leal
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - James A Woodward
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nikolaos Patikas
- UK Dementia Research Institute, University of Cambridge, Clifford Albutt building, Cambridge biomedical campus, Cambridge, CB2 0AH, UK
| | - Jordan L Morris
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Sarah F Field
- UK Dementia Research Institute, University of Cambridge, Clifford Albutt building, Cambridge biomedical campus, Cambridge, CB2 0AH, UK
| | - William Plumbly
- UK Dementia Research Institute, University of Cambridge, Clifford Albutt building, Cambridge biomedical campus, Cambridge, CB2 0AH, UK
| | - Vincent Paupe
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Suvagata R Chowdhury
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Rd, Cambridge, CB2 0XY, UK
| | - Georgina E Lindop
- Cambridge Advanced Imaging Centre, University of Cambridge, Anatomy Building, Downing Site, Cambridge, CB2 3DY, UK
| | - Yusuf M Adia
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, University of Cambridge, Clifford Albutt building, Cambridge biomedical campus, Cambridge, CB2 0AH, UK.
- bit bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge, CB22 3FH, UK.
| |
Collapse
|
11
|
Qiu B, Zandkarimi F, Bezjian CT, Reznik E, Soni RK, Gu W, Jiang X, Stockwell BR. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell 2024; 187:1177-1190.e18. [PMID: 38366593 PMCID: PMC10940216 DOI: 10.1016/j.cell.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.
Collapse
Affiliation(s)
- Baiyu Qiu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Mass Spectrometry Core Facility, Columbia University, New York, NY 10027, USA
| | - Carla T Bezjian
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
12
|
Anania S, Farnir M, Peiffer R, Boumahd Y, Thiry M, Agirman F, Maloujahmoum N, Bellahcène A, Peulen O. Identification of myoferlin as a mitochondria-associated membranes component required for calcium signaling in PDAC cell lines. Cell Commun Signal 2024; 22:133. [PMID: 38368370 PMCID: PMC10874564 DOI: 10.1186/s12964-024-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is an aggressive cancer type with one of the lowest survival rates due to late diagnosis and the absence of effective treatments. A better understanding of PDAC biology will help researchers to discover the Achilles' heel of cancer cells. In that regard, our research team investigated the function of an emerging oncoprotein known as myoferlin. Myoferlin is overexpressed in PDAC and its silencing/targeting has been shown to affect cancer cell proliferation, migration, mitochondrial dynamics and metabolism. Nevertheless, our comprehension of myoferlin functions in cells remains limited. In this study, we aimed to understand the molecular mechanism linking myoferlin silencing to mitochondrial dynamics. METHODS Experiments were performed on two pancreas cancer cell lines, Panc-1 and MiaPaCa-2. Myoferlin localization on mitochondria was evaluated by immunofluorescence, proximity ligation assay, and cell fractionation. The presence of myoferlin in mitochondria-associated membranes was assessed by cell fractionation and its function in mitochondrial calcium transfer was evaluated using calcium flow experiments, proximity ligation assays, co-immunoprecipitation, and timelapse fluorescence microscopy in living cells. RESULTS Myoferlin localization on mitochondria was investigated. Our results suggest that myoferlin is unlikely to be located on mitochondria. Instead, we identified myoferlin as a new component of mitochondria-associated membranes. Its silencing significantly reduces the mitochondrial calcium level upon stimulation, probably through myoferlin interaction with the inositol 1,4,5-triphosphate receptors 3. CONCLUSIONS For the first time, myoferlin was specifically demonstrated to be located in mitochondria-associated membranes where it participates to calcium flow. We hypothesized that this function explains our previous results on mitochondrial dynamics. This study improves our comprehension of myoferlin localization and function in cancer biology.
Collapse
Affiliation(s)
- Sandy Anania
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Martin Farnir
- STAR Institute, Université de Liège, Allée du 6 Août 19, Liège, B-4000, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Yasmine Boumahd
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Marc Thiry
- Cellular and Tissular Biology, GIGA-Neurosciences, Cell Biology L3, Université de Liège, Liège, B-4000, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Naima Maloujahmoum
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium.
- Center for Interdisciplinary Research on Medicines (CIRM), Mitochondria Adaptation in Cancer Group, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium.
| |
Collapse
|
13
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
14
|
An G, Park J, Song J, Hong T, Song G, Lim W. Relevance of the endoplasmic reticulum-mitochondria axis in cancer diagnosis and therapy. Exp Mol Med 2024; 56:40-50. [PMID: 38172597 PMCID: PMC10834980 DOI: 10.1038/s12276-023-01137-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
Dynamic interactions between organelles are responsible for a variety of intercellular functions, and the endoplasmic reticulum (ER)-mitochondrial axis is recognized as a representative interorganelle system. Several studies have confirmed that most proteins in the physically tethered sites between the ER and mitochondria, called mitochondria-associated ER membranes (MAMs), are vital for intracellular physiology. MAM proteins are involved in the regulation of calcium homeostasis, lipid metabolism, and mitochondrial dynamics and are associated with processes related to intracellular stress conditions, such as oxidative stress and unfolded protein responses. Accumulating evidence has shown that, owing to their extensive involvement in cellular homeostasis, alterations in the ER-mitochondrial axis are one of the etiological factors of tumors. An in-depth understanding of MAM proteins and their impact on cell physiology, particularly in cancers, may help elucidate their potential as diagnostic and therapeutic targets for cancers. For example, the modulation of MAM proteins is utilized not only to target diverse intracellular signaling pathways within cancer cells but also to increase the sensitivity of cancer cells to anticancer reagents and regulate immune cell activities. Therefore, the current review summarizes and discusses recent advances in research on the functional roles of MAM proteins and their characteristics in cancers from a diagnostic perspective. Additionally, this review provides insights into diverse therapeutic strategies that target MAM proteins in various cancer types.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
15
|
Butler LM, Evergren E. Ultrastructural analysis of prostate cancer tissue provides insights into androgen-dependent adaptations to membrane contact site establishment. Front Oncol 2023; 13:1217741. [PMID: 37529692 PMCID: PMC10389664 DOI: 10.3389/fonc.2023.1217741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
Membrane trafficking and organelle contact sites are important for regulating cell metabolism and survival; processes often deregulated in cancer. Prostate cancer is the second leading cause of cancer-related death in men in the developed world. While early-stage disease is curable by surgery or radiotherapy there is an unmet need to identify prognostic biomarkers, markers to treatment response and new therapeutic targets in intermediate-late stage disease. This study explored the morphology of organelles and membrane contact sites in tumor tissue from normal, low and intermediate histological grade groups. The morphology of organelles in secretory prostate epithelial cells; including Golgi apparatus, ER, lysosomes; was similar in prostate tissue samples across a range of Gleason scores. Mitochondrial morphology was not dramatically altered, but the number of membrane contacts with the ER notably increased with disease progression. A three-fold increase of tight mitochondria-ER membrane contact sites was observed in the intermediate Gleason score group compared to normal tissue. To investigate whether these changes were concurrent with an increased androgen signaling in the tissue, we investigated whether an anti-androgen used in the clinic to treat advanced prostate cancer (enzalutamide) could reverse the phenotype. Patient-derived explant tissues with an intermediate Gleason score were cultured ex vivo in the presence or absence of enzalutamide and the number of ER-mitochondria contacts were quantified for each matched pair of tissues. Enzalutamide treated tissue showed a significant reduction in the number and length of mitochondria-ER contact sites, suggesting a novel androgen-dependent regulation of these membrane contact sites. This study provides evidence for the first time that prostate epithelial cells undergo adaptations in membrane contact sites between mitochondria and the ER during prostate cancer progression. These adaptations are androgen-dependent and provide evidence for a novel hormone-regulated mechanism that support establishment and extension of MAMs. Future studies will determine whether these changes are required to maintain pro-proliferative signaling and metabolic changes that support prostate cancer cell viability.
