1
|
Zhan T, Zou Y, Han Z, Tian X, Chen M, Liu J, Yang X, Zhu Q, Liu M, Chen W, Chen M, Huang X, Tan J, Liu W, Tian X. Single-cell sequencing combined with spatial transcriptomics reveals that the IRF7 gene in M1 macrophages inhibits the occurrence of pancreatic cancer by regulating lipid metabolism-related mechanisms. Clin Transl Med 2024; 14:e1799. [PMID: 39118300 PMCID: PMC11310283 DOI: 10.1002/ctm2.1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
AIM The main focus of this study is to explore the molecular mechanism of IRF7 regulation on RPS18 transcription in M1-type macrophages in pancreatic adenocarcinoma (PAAD) tissue, as well as the transfer of RPS18 by IRF7 via exosomes to PAAD cells and the regulation of ILF3 expression. METHODS By utilising single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data from the Gene Expression Omnibus database, we identified distinct cell types with significant expression differences in PAAD tissue. Among these cell types, we identified those closely associated with lipid metabolism. The differentially expressed genes within these cell types were analysed, and target genes relevant to prognosis were identified. Flow cytometry was employed to assess the expression levels of target genes in M1 and M2 macrophages. Cell lines with target gene knockout were constructed using CRISPR/Cas9 editing technology, and cell lines with target gene knockdown and overexpression were established using lentiviral vectors. Additionally, a co-culture model of exosomes derived from M1 macrophages with PAAD cells was developed. The impact of M1 macrophage-derived exosomes on the lipid metabolism of PAAD cells in the model was evaluated through metabolomics analysis. The effects of M1 macrophage-derived exosomes on the viability, proliferation, division, migration and apoptosis of PAAD cells were assessed using MTT assay, flow cytometry, EdU assay, wound healing assay, Transwell assay and TUNEL staining. Furthermore, a mouse PAAD orthotopic implantation model was established, and bioluminescence imaging was utilised to assess the influence of M1 macrophage-derived exosomes on the intratumoural formation capacity of PAAD cells, as well as measuring tumour weight and volume. The expression of proliferation-associated proteins in tumour tissues was examined using immunohistochemistry. RESULTS Through combined analysis of scRNA-seq and ST technologies, we discovered a close association between M1 macrophages in PAAD samples and lipid metabolism signals, as well as a negative correlation between M1 macrophages and cancer cells. The construction of a prognostic risk score model identified RPS18 and IRF7 as two prognostically relevant genes in M1 macrophages, exhibiting negative and positive correlations, respectively. Mechanistically, it was found that IRF7 in M1 macrophages can inhibit the transcription of RPS18, reducing the transfer of RPS18 to PAAD cells via exosomes, consequently affecting the expression of ILF3 in PAAD cells. IRF7/RPS18 in M1 macrophages can also suppress lipid metabolism, cell viability, proliferation, migration, invasion and intratumoural formation capacity of PAAD cells, while promoting cell apoptosis. CONCLUSION Overexpression of IRF7 in M1 macrophages may inhibit RPS18 transcription, reduce the transfer of RPS18 from M1 macrophage-derived exosomes to PAAD cells, thereby suppressing ILF3 expression in PAAD cells, inhibiting the lipid metabolism pathway, and curtailing the viability, proliferation, migration, invasion of PAAD cells, as well as enhancing cell apoptosis, ultimately inhibiting tumour formation in PAAD cells in vivo. Targeting IRF7/RPS18 in M1 macrophages could represent a promising immunotherapeutic approach for PAAD in the future.
Collapse
Affiliation(s)
- Ting Zhan
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Yanli Zou
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Zheng Han
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - XiaoRong Tian
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Mengge Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jiaxi Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiulin Yang
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qingxi Zhu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Meng Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Wei Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Mingtao Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Xiaodong Huang
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jie Tan
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Weijie Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Xia Tian
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| |
Collapse
|
2
|
Wu F, Xu J, Jin X, Zhu Y, Gao W, Liu M, Zhang Y, Qian W, Huang X, Zhao D, Feng G, Hou S, Xi X. TRIM8 promotes ovarian cancer proliferation and migration by targeting VDAC2 for ubiquitination and degradation. Cancer Med 2024; 13:e7396. [PMID: 38881325 PMCID: PMC11180974 DOI: 10.1002/cam4.7396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Ovarian cancer is a common gynecological tumor with high malignant potential and poor prognosis. TRIM8, is involved in the development of various tumors, but its precise regulatory role in ovarian cancer is still unknown. AIMS The aim of this study was to explore the specific mechanism by which TRIM8 regulates ovarian cancer. MATERIALS AND METHODS We used bioinformatics analysis to screen for high expression of TRIM8 in ovarian cancer. The expression of TRIM8 in healthy and cancerous ovarian tissues was assessed by immunofluorescence. TRIM8 was silenced or overexpressed in ovarian cancer cell lines, with cell proliferation and migration evaluated by CCK8, transwell and clonal formation assays. The effect of TRIM8 on ovarian cancer cells in vivo was assessed by subcutaneous tumor formation experiments in nude mice. The potential interacting protein VDAC2 was identified by mass spectrometry. The mechanism underlying TRIM8 regulation of VDAC2 was evaluated by co-immunoprecipitation and western blotting. RESULTS TRIM8 was overexpressed in ovarian cancer. TRIM8 promoted the proliferation and migration of ovarian cancer cells in vitro and the growth of subcutaneous tumors in mice in vivo. TRIM8 interacted with VDAC2, weakened the stability of the protein, and promoted its polyubiquitination and subsequent degradation. Knockdown of VDAC2 increased the resistance of ovarian cancer cells to iron death, whereas overexpression of VDAC2 attenuated ovarian cancer progression induced by TRIM8 overexpression. DISCUSSION TRIM8 promotes ovarian cancer proliferation and migration by targeting VDAC2 for ubiquitination and degradation, these finding may provide new targets for the treatment of ovarian cancer. CONCLUSION TRIM8 degraded VDAC2 through the ubiquitination pathway, increased the resistance of ovarian cancer cells to iron death, and promoted the proliferation and migration of ovarian cancer.
Collapse
Affiliation(s)
- Fei Wu
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Jiaqi Xu
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Xin Jin
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Yue Zhu
- Department of Breast and Thyroid SurgeryThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Wenxin Gao
- Department of Histology and Embryology, School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Meng Liu
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Yan Zhang
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Weifeng Qian
- Department of Breast and Thyroid SurgeryThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Xiaoyan Huang
- Department of Histology and Embryology, School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Dan Zhao
- Reproductive Medicine CenterThe Fourth Affiliated Hospital of Jiangsu UniversityZhenjiangChina
- Institute of Reproductive Sciences, Jiangsu UniversityZhenjiangChina
| | - Guannan Feng
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Shunyu Hou
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Xiaoxue Xi
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| |
Collapse
|
3
|
Cai H, Zhao J, Zhang Q, Wu H, Sun Y, Guo F, Zhou Y, Qin G, Xia W, Zhao Y, Liang X, Yin S, Qin Y, Li D, Wu H, Ren D. Ubiquitin ligase TRIM15 promotes the progression of pancreatic cancer via the upregulation of the IGF2BP2-TLR4 axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167183. [PMID: 38657551 DOI: 10.1016/j.bbadis.2024.167183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/17/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The tripartite motif family, predominantly characterized by its E3 ubiquitin ligase activities, is involved in various cellular processes including signal transduction, apoptosis and autophagy, protein quality control, immune regulation, and carcinogenesis. Tripartite Motif Containing 15 (TRIM15) plays an important role in melanoma progression through extracellular signal-regulated kinase activation; however, data on its role in pancreatic tumors remain lacking. We previously demonstrated that TRIM15 targeted lipid synthesis and metabolism in pancreatic cancer; however, other specific regulatory mechanisms remain elusive. METHODS We used transcriptomics and proteomics, conducted a series of phenotypic experiments, and used a mouse orthotopic transplantation model to study the specific mechanism of TRIM15 in pancreatic cancer in vitro and in vivo. RESULTS TRIM15 overexpression promoted the progression of pancreatic cancer by upregulating the toll-like receptor 4. The TRIM15 binding protein, IGF2BP2, could combine with TLR4 to inhibit its mRNA degradation. Furthermore, the ubiquitin level of IGF2BP2 was positively correlated with TRIM15. CONCLUSIONS TRIM15 could ubiquitinate IGF2BP2 to enhance the function of phase separation and the maintenance of mRNA stability of TLR4. TRIM15 is a potential therapeutic target against pancreatic cancer.
Collapse
Affiliation(s)
- Hongkun Cai
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiyue Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heyu Wu
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gengdu Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wentao Xia
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shilin Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Huang X, Wang Y, Huang Z, Chen X, Lin Q, Huang H, Fan L. Low serum apolipoprotein A1 level predicts poor prognosis of patients with diffuse large B-cell lymphoma in the real world: a retrospective study. BMC Cancer 2024; 24:62. [PMID: 38212711 PMCID: PMC10785512 DOI: 10.1186/s12885-024-11818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Apolipoprotein A1 (ApoA1) is a member of the apolipoprotein family with diverse functions. It is associated with the pathogenesis and prognosis of several types of tumors. However, the role of serum apolipoprotein A1 (ApoA1) in the prognosis of patients with diffuse large B-cell lymphoma (DLBCL) remains unclear. This study aimed to elucidate its influence on clinical outcomes in patients with DLBCL. METHODS We retrospectively analyzed a cohort of 1583 consecutive DLBCL patients admitted to the Fujian Medical University Union Hospital between January 2011 and December 2021. 949 newly diagnosed DLBCL patients who met the inclusion criteria were enrolled for statistical analysis. Receiver operating characteristic curve analysis was performed to determine the optimal cut-off value for serum ApoA1 levels for prognostic prediction among patients with DLBCL. The correlations between serum ApoA1 levels and clinical and laboratory parameters were analyzed. Prognostic significance was analyzed using univariate and multivariate Cox proportional hazards models. RESULTS Newly diagnosed patients with DLBCL demonstrated low serum ApoA1 levels (< 0.925 g/L), had more B symptoms, higher levels of serum lactate dehydrogenase (LDH) (>upper limit of normal), poorer performance status (Eastern Cooperative Oncology Group score of 2-4), higher percentage of advanced stage and non-germinal center B-cell (non-GCB) subtype, more cases of > 1 extranodal site, higher International Prognostic Index (IPI) score (3-5), and higher incidence of relapse or refractory diseases compared with those with high serum ApoA1 levels (≥ 0.925 g/L). Low serum ApoA1 levels were an independent adverse prognostic factor for overall survival (OS) but not progression-free survival (PFS). CONCLUSIONS Low serum ApoA1 levels were associated with poor treatment response and inferior survival in newly diagnosed patients with DLBCL.