Collapse
Affiliation(s)
- Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Emma Evergren
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
16
|
Wu H, Chen W, Chen Z, Li X, Wang M. Novel tumor therapy strategies targeting endoplasmic reticulum-mitochondria signal pathways. Ageing Res Rev 2023; 88:101951. [PMID: 37164161 DOI: 10.1016/j.arr.2023.101951] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/13/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Organelles form tight connections through membrane contact sites, thereby cooperating to regulate homeostasis and cell function. Among them, the contact between endoplasmic reticulum (ER), the main intracellular calcium storage organelles, and mitochondria has been recognized for decades, and its main roles in the ion and lipid transport, ROS signaling, membrane dynamic changes and cellular metabolism are basically determined. At present, many tumor chemotherapeutic drugs rely on ER-mitochondrial calcium signal to function, but the mechanism of targeting resident molecules at the mitochondria-associated endoplasmic reticulum membranes (MAM) to sensitize traditional chemotherapy and the new tumor therapeutic targets identified based on the signal pathways on the MAM have not been thoroughly discussed. In this review, we highlight the key roles of various signaling pathways at the ER-mitochondria contact site in tumorigenesis and focus on novel anticancer therapy strategies targeting potential targets at this contact site.
Collapse
Affiliation(s)
- Hongzheng Wu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanxin Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
17
|
Liu T, Wang L, Chen G, Tong L, Ye X, Yang H, Liu H, Zhang H, Lu W, Zhang S, Du D. PDZD8-mediated endoplasmic reticulum-mitochondria associations regulate sympathetic drive and blood pressure through the intervention of neuronal mitochondrial homeostasis in stress-induced hypertension. Neurobiol Dis 2023:106173. [PMID: 37247681 DOI: 10.1016/j.nbd.2023.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
Neuronal hyperexcitation in the rostral ventrolateral medulla (RVLM) drives heightened sympathetic nerve activity and contributes to the etiology of stress-induced hypertension (SIH). Maintenance of mitochondrial functions is central to neuronal homeostasis. PDZD8, an endoplasmic reticulum (ER) transmembrane protein, tethers ER to mitochondria. However, the mechanisms of PDZD8-mediated ER-mitochondria associations regulating neuronal mitochondrial functions and thereby mediating blood pressure (BP) in the RVLM of SIH were largely unknown. SIH rats were subjected to intermittent electric foot shocks plus noise for 2 h twice daily for 15 consecutive days. The underlying mechanisms of PDZD8 were investigated through in vitro experiments by using small interfering RNA and through in vivo experiments, such as intra-RVLM microinjection and Western blot analysis. The function of PDZD8 on BP regulation in the RVLM was determined in vivo via the intra-RVLM microinjection of adeno-associated virus (AAV)2-r-Pdzd8. We found that the c-Fos-positive RVLM tyrosine hydroxylase (TH) neurons, renal sympathetic nerve activity (RSNA), plasma norepinephrine (NE) level, BP, and heart rate (HR) were elevated in SIH rats. ER-mitochondria associations in RVLM neurons were significantly reduced in SIH rats. PDZD8 was mainly expressed in RVLM neurons, and mRNA and protein levels were markedly decreased in SIH rats. In N2a cells, PDZD8 knockdown disrupted ER-mitochondria associations and mitochondrial structure, decreased mitochondrial membrane potential (MMP) and respiratory metabolism, enhanced ROS levels, and reduced catalase (CAT) activity. These effects suggested that PDZD8 dysregulation induced mitochondrial malfunction. By contrast, PDZD8 upregulation in the RVLM of SIH rats could rescue neuronal mitochondrial function, thereby suppressing c-Fos expression in TH neurons and decreasing RSNA, plasma NE, BP, and HR. Our results indicated that the dysregulation of PDZD8-mediated ER-mitochondria associations led to the loss of the activity homeostasis of RVLM neurons by disrupting mitochondrial functions, thereby participating in the regulation of SIH pathology.
Collapse
Affiliation(s)
- Tianfeng Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Linping Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Gaojun Chen
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Tong
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xuanxuan Ye
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui Yang
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Haisheng Liu
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Wen Lu
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Dongshu Du
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Life Sciences, Shanghai University, Shanghai 200444, China; Shaoxing Institute of Shanghai University, Shaoxing, Zhejiang 312000, China; College of Agriculture and Bioengineering, Heze University, Heze 274000, China.
| |
Collapse
|
18
|
Bravo-Sagua R, Lopez-Crisosto C, Criollo A, Inagi R, Lavandero S. Organelle Communication: Joined in Sickness and in Health. Physiology (Bethesda) 2023; 38:0. [PMID: 36856309 DOI: 10.1152/physiol.00024.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Organelles are membrane-lined structures that compartmentalize subcellular biochemical functions. Therefore, interorganelle communication is crucial for cellular responses that require the coordination of such functions. Multiple principles govern interorganelle interactions, which arise from the complex nature of organelles: position, multilingualism, continuity, heterogeneity, proximity, and bidirectionality, among others. Given their importance, alterations in organelle communication have been linked to many diseases. Among the different types of contacts, endoplasmic reticulum mitochondria interactions are the best known; however, mounting evidence indicates that other organelles also have something to say in the pathophysiological conversation.
Collapse
Affiliation(s)
- Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Pharmaceutical and Chemical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Laboratory of Obesity and Metabolism (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.,Interuniversity Center for Healthy Aging (CIES), Consortium of Universities of the State of Chile (CUECH), Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Pharmaceutical and Chemical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Pharmaceutical and Chemical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Pharmaceutical and Chemical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
19
|
Lu S, Dai Z, Cui Y, Kong DM. Recent Development of Advanced Fluorescent Molecular Probes for Organelle-Targeted Cell Imaging. BIOSENSORS 2023; 13:360. [PMID: 36979572 PMCID: PMC10046058 DOI: 10.3390/bios13030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Fluorescent molecular probes are very powerful tools that have been generally applied in cell imaging in the research fields of biology, pathology, pharmacology, biochemistry, and medical science. In the last couple of decades, numerous molecular probes endowed with high specificity to particular organelles have been designed to illustrate intracellular images in more detail at the subcellular level. Nowadays, the development of cell biology has enabled the investigation process to go deeply into cells, even at the molecular level. Therefore, probes that can sketch a particular organelle's location while responding to certain parameters to evaluate intracellular bioprocesses are under urgent demand. It is significant to understand the basic ideas of organelle properties, as well as the vital substances related to each unique organelle, for the design of probes with high specificity and efficiency. In this review, we summarize representative multifunctional fluorescent molecular probes developed in the last decade. We focus on probes that can specially target nuclei, mitochondria, endoplasmic reticulums, and lysosomes. In each section, we first briefly introduce the significance and properties of different organelles. We then discuss how probes are designed to make them highly organelle-specific. Finally, we also consider how probes are constructed to endow them with additional functions to recognize particular physical/chemical signals of targeted organelles. Moreover, a perspective on the challenges in future applications of highly specific molecular probes in cell imaging is also proposed. We hope that this review can provide researchers with additional conceptual information about developing probes for cell imaging, assisting scientists interested in molecular biology, cell biology, and biochemistry to accelerate their scientific studies.