Collapse
Affiliation(s)
- Xiaoling Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Ying Wang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Zhenyu Huang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing County, Fuzhou City, 350300, Fujian Province, China
| | - Xuzheng Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou City, 350122, Fujian Province, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou City, 350122, Fujian Province, China
| | - Qiuyan Lin
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Liping Fan
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
5
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
6
|
Zhou Y, Fan W, Zhou J, Zhong S, Yang J, Zhong Y, Huang G. Classification and immunotherapy assessment of lung adenocarcinoma based on coagulation-related genes. Per Med 2024; 21:29-44. [PMID: 38037814 DOI: 10.2217/pme-2023-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Introduction: This study on lung adenocarcinoma (LUAD), a common lung cancer subtype with high mortality. Aims: This study focuses on how tumor cell interactions affect immunotherapy responsiveness. Methods: Using public databases, we used non-negative matrix factorization clustering method, ssGSEA, CIBERSORT algorithm, immunophenotype score, survival analysis, protein-protein interaction network method to analyze gene expression data and coagulation-related genes. Results: We divided LUAD patients into three coagulation-related subgroups with varying immune characteristics and survival rates. A cluster of three patients, having the highest immune infiltration and survival rate, also showed the most potential for immunotherapy. We identified five key genes influencing patient survival using a protein-protein interaction network. Conclusion: This research offers valuable insights for forecasting prognosis and immunotherapy responsiveness in LUAD patients, helping to inform clinical treatment strategies.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Oncology, Wuzhou Workers Hospital, Wuzhou City, 543001, China
| | - Wangju Fan
- Department of Thoracic Cardiovascular Surgery, The People's Hospital of Wuzhou, Wuzhou City, 543000, China
| | - Jian Zhou
- Department of Oncology, Wuzhou Workers Hospital, Wuzhou City, 543001, China
| | - Shengjie Zhong
- Department of Oncology, Wuzhou Workers Hospital, Wuzhou City, 543001, China
| | - Jun Yang
- Department of Oncology, Wuzhou Workers Hospital, Wuzhou City, 543001, China
| | - Yanxia Zhong
- Department of Oncology, Wuzhou Workers Hospital, Wuzhou City, 543001, China
| | - Guoxiong Huang
- Department of Thoracic Cardiovascular Surgery, The People's Hospital of Wuzhou, Wuzhou City, 543000, China
| |
Collapse
|
7
|
Lv S, Zhang J, Peng X, Liu H, Liu Y, Wei F. Ubiquitin signaling in pancreatic ductal adenocarcinoma. Front Mol Biosci 2023; 10:1304639. [PMID: 38174069 PMCID: PMC10761520 DOI: 10.3389/fmolb.2023.1304639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor of the digestive system, characterized by rapid progression and being prone to metastasis. Few effective treatment options are available for PDAC, and its 5-year survival rate is less than 9%. Many cell biological and signaling events are involved in the development of PDAC, among which protein post-translational modifications (PTMs), such as ubiquitination, play crucial roles. Catalyzed mostly by a three-enzyme cascade, ubiquitination induces changes in protein activity mainly by altering their stability in PDAC. Due to their role in substrate recognition, E3 ubiquitin ligases (E3s) dictate the outcome of the modification. Ubiquitination can be reversed by deubiquitylases (DUBs), which, in return, modified proteins to their native form. Dysregulation of E3s or DUBs that disrupt protein homeostasis is involved in PDAC. Moreover, the ubiquitination system has been exploited to develop therapeutic strategies, such as proteolysis-targeting chimeras (PROTACs). In this review, we summarize recent progress in our understanding of the role of ubiquitination in the development of PDAC and offer perspectives in the design of new therapies against this highly challenging disease.
Collapse
Affiliation(s)
- Shengnan Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Peng
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Hongyan J, Pengcheng C, Chihong Z, Xiaoqian Q, Danying W, Jianguo F. Serum high-density lipoprotein level and prognosis of ovarian cancer. Medicine (Baltimore) 2023; 102:e35561. [PMID: 37832112 PMCID: PMC10578687 DOI: 10.1097/md.0000000000035561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to investigate the prognostic value of serum high-density lipoprotein (HDL) level in patients with ovarian cancer. This study enrolled 152 patients diagnosed with ovarian cancer and 119 patients with benign ovarian tumors. The associations of patient characteristics and disease with survival were determined using Cox regression analysis, t tests, analysis of variance for multiple-group comparisons, and chi-square tests. The potential association between HDL levels and the clinical characteristics of the disease was also analyzed. The diagnostic value of HDL was estimated using receiver operating characteristic curve analysis and calculation of the area under the curve. Progression-free survival and overall survival were determined using the Kaplan-Meier method, and their associations with patient and pathological variables, including HDL, were determined using the log-rank test. The median serum HDL was 1.15 mm measured in 152 patients with ovarian cancer and 1.30 mm in 119 patients with benign ovarian tumors (P = .000054). The receiver operating characteristic curve analysis yielded an area under the curve of 0.735 for serum HDL levels. Serum HDL levels were significantly associated with tumor pathological types (non-serous vs serous, P < .05). No association was observed between serum HDL levels and patient age, age at menarche or marriage, number of children, tumor grade, or clinical stage (P > .05). Patients with high serum HDL levels had a longer progression-free survival and overall survival than those with low serum HDL levels. Serum HDL levels are an independent prognostic factor for ovarian cancer.
Collapse
Affiliation(s)
- Jiang Hongyan
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen Pengcheng
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Zhu Chihong
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Qian Xiaoqian
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wan Danying
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Feng Jianguo
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Marin AM, Batista M, Korte de Azevedo AL, Bombardelli Gomig TH, Soares Caldeira Brant R, Chammas R, Uno M, Dias Araújo D, Zanette DL, Nóbrega Aoki M. Screening of Exosome-Derived Proteins and Their Potential as Biomarkers in Diagnostic and Prognostic for Pancreatic Cancer. Int J Mol Sci 2023; 24:12604. [PMID: 37628784 PMCID: PMC10454563 DOI: 10.3390/ijms241612604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
In the oncological area, pancreatic cancer is one of the most lethal diseases, with 5-year survival rising just 10% in high-development countries. This disease is genetically characterized by KRAS as a driven mutation followed by SMAD4, CDKN2, and TP53-associated mutations. In clinical aspects, pancreatic cancer presents unspecific clinical symptoms with the absence of screening and early plasmatic biomarker, being that CA19-9 is the unique plasmatic biomarker having specificity and sensitivity limitations. We analyzed the plasmatic exosome proteomic profile of 23 patients with pancreatic cancer and 10 healthy controls by using Nanoscale liquid chromatography coupled to tandem mass spectrometry (NanoLC-MS/MS). The pancreatic cancer patients were subdivided into IPMN and PDAC. Our findings show 33, 34, and 7 differentially expressed proteins when comparing the IPMN vs. control, PDAC-No treatment vs. control, and PDAC-No treatment vs. IPMN groups, highlighting proteins of the complement system and coagulation, such as C3, APOB, and SERPINA. Additionally, PDAC with no treatment showed 11 differentially expressed proteins when compared to Folfirinox neoadjuvant therapy or Gemcitabine adjuvant therapy. So here, we found plasmatic exosome-derived differentially expressed proteins among cancer patients (IPMN, PDAC) when comparing with healthy controls, which could represent alternative biomarkers for diagnostic and prognostic evaluation, supporting further scientific and clinical studies on pancreatic cancer.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
| | - Michel Batista
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Alexandre Luiz Korte de Azevedo
- Laboratory of Human Cytogenetics and Oncogenetics, Genetic Department, University of Parana State (UFPR), Curitiba 80060-000, Brazil; (A.L.K.d.A.); (T.H.B.G.)
| | - Talita Helen Bombardelli Gomig
- Laboratory of Human Cytogenetics and Oncogenetics, Genetic Department, University of Parana State (UFPR), Curitiba 80060-000, Brazil; (A.L.K.d.A.); (T.H.B.G.)
| | - Rodrigo Soares Caldeira Brant
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo 05508-220, Brazil; (R.C.); (M.U.); (D.D.A.)
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo 05508-220, Brazil; (R.C.); (M.U.); (D.D.A.)
| | - Diogo Dias Araújo
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo 05508-220, Brazil; (R.C.); (M.U.); (D.D.A.)
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
| |
Collapse
|
10
|
Kim YJ, Lee Y, Shin H, Hwang S, Park J, Song EJ. Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res 2023; 46:573-597. [PMID: 37541992 DOI: 10.1007/s12272-023-01455-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
As the ubiquitin-proteasome system (UPS) regulates almost every biological process, the dysregulation or aberrant expression of the UPS components causes many pathological disorders, including cancers. To find a novel target for anticancer therapy, the UPS has been an active area of research since the FDA's first approval of a proteasome inhibitor bortezomib in 2003 for treating multiple myeloma (MM). Here, we summarize newly described UPS components, including E3 ubiquitin ligases, deubiquitinases (DUBs), and immunoproteasome, whose malfunction leads to tumorigenesis and whose inhibitors have been investigated in clinical trials as anticancer therapy since 2020. We explain the mechanism and effects of several inhibitors in depth to better comprehend the advantages of targeting UPS components for cancer treatment. In addition, we describe attempts to overcome resistance and limited efficacy of some launched proteasome inhibitors, as well as an emerging PROTAC-based tool targeting UPS components for anticancer therapy.