Collapse
Affiliation(s)
- Sha Lu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqi Dai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunxi Cui
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Ion Channels of the Sarcolemma and Intracellular Organelles in Duchenne Muscular Dystrophy: A Role in the Dysregulation of Ion Homeostasis and a Possible Target for Therapy. Int J Mol Sci 2023; 24:ijms24032229. [PMID: 36768550 PMCID: PMC9917149 DOI: 10.3390/ijms24032229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of the dystrophin protein and a properly functioning dystrophin-associated protein complex (DAPC) in muscle cells. DAPC components act as molecular scaffolds coordinating the assembly of various signaling molecules including ion channels. DMD shows a significant change in the functioning of the ion channels of the sarcolemma and intracellular organelles and, above all, the sarcoplasmic reticulum and mitochondria regulating ion homeostasis, which is necessary for the correct excitation and relaxation of muscles. This review is devoted to the analysis of current data on changes in the structure, functioning, and regulation of the activity of ion channels in striated muscles in DMD and their contribution to the disruption of muscle function and the development of pathology. We note the prospects of therapy based on targeting the channels of the sarcolemma and organelles for the correction and alleviation of pathology, and the problems that arise in the interpretation of data obtained on model dystrophin-deficient objects.
Collapse
|
21
|
Atakpa-Adaji P, Ivanova A. IP 3R at ER-Mitochondrial Contact Sites: Beyond the IP 3R-GRP75-VDAC1 Ca 2+ Funnel. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231181020. [PMID: 37426575 PMCID: PMC10328019 DOI: 10.1177/25152564231181020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Membrane contact sites (MCS) circumvent the topological constraints of functional coupling between different membrane-bound organelles by providing a means of communication and exchange of materials. One of the most characterised contact sites in the cell is that between the endoplasmic reticulum and the mitochondrial (ERMCS) whose function is to couple cellular Ca2+ homeostasis and mitochondrial function. Inositol 1,4,5-trisphosphate receptors (IP3Rs) on the ER, glucose-regulated protein 75 (GRP 75) and voltage-dependent anion channel 1 (VDAC1) on the outer mitochondrial membrane are the canonical component of the Ca2+ transfer unit at ERMCS. These are often reported to form a Ca2+ funnel that fuels the mitochondrial low-affinity Ca2+ uptake system. We assess the available evidence on the IP3R subtype selectivity at the ERMCS and consider if IP3Rs have other roles at the ERMCS beyond providing Ca2+. Growing evidence suggests that all three IP3R subtypes can localise and regulate Ca2+ signalling at ERMCS. Furthermore, IP3Rs may be structurally important for assembly of the ERMCS in addition to their role in providing Ca2+ at these sites. Evidence that various binding partners regulate the assembly and Ca2+ transfer at ERMCS populated by IP3R-GRP75-VDAC1, suggesting that cells have evolved mechanisms that stabilise these junctions forming a Ca2+ microdomain that is required to fuel mitochondrial Ca2+ uptake.
Collapse
Affiliation(s)
- Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Adelina Ivanova
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
22
|
Pharmacological targeting of the mitochondrial calcium-dependent potassium channel KCa3.1 triggers cell death and reduces tumor growth and metastasis in vivo. Cell Death Dis 2022; 13:1055. [PMID: 36539400 PMCID: PMC9768205 DOI: 10.1038/s41419-022-05463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Ion channels are non-conventional, druggable oncological targets. The intermediate-conductance calcium-dependent potassium channel (KCa3.1) is highly expressed in the plasma membrane and in the inner mitochondrial membrane (mitoKCa3.1) of various cancer cell lines. The role mitoKCa3.1 plays in cancer cells is still undefined. Here we report the synthesis and characterization of two mitochondria-targeted novel derivatives of a high-affinity KCa3.1 antagonist, TRAM-34, which retain the ability to block channel activity. The effects of these drugs were tested in melanoma, pancreatic ductal adenocarcinoma and breast cancer lines, as well as in vivo in two orthotopic models. We show that the mitochondria-targeted TRAM-34 derivatives induce release of mitochondrial reactive oxygen species, rapid depolarization of the mitochondrial membrane, fragmentation of the mitochondrial network. They trigger cancer cell death with an EC50 in the µM range, depending on channel expression. In contrast, inhibition of the plasma membrane KCa3.1 by membrane-impermeant Maurotoxin is without effect, indicating a specific role of mitoKCa3.1 in determining cell fate. At sub-lethal concentrations, pharmacological targeting of mitoKCa3.1 significantly reduced cancer cell migration by enhancing production of mitochondrial reactive oxygen species and nuclear factor-κB (NF-κB) activation, and by downregulating expression of Bcl-2 Nineteen kD-Interacting Protein (BNIP-3) and of Rho GTPase CDC-42. This signaling cascade finally leads to cytoskeletal reorganization and impaired migration. Overexpression of BNIP-3 or pharmacological modulation of NF-κB and CDC-42 prevented the migration-reducing effect of mitoTRAM-34. In orthotopic models of melanoma and pancreatic ductal adenocarcinoma, the tumors at sacrifice were 60% smaller in treated versus untreated animals. Metastasis of melanoma cells to lymph nodes was also drastically reduced. No signs of toxicity were observed. In summary, our results identify mitochondrial KCa3.1 as an unexpected player in cancer cell migration and show that its pharmacological targeting is efficient against both tumor growth and metastatic spread in vivo.
Collapse
|
23
|
Genovese I, Fornetti E, Ruocco G. Mitochondria inter-organelle relationships in cancer protein aggregation. Front Cell Dev Biol 2022; 10:1062993. [PMID: 36601538 PMCID: PMC9806238 DOI: 10.3389/fcell.2022.1062993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are physically associated with other organelles, such as ER and lysosomes, forming a complex network that is crucial for cell homeostasis regulation. Inter-organelle relationships are finely regulated by both tether systems, which maintain physical proximity, and by signaling cues that induce the exchange of molecular information to regulate metabolism, Ca2+ homeostasis, redox state, nutrient availability, and proteostasis. The coordinated action of the organelles is engaged in the cellular integrated stress response. In any case, pathological conditions alter functional communication and efficient rescue pathway activation, leading to cell distress exacerbation and eventually cell death. Among these detrimental signals, misfolded protein accumulation and aggregation cause major damage to the cells, since defects in protein clearance systems worsen cell toxicity. A cause for protein aggregation is often a defective mitochondrial redox balance, and the ER freshly translated misfolded proteins and/or a deficient lysosome-mediated clearance system. All these features aggravate mitochondrial damage and enhance proteotoxic stress. This review aims to gather the current knowledge about the complex liaison between mitochondria, ER, and lysosomes in facing proteotoxic stress and protein aggregation, highlighting both causes and consequences. Particularly, specific focus will be pointed to cancer, a pathology in which inter-organelle relations in protein aggregation have been poorly investigated.