Collapse
Affiliation(s)
- Yeon Jung Kim
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yeonjoo Lee
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyungkyung Shin
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - SuA Hwang
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jinyoung Park
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
11
|
Yang C, Jin X, Liu X, Wu G, Yang W, Pang B, Jiang J, Liao D, Zhang Y. TRIM15 forms a regulatory loop with the AKT/FOXO1 axis and LASP1 to modulate the sensitivity of HCC cells to TKIs. Cell Death Dis 2023; 14:47. [PMID: 36670097 PMCID: PMC9859813 DOI: 10.1038/s41419-023-05577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
For patients with advanced or metastatic Hepatocellular carcinoma (HCC) who are not suitable for surgical resection, systemic therapy has been considered to be the standard treatment. In recent years, a small subset of patients with unresectable HCC have been benefit from tyrosine kinase inhibitors (TKIs), and the overall survival time of these patients is significantly increased. However, all responders ultimately develop resistance to TKI treatment. The tripartite motif (TRIM) family member TRIM15 acts as an E3 ligase to mediate the polyubiquitination of substrates in cells. However, the biological role of TRIM15 in HCC is still an enigma. In our study, our results demonstrated that TRIM15 was abnormally upregulated in liver cancer cells after treated with TKIs and that this upregulation of TRIM15 contributed to TKI resistance in liver cancer cells. Then, we demonstrated that the upregulation of TRIM15 after TKI treatment was mediated by the AKT/FOXO1 axis. Moreover, we demonstrated that TRIM15 induced the nuclear translocation of LASP1 by mediating its K63-linked polyubiquitination, which modulated sensitivity to TKIs by increasing the phosphorylation of AKT and the expression of Snail in liver cancer cells. Collectively, we identified a novel AKT/FOXO1/TRIM15/LASP1 loop in cells, which provided potential candidates for overcoming TKI resistance in HCC.
Collapse
Affiliation(s)
- Chong Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xingchao Liu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Gang Wu
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Wenhao Yang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Beichuan Pang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Jipeng Jiang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Dongxu Liao
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Yu Zhang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
12
|
Liu M, Fang X, Wang H, Ji R, Guo Q, Chen Z, Ren Q, Wang Y, Zhou Y. Characterization of lipid droplet metabolism patterns identified prognosis and tumor microenvironment infiltration in gastric cancer. Front Oncol 2023; 12:1038932. [PMID: 36713557 PMCID: PMC9875057 DOI: 10.3389/fonc.2022.1038932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Background Gastric cancer is one of the common malignant tumors of the digestive system worldwide, posing a serious threat to human health. A growing number of studies have demonstrated the important role that lipid droplets play in promoting cancer progression. However, few studies have systematically evaluated the role of lipid droplet metabolism-related genes (LDMRGs) in patients with gastric cancer. Methods We identified two distinct molecular subtypes in the TCGA-STAD cohort based on LDMRGs expression. We then constructed risk prediction scoring models in the TCGA-STAD cohort by lasso regression analysis and validated the model with the GSE15459 and GSE66229 cohorts. Moreover, we constructed a nomogram prediction model by cox regression analysis and evaluated the predictive efficacy of the model by various methods in STAD. Finally, we identified the key gene in LDMRGs, ABCA1, and performed a systematic multi-omics analysis in gastric cancer. Results Two molecular subtypes were identified based on LDMRGs expression with different survival prognosis and immune infiltration levels. lasso regression models were effective in predicting overall survival (OS) of gastric cancer patients at 1, 3 and 5 years and were validated in the GEO database with consistent results. The nomogram prediction model incorporated additional clinical factors and prognostic molecules to improve the prognostic predictive value of the current TNM staging system. ABCA1 was identified as a key gene in LDMRGs and multi-omics analysis showed a strong correlation between ABCA1 and the prognosis and immune status of patients with gastric cancer. Conclusion This study reveals the characteristics and possible underlying mechanisms of LDMRGs in gastric cancer, contributing to the identification of new prognostic biomarkers and providing a basis for future research.
Collapse
Affiliation(s)
- Mengxiao Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xidong Fang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Haoying Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xinan, China
| | - Rui Ji
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhaofeng Chen
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qian Ren
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Zhang K, Li YJ, Peng LJ, Gao HF, Liu LM, Chen H. M2 macrophage-derived exosomal miR-193b-3p promotes progression and glutamine uptake of pancreatic cancer by targeting TRIM62. Biol Direct 2023; 18:1. [PMID: 36631876 PMCID: PMC9832623 DOI: 10.1186/s13062-023-00356-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly lethal malignancy that requires effective novel therapies. M2 macrophages are abundant in the PC microenvironment and promote cancer progression. Exosomes are emerging mediators of the crosstalk between cancer cells and the microenvironment. This study was conducted to explore the role of M2 macrophage-derived exosomes in PC. METHODS Exosomes derived from M2 macrophages were extracted. miR-193b-3p and TRIM62 were overexpressed or silenced to examine their function in PC. Luminescence assays were used to investigate the interaction between miR-193b-3p and TRIM62. Cell proliferation was examined by EdU staining. Would healing and transwell assays were applied to evaluate cell migration and invasion. Co-immunoprecipitation was used to assess the interaction between TRIM62 and c-Myc. Gene and protein expressions were analyzed by quantitative RT-PCR and immunoblotting, respectively. RESULTS M2 macrophage-derived exosomal miR-193b-3p promoted the proliferation, migration, invasion, and glutamine uptake of SW1990 cells. Mechanism study revealed that TRIM62 is a target of miR-193b-3p. TRIM62 inhibited the proliferation, migration, invasion, and glutamine uptake of SW1990 cells by promoting c-Myc ubiquitination. Our data also suggested that TRIM62 expression negatively correlated with miR-193b-3p and c-Myc expression. High-expression of miR-193b-3p and c-Myc predicts poor prognosis, whereas low-expression of TRIM62 predicts poor prognosis in patients with PC. CONCLUSION M2 macrophage-derived exosomal miR-193b-3p enhances the proliferation, migration, invasion, and glutamine uptake of PC cells by targeting TRIM62, resulting in the decrease of c-Myc ubiquitination. This study not only reveals the mechanism underlying the crosstalk between M2 macrophages and PC cells but also suggests a promising therapeutic target for PC.
Collapse
Affiliation(s)
- Ke Zhang
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yu-Jie Li
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lin-Jia Peng
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hui-Feng Gao
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lu-Ming Liu
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Zhang X, Wu X, Sun Y, Chu Y, Liu F, Chen C. TRIM44 regulates tumor immunity in gastric cancer through LOXL2-dependent extracellular matrix remodeling. Cell Oncol (Dordr) 2022; 46:423-435. [PMID: 36512309 DOI: 10.1007/s13402-022-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/12/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Gastric cancer is a gastrointestinal malignancy with high mortality and poor prognosis, and the molecular mechanism of gastric tumorigenesis remains unclear. TRIM44 has been reported to be involved in tumor development. However, the role of TRIM44 in tumor immunity is largely unknown. METHODS We analyzed TRIM44 expression in clinical gastric cancer tissues and normal tissues by using western blot, quantitative real-time PCR and bioinformatics analyses. We further investigated the involvement of TRIM44 in tumor immunity in vivo and found that it was dependent on extracellular matrix remodeling. We detected the interaction between TRIM44 and LOXL2 by using immunofluorescence staining and coimmunoprecipitation assays. We observed that TRIM44 mediates the stability of LOXL2 by ubiquitination assays. RESULTS TRIM44 expression is high and is correlated with T-cell infiltration in gastric cancer. TRIM44 inhibits gastric tumorigenicity by regulating T-cell-mediated antitumor immunity and modulating the protein level of LOXL2. Mechanistically, TRIM44 directly binds to LOXL2 and affects the stability of LOXL2 to change extracellular matrix remodeling and influence tumor immunity. CONCLUSION These findings demonstrate that TRIM44 regulates the stability of LOXL2 to remodel the tumor extracellular matrix to modulate tumor immunity in gastric cancer and that the TRIM44/LOXL2 complex is a promising biomarker for gastric cancer prognosis and might be a novel immunotherapy target.
Collapse
Affiliation(s)
- Xin Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, 250012, JiNan, China
| | - Xiusheng Wu
- Department of General Surgery, Linyi People's Hospital, 105 Plaza Street, Linyi County, China
| | - Ying Sun
- Department of Blood quality Control, Yantai central blood station, 10 Haiyun Road, Yantai, China
| | - Yali Chu
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, 250012, JiNan, China
| | - Fengjun Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, 250012, JiNan, China
| | - Cheng Chen
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, 250012, JiNan, China.
| |
Collapse
|
15
|
He Y, Chen J, Ma Y, Chen H. Apolipoproteins: New players in cancers. Front Pharmacol 2022; 13:1051280. [PMID: 36506554 PMCID: PMC9732396 DOI: 10.3389/fphar.2022.1051280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoproteins (APOs), the primary protein moiety of lipoproteins, are known for their crucial role in lipid traffic and metabolism. Despite extensive exploration of APOs in cardiovascular diseases, their roles in cancers did not attract enough attention. Recently, research focusing on the roles of APOs in cancers has flourished. Multiple studies demonstrate the interaction of APOs with classical pathways of tumorigenesis. Besides, the dysregulation of APOs may indicate cancer occurrence and progression, thus serving as potential biomarkers for cancer patients. Herein, we summarize the mechanisms of APOs involved in the development of various cancers, their applications as cancer biomarkers and their genetic polymorphism associated with cancer risk. Additionally, we also discuss the potential anti-cancer therapies by virtue of APOs. The comprehensive review of APOs in cancers may advance the understanding of the roles of APOs in cancers and their potential mechanisms. We hope that it will provide novel clues and new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yingcheng He
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianrui Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yanbing Ma
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Hongping Chen,
| |
Collapse
|
16
|
Tong Y, Sun M, Chen L, Wang Y, Li Y, Li L, Zhang X, Cai Y, Qie J, Pang Y, Xu Z, Zhao J, Zhang X, Liu Y, Tian S, Qin Z, Feng J, Zhang F, Zhu J, Xu Y, Lou W, Ji Y, Zhao J, He F, Hou Y, Ding C. Proteogenomic insights into the biology and treatment of pancreatic ductal adenocarcinoma. J Hematol Oncol 2022; 15:168. [PMID: 36434634 PMCID: PMC9701038 DOI: 10.1186/s13045-022-01384-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor prognosis. Proteogenomic characterization and integrative proteomic analysis provide a functional context to annotate genomic abnormalities with prognostic value. METHODS We performed an integrated multi-omics analysis, including whole-exome sequencing, RNA-seq, proteomic, and phosphoproteomic analysis of 217 PDAC tumors with paired non-tumor adjacent tissues. In vivo functional experiments were performed to further illustrate the biological events related to PDAC tumorigenesis and progression. RESULTS A comprehensive proteogenomic landscape revealed that TP53 mutations upregulated the CDK4-mediated cell proliferation process and led to poor prognosis in younger patients. Integrative multi-omics analysis illustrated the proteomic and phosphoproteomic alteration led by genomic alterations such as KRAS mutations and ADAM9 amplification of PDAC tumorigenesis. Proteogenomic analysis combined with in vivo experiments revealed that the higher amplification frequency of ADAM9 (8p11.22) could drive PDAC metastasis, though downregulating adhesion junction and upregulating WNT signaling pathway. Proteome-based stratification of PDAC revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Immune clustering defined a metabolic tumor subset that harbored FH amplicons led to better prognosis. Functional experiments revealed the role of FH in altering tumor glycolysis and in impacting PDAC tumor microenvironments. Experiments utilizing both in vivo and in vitro assay proved that loss of HOGA1 promoted the tumor growth via activating LARP7-CDK1 pathway. CONCLUSIONS This proteogenomic dataset provided a valuable resource for researchers and clinicians seeking for better understanding and treatment of PDAC.