Collapse
Affiliation(s)
- Ilaria Genovese
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,*Correspondence: Ilaria Genovese,
| | - Ersilia Fornetti
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
24
|
Li J, Zhao B, Chen S, Wang Z, Shi K, Lei B, Cao C, Ke Z, Wang R. Downhill running induced DNA damage enhances mitochondrial membrane permeability by facilitating ER-mitochondria signaling. J Muscle Res Cell Motil 2022; 43:185-193. [PMID: 36350502 DOI: 10.1007/s10974-022-09634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
To observe whether downhill running can lead to DNA damage in skeletal muscle cells and changes in mitochondrial membrane permeability and to explore whether the DNA damage caused by downhill running can lead to changes in mitochondrial membrane permeability by regulating the components of the endoplasmic reticulum mitochondrial coupling structure (MAM). A total of 48 male adult Sprague-Dawley rats were randomly divided into a control group (C, n = 8) and a motor group (E, n = 40). Rats in Group E were further divided into 0 h (E0), 12 h (E12), 24 h (E24), 48 h (E48) and 72 h (E72) after prescribed exercise, with 8 rats in each group. At each time point, flounder muscle was collected under general anaesthesia. The DNA oxidative damage marker 8-hydroxydeoxyguanosine (8-OHdG) was detected by immunofluorescence. The expression levels of the DNA damage-related protein p53 in the nucleus and the EI24 protein and reep1 protein in whole cells were detected by Western blot. The colocalization coefficients of the endoplasmic reticulum protein EI24 and the mitochondrial protein Vdac2 were determined by immunofluorescence double staining, and the concentration of Ca2+ in skeletal muscle mitochondria was detected by a fluorescent probe. Finally, the opening of the mitochondrial membrane permeability transition pore (mPTP) was detected by immunofluorescence. Twelve hours after downhill running, the mitochondrial membrane permeability of the mPTP opened the most (P < 0.05), the content of 8-OHdG in skeletal muscle peaked (P < 0.05), and the levels of the regulatory protein p53, mitochondrial Ca2+, and the EI24 and reep1 proteins peaked (P < 0.01). Moreover, the colocalization coefficients of EI24 and Vdac2 and the Mandes coefficients of the two proteins increased first and then recovered 72 h after exercise (P < 0.05). (1) Downhill running can lead to DNA damage in skeletal muscle cells, overload of mitochondrial Ca2+ and large opening of membrane permeability transformation pores. (2) The DNA damage caused by downhill running may result in p53 promoting the transcriptional activation of reep1 and EI24, enhancing the interaction between EI24 and Vdac2, and then leading to an increase in Ca2+ in skeletal muscle mitochondria and the opening of membrane permeability transition pores.
Collapse
Affiliation(s)
- Junping Li
- School of Human Sports Science, Beijing Sport University, Beijing, China. .,Key Laboratory of Sports and Physical Health of Ministry of Education, Beijing Sport University, Beijing, China. .,Beijing Sport University, Room 314, Teaching Laboratory Building, No. 48, Xinxi Road, Haidian District, Beijing, China.
| | - Binting Zhao
- School of Human Sports Science, Beijing Sport University, Beijing, China
| | - Shengju Chen
- School of Human Sports Science, Beijing Sport University, Beijing, China.,Liaoning Normal University, Dalian, China
| | - Zhen Wang
- School of Human Sports Science, Beijing Sport University, Beijing, China
| | - Kexin Shi
- School of Human Sports Science, Beijing Sport University, Beijing, China
| | - Binkai Lei
- School of Human Sports Science, Beijing Sport University, Beijing, China
| | - Chunxia Cao
- School of Human Sports Science, Beijing Sport University, Beijing, China
| | - Zhifei Ke
- School of Human Sports Science, Beijing Sport University, Beijing, China
| | - Ruiyuan Wang
- School of Human Sports Science, Beijing Sport University, Beijing, China
| |
Collapse
|
25
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
26
|
Tijore A, Yang B, Sheetz M. Cancer cells can be killed mechanically or with combinations of cytoskeletal inhibitors. Front Pharmacol 2022; 13:955595. [PMID: 36299893 PMCID: PMC9589226 DOI: 10.3389/fphar.2022.955595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
For over two centuries, clinicians have hypothesized that cancer developed preferentially at the sites of repeated damage, indicating that cancer is basically “continued healing.” Tumor cells can develop over time into other more malignant types in different environments. Interestingly, indefinite growth correlates with the depletion of a modular, early rigidity sensor, whereas restoring these sensors in tumor cells blocks tumor growth on soft surfaces and metastases. Importantly, normal and tumor cells from many different tissues exhibit transformed growth without the early rigidity sensor. When sensors are restored in tumor cells by replenishing depleted mechanosensory proteins that are often cytoskeletal, cells revert to normal rigidity-dependent growth. Surprisingly, transformed growth cells are sensitive to mechanical stretching or ultrasound which will cause apoptosis of transformed growth cells (Mechanoptosis). Mechanoptosis is driven by calcium entry through mechanosensitive Piezo1 channels that activate a calcium-induced calpain response commonly found in tumor cells. Since tumor cells from many different tissues are in a transformed growth state that is, characterized by increased growth, an altered cytoskeleton and mechanoptosis, it is possible to inhibit growth of many different tumors by mechanical activity and potentially by cytoskeletal inhibitors.
Collapse
Affiliation(s)
- Ajay Tijore
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- *Correspondence: Ajay Tijore, ; Michael Sheetz,
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Michael Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Ajay Tijore, ; Michael Sheetz,
| |
Collapse
|
27
|
Wenzel EM, Elfmark LA, Stenmark H, Raiborg C. ER as master regulator of membrane trafficking and organelle function. J Cell Biol 2022; 221:e202205135. [PMID: 36108241 PMCID: PMC9481738 DOI: 10.1083/jcb.202205135] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER), which occupies a large portion of the cytoplasm, is the cell's main site for the biosynthesis of lipids and carbohydrate conjugates, and it is essential for folding, assembly, and biosynthetic transport of secreted proteins and integral membrane proteins. The discovery of abundant membrane contact sites (MCSs) between the ER and other membrane compartments has revealed that, in addition to its biosynthetic and secretory functions, the ER plays key roles in the regulation of organelle dynamics and functions. In this review, we will discuss how the ER regulates endosomes, lysosomes, autophagosomes, mitochondria, peroxisomes, and the Golgi apparatus via MCSs. Such regulation occurs via lipid and Ca2+ transfer and also via control of in trans dephosphorylation reactions and organelle motility, positioning, fusion, and fission. The diverse controls of other organelles via MCSs manifest the ER as master regulator of organelle biology.
Collapse
Affiliation(s)
- Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
28
|
Ramaiah P, Patra I, Abbas A, Fadhil AA, Abohassan M, Al-Qaim ZH, Hameed NM, Al-Gazally ME, Kemil Almotlaq SS, Mustafa YF, Shiravand Y. Mitofusin-2 in cancer: Friend or foe? Arch Biochem Biophys 2022; 730:109395. [PMID: 36176224 DOI: 10.1016/j.abb.2022.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a category of disorders characterized by excessive cell proliferation with the ability to infiltrate or disseminate to other organs of the body. Mitochondrial dysfunction, as one of the most prominent hallmarks of cancer cells, has been related to the onset and development of various cancers. Mitofusin 2 (MFN2) is a major mediator of mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria interaction, mitophagy and axonal transport of mitochondria. Available data have shown that MFN2, which its alterations have been associated with mitochondrial dysfunction, could affect cancer initiation and progression. In fact, it showed that MFN2 may have a double-edged sword effect on cancer fate. Precisely, it demonstrated that MFN2, as a tumor suppressor, induces cancer cell apoptosis and inhibits cell proliferation via Ca2+ and Bax-mediated apoptosis and increases P21 and p27 levels, respectively. It also could suppress cell survival via inhibiting PI3K/Akt, Ras-ERK1/2-cyclin D1 and mTORC2/Akt signaling pathways. On the other hand, MFN2, as an oncogene, could increase cancer invasion via snail-mediated epithelial-mesenchymal transition (EMT) and in vivo tumorigenesis. While remarkable progress has been achieved in recent decades, further exploration is required to elucidate whether MFN2 could be a friend or it's an enemy. This study aimed to highlight the different functions of MFN2 in various cancers.