Collapse
Affiliation(s)
- Yexin Tong
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Mingjun Sun
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Lingli Chen
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yunzhi Wang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yan Li
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Lingling Li
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Xuan Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yumeng Cai
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jingbo Qie
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yanrui Pang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Ziyan Xu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jiangyan Zhao
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Xiaolei Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yang Liu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Sha Tian
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Zhaoyu Qin
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jinwen Feng
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Fan Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jiajun Zhu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yifan Xu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Wenhui Lou
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yuan Ji
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jianyuan Zhao
- grid.16821.3c0000 0004 0368 8293Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China ,grid.207374.50000 0001 2189 3846Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Fuchu He
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China ,grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206 China ,grid.506261.60000 0001 0706 7839Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Yingyong Hou
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Chen Ding
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| |
Collapse
|
17
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
18
|
Qin W, Zhang J, Rong R, Zhang L, Gao H, Liu C, Ren Q, Zheng G, Wang J, Meng L, Qiao S, Qian R, Zhou C, Wang H, Zhang Y. Osteoglycin (OGN) promotes tumorigenesis of pancreatic cancer cell via targeting ID4. Tissue Cell 2022; 78:101867. [DOI: 10.1016/j.tice.2022.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022]
|
19
|
Bhale AS, Venkataraman K. Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed Pharmacother 2022; 154:113634. [PMID: 36063649 DOI: 10.1016/j.biopha.2022.113634] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is a member of the Apolipoprotein family of proteins. It's a vital protein that helps in the production of high-density lipoprotein (HDL) particles, which are crucial for reverse cholesterol transport (RCT). It also has anti-inflammatory, anti-atherogenic, anti-apoptotic, and anti-thrombotic properties. These functions interact to give HDL particles their cardioprotective characteristics. ApoA1 has recently been investigated for its potential role in atherosclerosis, diabetes, neurological diseases, cancer, and certain infectious diseases. Since ApoA1's discovery, numerous mutations have been reported that affect its structural integrity and alter its function. Hence these insights have led to the development of clinically relevant peptides and synthetic reconstituted HDL (rHDL) that mimics the function of ApoA1. As a result, this review has aimed to provide an organized explanation of our understanding of the ApoA1 protein structure and its role in various essential pathways. Furthermore, we have comprehensively reviewed the important ApoA1 mutations (24 mutations) that are reported to be involved in various diseases. Finally, we've focused on the therapeutic potentials of some of the beneficial mutations, small peptides, and synthetic rHDL that are currently being researched or developed, since these will aid in the development of novel therapeutics in the future.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
20
|
Zhang Y, Zhang W, Zheng L, Guo Q. The roles and targeting options of TRIM family proteins in tumor. Front Pharmacol 2022; 13:999380. [PMID: 36249749 PMCID: PMC9561884 DOI: 10.3389/fphar.2022.999380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Tripartite motif (TRIM) containing proteins are a class of E3 ubiquitin ligases, which are critically implicated in the occurrence and development of tumors. They can function through regulating various aspects of tumors, such as tumor proliferation, metastasis, apoptosis and the development of drug resistance during tumor therapy. Some members of TRIM family proteins can mediate protein ubiquitination and chromosome translocation via modulating several signaling pathways, like p53, NF-κB, AKT, MAPK, Wnt/β-catenin and other molecular regulatory mechanisms. The multi-domain nature/multi-functional biological role of TRIMs implies that blocking just one function or one domain might not be sufficient to obtain the desired therapeutic outcome, therefore, a detailed and systematic understanding of the biological functions of the individual domains of TRIMs is required. This review mainly described their roles and underlying mechanisms in tumorigenesis and progression, and it might shade light on a potential targeting strategy for TRIMs in tumor treatment, especially using PROTACs.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Qianqian Guo,
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Qianqian Guo,
| |
Collapse
|
21
|
Li SC, Jia ZK, Yang JJ, Ning XH. Telomere-related gene risk model for prognosis and drug treatment efficiency prediction in kidney cancer. Front Immunol 2022; 13:975057. [PMID: 36189312 PMCID: PMC9523360 DOI: 10.3389/fimmu.2022.975057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney cancer is one of the most common urological cancers worldwide, and kidney renal clear cell cancer (KIRC) is the major histologic subtype. Our previous study found that von-Hippel Lindau (VHL) gene mutation, the dominant reason for sporadic KIRC and hereditary kidney cancer-VHL syndrome, could affect VHL disease-related cancers development by inducing telomere shortening. However, the prognosis role of telomere-related genes in kidney cancer has not been well discussed. In this study, we obtained the telomere-related genes (TRGs) from TelNet. We obtained the clinical information and TRGs expression status of kidney cancer patients in The Cancer Genome Atlas (TCGA) database, The International Cancer Genome Consortium (ICGC) database, and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Totally 353 TRGs were differential between tumor and normal tissues in the TCGA-KIRC dataset. The total TCGA cohort was divided into discovery and validation TCGA cohorts and then using univariate cox regression, lasso regression, and multivariate cox regression method to conduct data analysis sequentially, ten TRGs (ISG15, RFC2, TRIM15, NEK6, PRKCQ, ATP1A1, ELOVL3, TUBB2B, PLCL1, NR1H3) risk model had been constructed finally. The kidney patients in the high TRGs risk group represented a worse outcome in the discovery TCGA cohort (p<0.001), and the result was validated by these four cohorts (validation TCGA cohort, total TCGA cohort, ICGC cohort, and CPTAC cohort). In addition, the TRGs risk score is an independent risk factor for kidney cancer in all these five cohorts. And the high TRGs risk group correlated with worse immune subtypes and higher tumor mutation burden in cancer tissues. In addition, the high TRGs risk group might benefit from receiving immune checkpoint inhibitors and targeted therapy agents. Moreover, the proteins NEK6, RF2, and ISG15 were upregulated in tumors both at the RNA and protein levels, while PLCL1 and PRKCQ were downregulated. The other five genes may display the contrary expression status at the RNA and protein levels. In conclusion, we have constructed a telomere-related genes risk model for predicting the outcomes of kidney cancer patients, and the model may be helpful in selecting treatment agents for kidney cancer patients.
Collapse
|
22
|
Liang M, Wang L, Sun Z, Chen X, Wang H, Qin L, Zhao W, Geng B. E3 ligase TRIM15 facilitates non-small cell lung cancer progression through mediating Keap1-Nrf2 signaling pathway. Cell Commun Signal 2022; 20:62. [PMID: 35534896 PMCID: PMC9082862 DOI: 10.1186/s12964-022-00875-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent studies have indicated that some members of the tripartite motif (TRIM) proteins function as important regulators for non-small cell lung cancer (NSCLC), However, the regulatory mechanism underpinning aberrant expression of TRIM in NSCLC remains unclear. Here we report that TRIM15 plays important roles in NSCLC progression through modulating Keap1-Nrf2 signaling pathway. METHODS TRIM15 expression was evaluated by western blot analysis, tissue microarray-based immunohistochemistry analysis. The interactions between TRIM15 and Keap1 were analyzed by co-immunoprecipitation (Co-IP) and immunofluorescence co-localization assay. The correlation between TRIM15 and Keap1 was measured by Co-IP and ubiquitination analysis in vitro. Gain- and lost-of-function experiments were used to detect TRIM15 promotes proliferation and invasion of NSCLC cells both in vitro and vivo. RESULTS Here, we revealed that TRIM15 was frequently upregulated in NSCLC samples and associated with poor prognosis. Functionally, TRIM15 knockdown resulted in decreased cancer cell proliferation and metastasis, whereas ectopic TRIM15 expression facilitated tumor cancer cell proliferation and metastasis in vitro and in vivo. Moreover, TRIM15 promoted cell proliferation and metastasis depends on its E3 ubiquitin ligase. Mechanistically, TRIM15 directly targeted Keap1 by ubiquitination and degradation, the principal regulator of Nrf2 degradation, leading to Nrf2 escaping from Keap1-mediated degradation, subsequently promoting antioxidant response and tumor progression. CONCLUSIONS Therefore, our study characterizes the pivotal roles of TRIM15 promotes NSCLC progression via Nrf2 stability mediated by promoting Keap1 ubiquitination and degradation and could be a valuable prognostic biomarker and a potential therapeutic target in NSCLC. Video Abstract.
Collapse
Affiliation(s)
- Manman Liang
- Department of Internal Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Lijing Wang
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Zhengui Sun
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Xingwu Chen
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Hanli Wang
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Lilong Qin
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Wenying Zhao
- Department of Medical Oncology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Biao Geng
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China.
| |
Collapse
|