Collapse
Affiliation(s)
| | | | - Anum Abbas
- Basic Health Unit, Foundation University Medical College, Islamabad, Pakistan.
| | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Baghdad, Iraq
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | | | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | - Yavar Shiravand
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy.
| |
Collapse
|
29
|
Sassano ML, Felipe-Abrio B, Agostinis P. ER-mitochondria contact sites; a multifaceted factory for Ca 2+ signaling and lipid transport. Front Cell Dev Biol 2022; 10:988014. [PMID: 36158205 PMCID: PMC9494157 DOI: 10.3389/fcell.2022.988014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane contact sites (MCS) between organelles of eukaryotic cells provide structural integrity and promote organelle homeostasis by facilitating intracellular signaling, exchange of ions, metabolites and lipids and membrane dynamics. Cataloguing MCS revolutionized our understanding of the structural organization of a eukaryotic cell, but the functional role of MSCs and their role in complex diseases, such as cancer, are only gradually emerging. In particular, the endoplasmic reticulum (ER)-mitochondria contacts (EMCS) are key effectors of non-vesicular lipid trafficking, thereby regulating the lipid composition of cellular membranes and organelles, their physiological functions and lipid-mediated signaling pathways both in physiological and diseased conditions. In this short review, we discuss key aspects of the functional complexity of EMCS in mammalian cells, with particular emphasis on their role as central hubs for lipid transport between these organelles and how perturbations of these pathways may favor key traits of cancer cells.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Blanca Felipe-Abrio
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| |
Collapse
|
30
|
Takeuchi A, Matsuoka S. Spatial and Functional Crosstalk between the Mitochondrial Na+-Ca2+ Exchanger NCLX and the Sarcoplasmic Reticulum Ca2+ Pump SERCA in Cardiomyocytes. Int J Mol Sci 2022; 23:ijms23147948. [PMID: 35887296 PMCID: PMC9317594 DOI: 10.3390/ijms23147948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
The mitochondrial Na+-Ca2+ exchanger, NCLX, was reported to supply Ca2+ to sarcoplasmic reticulum (SR)/endoplasmic reticulum, thereby modulating various cellular functions such as the rhythmicity of cardiomyocytes, and cellular Ca2+ signaling upon antigen receptor stimulation and chemotaxis in B lymphocytes; however, there is little information on the spatial relationships of NCLX with SR Ca2+ handling proteins, and their physiological impact. Here we examined the issue, focusing on the interaction of NCLX with an SR Ca2+ pump SERCA in cardiomyocytes. A bimolecular fluorescence complementation assay using HEK293 cells revealed that the exogenously expressed NCLX was localized in close proximity to four exogenously expressed SERCA isoforms. Immunofluorescence analyses of isolated ventricular myocytes showed that the NCLX was localized to the edges of the mitochondria, forming a striped pattern. The co-localization coefficients in the super-resolution images were higher for NCLX–SERCA2, than for NCLX–ryanodine receptor and NCLX–Na+/K+ ATPase α-1 subunit, confirming the close localization of endogenous NCLX and SERCA2 in cardiomyocytes. The mathematical model implemented with the spatial and functional coupling of NCLX and SERCA well reproduced the NCLX inhibition-mediated modulations of SR Ca2+ reuptake in HL-1 cardiomyocytes. Taken together, these results indicated that NCLX and SERCA are spatially and functionally coupled in cardiomyocytes.
Collapse
Affiliation(s)
- Ayako Takeuchi
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
- Correspondence: ; Tel.: +81-776-61-8311
| | - Satoshi Matsuoka
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
31
|
Hosseinian S, Ali Pour P, Kheradvar A. Prospects of mitochondrial transplantation in clinical medicine: aspirations and challenges. Mitochondrion 2022; 65:33-44. [DOI: 10.1016/j.mito.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
|
32
|
Cui P, Chen F, Ma G, Liu W, Chen L, Wang S, Li W, Li Z, Huang G. Oxyphyllanene B overcomes temozolomide resistance in glioblastoma: Structure-activity relationship and mitochondria-associated ER membrane dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153816. [PMID: 34752969 DOI: 10.1016/j.phymed.2021.153816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The identification of novel therapeutic candidates from natural products for the development of chemoresistant glioblastoma multiforme (GBM) treatment has been a highly significant and effective strategy. PURPOSE Sesquiterpenes are a class of naturally occurring 15-carbon isoprenoid compounds, and several types of sesquiterpenes have the ability to induce growth inhibition and apoptosis in a variety of cancer cell lines. In the present study, 56 sesquiterpenes of five types, namely, eudesmane-type (I) (1-24), eremophilane-type (II) (25-32), cadinane-type (III) (33-41), guaiane-type (IV) (42-49), and oplopanone-type (V) (50-56), were screened for their antiglioma activity, structure-activity relationship analysis (SAR), and underlying mechanism based on patient-derived recurrent GBM strains, patient-derived GBM cell sphere, GBM organoid (GBO) models, and temozolomide (TMZ)-resistant GBM cell lines. RESULTS We found that compound 12 (oxyphyllanene B, OLB) showed the most potent antiglioma activity, and we confirmed that OLB could induce apoptosis in a time- and dose-dependent manner in TMZ-resistant GBM cells and GBOs. SAR announced that the presence of an α, β-unsaturated carbonyl moiety was likely to enhance cytotoxic activities. Mechanistic studies demonstrated that OLB induced abnormal changes in ER and mitochondria-associated membrane (MAM) networks, which triggered ER stress, mitochondrial dysfunction, and apoptosis. Furthermore, our findings suggested that OLB-triggered PACS2 activation might form a committed step to disrupt ER-mitochondria communication and showed for the first time that the expression levels of PACS2 might positively correlate with the progression and chemotherapy resistance of glioma. CONCLUSION Our results indicated that OLB might be a promising candidate for treating TMZ-resistant GBM cells by activating PACS2, which triggered a crucial event to promote the disruption of ER-mitochondria communication and overcome chemotherapy resistance of GBM.
Collapse
Affiliation(s)
- Ping Cui
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China; Department of pharmacy, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Wenlan Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Lei Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China.
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China.
| |
Collapse
|
33
|
Visioli F, Ingram A, Beckman JS, Magnusson KR, Hagen TM. Strategies to protect against age-related mitochondrial decay: Do natural products and their derivatives help? Free Radic Biol Med 2022; 178:330-346. [PMID: 34890770 DOI: 10.1016/j.freeradbiomed.2021.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria serve vital roles critical for overall cellular function outside of energy transduction. Thus, mitochondrial decay is postulated to be a key factor in aging and in age-related diseases. Mitochondria may be targets of their own decay through oxidative damage. However, treating animals with antioxidants has been met with only limited success in rejuvenating mitochondrial function or in increasing lifespan. A host of nutritional strategies outside of using traditional antioxidants have been devised to promote mitochondrial function. Dietary compounds are under study that induce gene expression, enhance mitochondrial biogenesis, mitophagy, or replenish key metabolites that decline with age. Moreover, redox-active compounds may now be targeted to mitochondria which improve their effectiveness. Herein we review the evidence that representative dietary effectors modulate mitochondrial function by stimulating their renewal or reversing the age-related loss of key metabolites. While in vitro evidence continues to accumulate that many of these compounds benefit mitochondrial function and/or prevent their decay, the results using animal models and, in some instances human clinical trials, are more mixed and sometimes even contraindicated. Thus, further research on optimal dosage and age of intervention are warranted before recommending potential mitochondrial rejuvenating compounds for human use.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, Madrid, Spain
| | - Avery Ingram
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Joseph S Beckman
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Kathy R Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
34
|
Can the Mitochondrial Metabolic Theory Explain Better the Origin and Management of Cancer than Can the Somatic Mutation Theory? Metabolites 2021; 11:metabo11090572. [PMID: 34564387 PMCID: PMC8467939 DOI: 10.3390/metabo11090572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
A theory that can best explain the facts of a phenomenon is more likely to advance knowledge than a theory that is less able to explain the facts. Cancer is generally considered a genetic disease based on the somatic mutation theory (SMT) where mutations in proto-oncogenes and tumor suppressor genes cause dysregulated cell growth. Evidence is reviewed showing that the mitochondrial metabolic theory (MMT) can better account for the hallmarks of cancer than can the SMT. Proliferating cancer cells cannot survive or grow without carbons and nitrogen for the synthesis of metabolites and ATP (Adenosine Triphosphate). Glucose carbons are essential for metabolite synthesis through the glycolysis and pentose phosphate pathways while glutamine nitrogen and carbons are essential for the synthesis of nitrogen-containing metabolites and ATP through the glutaminolysis pathway. Glutamine-dependent mitochondrial substrate level phosphorylation becomes essential for ATP synthesis in cancer cells that over-express the glycolytic pyruvate kinase M2 isoform (PKM2), that have deficient OxPhos, and that can grow in either hypoxia (0.1% oxygen) or in cyanide. The simultaneous targeting of glucose and glutamine, while elevating levels of non-fermentable ketone bodies, offers a simple and parsimonious therapeutic strategy for managing most cancers.
Collapse
|
35
|
Loosening ER-Mitochondria Coupling by the Expression of the Presenilin 2 Loop Domain. Cells 2021; 10:cells10081968. [PMID: 34440738 PMCID: PMC8394530 DOI: 10.3390/cells10081968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Presenilin 2 (PS2), one of the three proteins in which mutations are linked to familial Alzheimer's disease (FAD), exerts different functions within the cell independently of being part of the γ-secretase complex, thus unrelated to toxic amyloid peptide formation. In particular, its enrichment in endoplasmic reticulum (ER) membrane domains close to mitochondria (i.e., mitochondria-associated membranes, MAM) enables PS2 to modulate multiple processes taking place on these signaling hubs, such as Ca2+ handling and lipid synthesis. Importantly, upregulated MAM function appears to be critical in AD pathogenesis. We previously showed that FAD-PS2 mutants reinforce ER-mitochondria tethering, by interfering with the activity of mitofusin 2, favoring their Ca2+ crosstalk. Here, we deepened the molecular mechanism underlying PS2 activity on ER-mitochondria tethering, identifying its protein loop as an essential domain to mediate the reinforced ER-mitochondria connection in FAD-PS2 models. Moreover, we introduced a novel tool, the PS2 loop domain targeted to the outer mitochondrial membrane, Mit-PS2-LOOP, that is able to counteract the activity of FAD-PS2 on organelle tethering, which possibly helps in recovering the FAD-PS2-associated cellular alterations linked to an increased organelle coupling.
Collapse
|
36
|
Luo Y, Yin S, Lu J, Zhou S, Shao Y, Bao X, Wang T, Qiu Y, Yu H. Tumor microenvironment: a prospective target of natural alkaloids for cancer treatment. Cancer Cell Int 2021; 21:386. [PMID: 34284780 PMCID: PMC8290600 DOI: 10.1186/s12935-021-02085-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Malignant tumor has become one of the major diseases that seriously endangers human health. Numerous studies have demonstrated that tumor microenvironment (TME) is closely associated with patient prognosis. Tumor growth and progression are strongly dependent on its surrounding tumor microenvironment, because the optimal conditions originated from stromal elements are required for cancer cell proliferation, invasion, metastasis and drug resistance. The tumor microenvironment is an environment rich in immune/inflammatory cells and accompanied by a continuous, gradient of hypoxia and pH. Overcoming immunosuppressive environment and boosting anti-tumor immunity may be the key to the prevention and treatment of cancer. Most traditional Chinese medicine have been proved to have good anti-tumor activity, and they have the advantages of better therapeutic effect and few side effects in the treatment of malignant tumors. An increasing number of studies are giving evidence that alkaloids extracted from traditional Chinese medicine possess a significant anticancer efficiency via regulating a variety of tumor-related genes, pathways and other mechanisms. This paper reviews the anti-tumor effect of alkaloids targeting tumor microenvironment, and further reveals its anti-tumor mechanism through the effects of alkaloids on different components in tumor microenvironment.
Collapse
Affiliation(s)
- Yanming Luo
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangshuang Yin
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia Lu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiyue Zhou
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingying Shao
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tao Wang
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Haiyang Yu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
37
|
Abstract
Conventional transmission electron microscopy is an essential tool to understand the structure-function relationships and play a vital role in biological research. Mitochondria-associated membranes are linked with cancer processes in a fundamental manner. A conventional transmission electron microscopy method for preparing specimens in clinical and research settings for the study-analysis of the mitochondria-associated membranes in human tumors is presented. The sample processing includes chemical fixation by immersion, dehydration, embedding, polymerization, sectioning, and staining.
Collapse
|
38
|
Morciano G, Vitto VAM, Bouhamida E, Giorgi C, Pinton P. Mitochondrial Bioenergetics and Dynamism in the Failing Heart. Life (Basel) 2021; 11:436. [PMID: 34066065 PMCID: PMC8151847 DOI: 10.3390/life11050436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
The heart is responsible for pumping blood, nutrients, and oxygen from its cavities to the whole body through rhythmic and vigorous contractions. Heart function relies on a delicate balance between continuous energy consumption and generation that changes from birth to adulthood and depends on a very efficient oxidative metabolism and the ability to adapt to different conditions. In recent years, mitochondrial dysfunctions were recognized as the hallmark of the onset and development of manifold heart diseases (HDs), including heart failure (HF). HF is a severe condition for which there is currently no cure. In this condition, the failing heart is characterized by a disequilibrium in mitochondrial bioenergetics, which compromises the basal functions and includes the loss of oxygen and substrate availability, an altered metabolism, and inefficient energy production and utilization. This review concisely summarizes the bioenergetics and some other mitochondrial features in the heart with a focus on the features that become impaired in the failing heart.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care&Research, 48033 Cotignola, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Veronica Angela Maria Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Esmaa Bouhamida
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care&Research, 48033 Cotignola, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| |
Collapse
|
39
|
Santulli G, Monaco G, Parra V, Morciano G. Editorial: Mitochondrial Remodeling and Dynamic Inter-Organellar Contacts in Cardiovascular Physiopathology. Front Cell Dev Biol 2021; 9:679725. [PMID: 33996837 PMCID: PMC8120264 DOI: 10.3389/fcell.2021.679725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Gaetano Santulli
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute and Einstein Institute for Aging Research, New York, NY, United States.,Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY, United States.,International Translational Research and Medical Education Academic Research Unit (ITME), Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Giovanni Monaco
- Center for Innovation and Stimulation of Drug Discovery (CISTIM), Leuven, Belgium.,Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for the Study of High-Lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Giampaolo Morciano
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| |
Collapse
|
40
|
Romagnoli R, Preti D, Hamel E, Bortolozzi R, Viola G, Brancale A, Ferla S, Morciano G, Pinton P. Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzo[b]thiophene derivatives as potent apoptosis-inducing agents. Bioorg Chem 2021; 112:104919. [PMID: 33957538 DOI: 10.1016/j.bioorg.2021.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Many clinically used agents active in cancer chemotherapy exert their activity through the induction of cell death (apoptosis) by targeting microtubules, altering protein function or inhibiting DNA synthesis. The benzo[b]thiophene scaffold holds a pivotal place as a pharmacophore for the development of anticancer agents, and, in addition, this scaffold has many pharmacological activities. We have developed a flexible method for the construction of a new series of 2-aryl-3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophenes as potent antiproliferative agents, giving access to a wide range of substitution patterns at the 2-position of the 6-methoxybenzo[b]thiophene common intermediate. In the present study, all the synthesized compounds retained the 3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophene moiety, and the structure-activity relationship was examined by modification of the aryl group at its 2-position with electron-withdrawing (F) or electron-releasing (alkyl and alkoxy) groups. We found that small substituents, such as fluorine or methyl, could be placed in the para-position of the 2-phenyl ring, and these modifications only slightly reduced antiproliferative activity relative to the unsubstituted 2-phenyl analogue. Compounds 3a and 3b, bearing the phenyl and para-fluorophenyl at the 2-position of the 6-methoxybenzo[b]thiophene nucleus, respectively, exhibited the greatest antiproliferative activity among the tested compounds. The treatment of both Caco2 (not metastatic) and HCT-116 (metastatic) colon carcinoma cells with 3a or 3b triggered a significant induction of apoptosis as demonstrated by the increased expression of cleaved-poly(ADP-ribose) polymerase (PARP), receptor-interacting protein (RIP) and caspase-3 proteins. The same effect was not observed with non-transformed colon 841 CoN cells. A potential additional effect during mitosis for 3a in metastatic cells and for 3b in non-metastatic cells was also observed.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Luigi Borsari 46, Università degli Studi di Ferrara, 44121 Ferrara, Italy.
| | - Delia Preti
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Luigi Borsari 46, Università degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy; Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti 4, 35128 Padova, Italy
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Salvatore Ferla
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Swansea SA2 8PP, UK
| | - Giampaolo Morciano
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
41
|
Raimondi M, Fontana F, Marzagalli M, Audano M, Beretta G, Procacci P, Sartori P, Mitro N, Limonta P. Ca 2+ overload- and ROS-associated mitochondrial dysfunction contributes to δ-tocotrienol-mediated paraptosis in melanoma cells. Apoptosis 2021; 26:277-292. [PMID: 33811561 PMCID: PMC8197726 DOI: 10.1007/s10495-021-01668-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Melanoma is an aggressive tumor with still poor therapy outcomes. δ-tocotrienol (δ-TT) is a vitamin E derivative displaying potent anti-cancer properties. Previously, we demonstrated that δ-TT triggers apoptosis in human melanoma cells. Here, we investigated whether it might also activate paraptosis, a non-canonical programmed cell death. In accordance with the main paraptotic features, δ-TT was shown to promote cytoplasmic vacuolization, associated with endoplasmic reticulum/mitochondrial dilation and protein synthesis, as well as MAPK activation in A375 and BLM cell lines. Moreover, treated cells exhibited a significant reduced expression of OXPHOS complex I and a marked decrease in oxygen consumption and mitochondrial membrane potential, culminating in decreased ATP synthesis and AMPK phosphorylation. This mitochondrial dysfunction resulted in ROS overproduction, found to be responsible for paraptosis induction. Additionally, δ-TT caused Ca2+ homeostasis disruption, with endoplasmic reticulum-derived ions accumulating in mitochondria and activating the paraptotic signaling. Interestingly, by using both IP3R and VDAC inhibitors, a close cause-effect relationship between mitochondrial Ca2+ overload and ROS generation was evidenced. Collectively, these results provide novel insights into δ-TT anti-melanoma activity, highlighting its ability to induce mitochondrial dysfunction-mediated paraptosis. δ-tocotrienol induces paraptotic cell death in human melanoma cells, causing endoplasmic reticulum dilation and mitochondrial swelling. These alterations induce an impairment of mitochondrial function, ROS production and calcium overload.
Collapse
Affiliation(s)
- Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Procacci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
42
|
Wang N, Wang C, Zhao H, He Y, Lan B, Sun L, Gao Y. The MAMs Structure and Its Role in Cell Death. Cells 2021; 10:cells10030657. [PMID: 33809551 PMCID: PMC7999768 DOI: 10.3390/cells10030657] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
The maintenance of cellular homeostasis involves the participation of multiple organelles. These organelles are associated in space and time, and either cooperate or antagonize each other with regards to cell function. Crosstalk between organelles has become a significant topic in research over recent decades. We believe that signal transduction between organelles, especially the endoplasmic reticulum (ER) and mitochondria, is a factor that can influence the cell fate. As the cellular center for protein folding and modification, the endoplasmic reticulum can influence a range of physiological processes by regulating the quantity and quality of proteins. Mitochondria, as the cellular "energy factory," are also involved in cell death processes. Some researchers regard the ER as the sensor of cellular stress and the mitochondria as an important actuator of the stress response. The scientific community now believe that bidirectional communication between the ER and the mitochondria can influence cell death. Recent studies revealed that the death signals can shuttle between the two organelles. Mitochondria-associated membranes (MAMs) play a vital role in the complex crosstalk between the ER and mitochondria. MAMs are known to play an important role in lipid synthesis, the regulation of Ca2+ homeostasis, the coordination of ER-mitochondrial function, and the transduction of death signals between the ER and the mitochondria. Clarifying the structure and function of MAMs will provide new concepts for studying the pathological mechanisms associated with neurodegenerative diseases, aging, and cancers. Here, we review the recent studies of the structure and function of MAMs and its roles involved in cell death, especially in apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Chong Wang
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Hongyang Zhao
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Yichun He
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Beiwu Lan
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
- Correspondence: (L.S.); (Y.G.)
| | - Yufei Gao
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
- Correspondence: (L.S.); (Y.G.)
| |
Collapse
|
43
|
Gil-Hernández A, Arroyo-Campuzano M, Simoni-Nieves A, Zazueta C, Gomez-Quiroz LE, Silva-Palacios A. Relevance of Membrane Contact Sites in Cancer Progression. Front Cell Dev Biol 2021; 8:622215. [PMID: 33511135 PMCID: PMC7835521 DOI: 10.3389/fcell.2020.622215] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 01/01/2023] Open
Abstract
Membrane contact sites (MCS) are typically defined as areas of proximity between heterologous or homologous membranes characterized by specific proteins. The study of MCS is considered as an emergent field that shows how crucial organelle interactions are in cell physiology. MCS regulate a myriad of physiological processes such as apoptosis, calcium, and lipid signaling, just to name a few. The membranal interactions between the endoplasmic reticulum (ER)–mitochondria, the ER–plasma membrane, and the vesicular traffic have received special attention in recent years, particularly in cancer research, in which it has been proposed that MCS regulate tumor metabolism and fate, contributing to their progression. However, as the therapeutic or diagnostic potential of MCS has not been fully revisited, in this review, we provide recent information on MCS relevance on calcium and lipid signaling in cancer cells and on its role in tumor progression. We also describe some proteins associated with MCS, like CERT, STIM1, VDAC, and Orai, that impact on cancer progression and that could be a possible diagnostic marker. Overall, these information might contribute to the understanding of the complex biology of cancer cells.
Collapse
Affiliation(s)
- Aurora Gil-Hernández
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Miguel Arroyo-Campuzano
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Arturo Simoni-Nieves
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
44
|
"Oncometabolism: The switchboard of cancer - An editorial". Biochim Biophys Acta Mol Basis Dis 2020; 1867:166031. [PMID: 33310398 DOI: 10.1016/j.bbadis.2020.166031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Gil-Hernández A, Silva-Palacios A. Relevance of endoplasmic reticulum and mitochondria interactions in age-associated diseases. Ageing Res Rev 2020; 64:101193. [PMID: 33069818 DOI: 10.1016/j.arr.2020.101193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Although the elixir of youth remains in the darkness, medical and scientific advances have succeeded in increasing human longevity; however, the predisposition to disease and its high economic cost are raising. Different strategies (e.g., antioxidants) and signaling pathways (e.g., Nrf2) have been identified to help regulate disease progression, nevertheless, there are still missing links that we need to understand. Contact sites called mitochondria-associated membranes (MAM) allow bi-directional communication between organelles as part of the essential functions in the cell to maintain its homeostasis. Different groups have deeply studied the role of MAM in aging; however, it's necessary to analyze their involvement in the progression of age-related diseases. In this review, we highlight the role of contact sites in these conditions, as well as the morphological and functional changes of mitochondria and ER in aging. We emphasize the intimate relationship between both organelles as a reflection of the biological processes that take place in the cell to try to regulate the deterioration characteristic of the aging process; proposing MAM as a potential target to help limit the disease progression with age.
Collapse
|
46
|
Audano M, Pedretti S, Ligorio S, Crestani M, Caruso D, De Fabiani E, Mitro N. "The Loss of Golden Touch": Mitochondria-Organelle Interactions, Metabolism, and Cancer. Cells 2020; 9:cells9112519. [PMID: 33233365 PMCID: PMC7700504 DOI: 10.3390/cells9112519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria represent the energy hub of cells and their function is under the constant influence of their tethering with other subcellular organelles. Mitochondria interact with the endoplasmic reticulum, lysosomes, cytoskeleton, peroxisomes, and nucleus in several ways, ranging from signal transduction, vesicle transport, and membrane contact sites, to regulate energy metabolism, biosynthetic processes, apoptosis, and cell turnover. Tumorigenesis is often associated with mitochondrial dysfunction, which could likely be the result of an altered interaction with different cell organelles or structures. The purpose of the present review is to provide an updated overview of the links between inter-organellar communications and interactions and metabolism in cancer cells, with a focus on mitochondria. The very recent publication of several reviews on these aspects testifies the great interest in the area. Here, we aim at (1) summarizing recent evidence supporting that the metabolic rewiring and adaptation observed in tumors deeply affect organelle dynamics and cellular functions and vice versa; (2) discussing insights on the underlying mechanisms, when available; and (3) critically presenting the gaps in the field that need to be filled, for a comprehensive understanding of tumor cells’ biology. Chemo-resistance and druggable vulnerabilities of cancer cells related to the aspects mentioned above is also outlined.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma De Fabiani
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| | - Nico Mitro
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| |
Collapse
|
47
|
Abstract
ATP is required for mammalian cells to remain viable and to perform genetically programmed functions. Maintenance of the ΔG′ATP hydrolysis of −56 kJ/mole is the endpoint of both genetic and metabolic processes required for life. Various anomalies in mitochondrial structure and function prevent maximal ATP synthesis through OxPhos in cancer cells. Little ATP synthesis would occur through glycolysis in cancer cells that express the dimeric form of pyruvate kinase M2. Mitochondrial substrate level phosphorylation (mSLP) in the glutamine-driven glutaminolysis pathway, substantiated by the succinate-CoA ligase reaction in the TCA cycle, can partially compensate for reduced ATP synthesis through both OxPhos and glycolysis. A protracted insufficiency of OxPhos coupled with elevated glycolysis and an auxiliary, fully operational mSLP, would cause a cell to enter its default state of unbridled proliferation with consequent dedifferentiation and apoptotic resistance, i.e., cancer. The simultaneous restriction of glucose and glutamine offers a therapeutic strategy for managing cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Gabriel Arismendi-Morillo
- Electron Microscopy Laboratory, Biological Researches Institute, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
48
|
Membrane Curvature, Trans-Membrane Area Asymmetry, Budding, Fission and Organelle Geometry. Int J Mol Sci 2020; 21:ijms21207594. [PMID: 33066582 PMCID: PMC7590041 DOI: 10.3390/ijms21207594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
In biology, the modern scientific fashion is to mostly study proteins. Much less attention is paid to lipids. However, lipids themselves are extremely important for the formation and functioning of cellular membrane organelles. Here, the role of the geometry of the lipid bilayer in regulation of organelle shape is analyzed. It is proposed that during rapid shape transition, the number of lipid heads and their size (i.e., due to the change in lipid head charge) inside lipid leaflets modulates the geometrical properties of organelles, in particular their membrane curvature. Insertion of proteins into a lipid bilayer and the shape of protein trans-membrane domains also affect the trans-membrane asymmetry between surface areas of luminal and cytosol leaflets of the membrane. In the cases where lipid molecules with a specific shape are not predominant, the shape of lipids (cylindrical, conical, or wedge-like) is less important for the regulation of membrane curvature, due to the flexibility of their acyl chains and their high ability to diffuse.
Collapse
|
49
|
Peruzzo R, Costa R, Bachmann M, Leanza L, Szabò I. Mitochondrial Metabolism, Contact Sites and Cellular Calcium Signaling: Implications for Tumorigenesis. Cancers (Basel) 2020; 12:E2574. [PMID: 32927611 PMCID: PMC7564994 DOI: 10.3390/cancers12092574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are organelles that are mainly involved in the generation of ATP by cellular respiration. In addition, they modulate several intracellular functions, ranging from cell proliferation and differentiation to cell death. Importantly, mitochondria are social and can interact with other organelles, such as the Endoplasmic Reticulum, lysosomes and peroxisomes. This symbiotic relationship gives advantages to both partners in regulating some of their functions related to several aspects of cell survival, metabolism, sensitivity to cell death and metastasis, which can all finally contribute to tumorigenesis. Moreover, growing evidence indicates that modulation of the length and/or numbers of these contacts, as well as of the distance between the two engaged organelles, impacts both on their function as well as on cellular signaling. In this review, we discuss recent advances in the field of contacts and communication between mitochondria and other intracellular organelles, focusing on how the tuning of mitochondrial function might impact on both the interaction with other organelles as well as on intracellular signaling in cancer development and progression, with a special focus on calcium signaling.
Collapse
Affiliation(s)
| | | | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy; (R.P.); (R.C.); (M.B.); (I.S.)
| | | |
Collapse
|
50
|
Magalhães Rebelo AP, Dal Bello F, Knedlik T, Kaar N, Volpin F, Shin SH, Giacomello M. Chemical Modulation of Mitochondria-Endoplasmic Reticulum Contact Sites. Cells 2020; 9:cells9071637. [PMID: 32646031 PMCID: PMC7408517 DOI: 10.3390/cells9071637] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Contact sites between mitochondria and endoplasmic reticulum (ER) are points in which the two organelles are in close proximity. Due to their structural and functional complexity, their exploitation as pharmacological targets has never been considered so far. Notwithstanding, the number of compounds described to target proteins residing at these interfaces either directly or indirectly is rising. Here we provide original insight into mitochondria–ER contact sites (MERCs), with a comprehensive overview of the current MERCs pharmacology. Importantly, we discuss the considerable potential of MERCs to become a druggable target for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ana Paula Magalhães Rebelo
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Federica Dal Bello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Tomas Knedlik
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Natasha Kaar
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Fabio Volpin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Sang Hun Shin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Marta Giacomello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- Correspondence: ; Tel.: +39-049-827-6300
| |
Collapse
|