1
|
Wang J, Wang L, Feng X, Xu Y, Zhou L, Wang C, Wang M. Astragaloside IV attenuates fatty acid-induced renal tubular injury in diabetic kidney disease by inhibiting fatty acid transport protein-2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155991. [PMID: 39217653 DOI: 10.1016/j.phymed.2024.155991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Renal tubular injury induced by free fatty acid bound to albumin is the key pathological basis for the progression of diabetic kidney disease. However, effective interventions are limited. Astragaloside IV, as a major bioactive component purified from Astragalus membranaceus (Fisch.) Bunge, possesses pharmacological properties of lowering blood glucose and proteinuria, and renal tubular protection in diabetic kidney disease. Further work is needed to understand the underlying molecular mechanisms. PURPOSE This study was designed to investigate the mechanism of renal tubular protection by astragaloside IV in diabetic kidney disease. METHODS Rats receiving high-fat diet combined with streptozotocin (30 mg/kg, i.p.) were gavaged with astragaloside IV (10 mg/kg/d or 20 mg/kg/d) or empagliflozin (1.72 mg/kg/d) for 8 weeks. In vitro, the NRK-52E cells were treated with free fatty acid-deleted BSA or palmitic acid-bound BSA in the presence or absence of astragaloside IV (5 μM, 10 μM, 20 μM) or 5 μM of mcc950. The effects of astragaloside IV on mitochondrial function, NLRP3/ASC/IL-18/IL-1β inflammatory cascade, and renal tubular injury were detected by pathological staining, immunoblotting, MitoSOX Red staining. Next, to investigate the mechanism of renal tubular protection by astragaloside IV, we transfected Fatp2 siRNA into BSA-PA-treated NRK-52E cells and injected lipofermata (a FATP2 inhibitor) intraperitoneally into free fatty acid-bound BSA overloaded rats with concomitant astragaloside IV treatment. RESULTS Treatment with astragaloside IV for 8 weeks dose-dependently attenuated the blood glucose, ratio of urinary albumin to creatinine, disorder of lipid metabolism, and pathological injury in diabetic kidney disease rats. In addition, astragaloside IV dose-dependently attenuated mitochondrial-derived reactive oxygen species and subsequent inhibiting NLRP3-mediated inflammatory cascade in diabetic kidney disease rats and palmitic acid-bound BSA-treated NRK-52E cells, thereby exerting renal tubular protection. More importantly, the effects of astragaloside IV on restoration of mitochondrial function, inhibition of inflammatory response and amelioration of renal tubular injury in vivo and in vitro were further enhanced when used in combination with Fatp2 siRNA or lipofermata. CONCLUSION Astragaloside IV exerts antioxidant and anti-inflammatory effects in diabetic kidney disease by inhibiting FATP2-mediated fatty acid transport, thereby attenuating renal tubular injury.
Collapse
Affiliation(s)
- Jing Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoxuan Feng
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yizeng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Tasić D, Dimitrijević Z. The Role of Oxidative Stress as a Mechanism in the Pathogenesis of Acute Heart Failure in Acute Kidney Injury. Diagnostics (Basel) 2024; 14:2094. [PMID: 39335773 PMCID: PMC11431490 DOI: 10.3390/diagnostics14182094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Despite a large amount of research on synchronous and mutually induced kidney and heart damage, the basis of the disease is still not fully clarified. Healthy mitochondria are essential for normal kidney and heart function. Mitochondrial dysfunction occurs when the clearance or process of generation and fragmentation of mitochondria is disturbed. The kidney is the second organ after the heart in terms of the number of mitochondria. Kidney tubules are rich in mitochondria due to the high energy requirements for absorption of large amounts of ultrafiltrate and dissolved substances. The place of action of oxidative stress is the influence on the balance in the production and breakdown of the mitochondrial reactive oxygen species. A more precise determination of the place and role of key factors that play a role in the onset of the disease is necessary for understanding the nature of the onset of the disease and the creation of therapy in the future. This underscores the urgent need for further research. The narrative review integrates results found in previously performed studies that have evaluated oxidative stress participation in cardiorenal syndrome type 3.
Collapse
Affiliation(s)
- Danijela Tasić
- Clinic of Nephrology Prof Dr Spira Strahinjić, University Clinical Center Niš, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | | |
Collapse
|
3
|
Jia X, Mao D, Guo J, Ke J, Zhu Y, Zhao X, Luo Z, Liu X, Tang R, Hou R, Lan H, Zheng Q. Epigallocatechin gallate attenuated high glucose-induced pancreatic beta cell dysfunction by modulating DRP1-mediated mitochondrial apoptosis pathways. Sci Rep 2024; 14:16809. [PMID: 39039202 PMCID: PMC11263710 DOI: 10.1038/s41598-024-67867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Long-term exposure to hyperglycemic conditions leads to β-cell dysfunction, particularly mitochondrial dysfunction, and inflammatory and oxidative stress responses, which are considered the primary causes of β-cell death and the hallmarks of diabetes. Plant-active ingredients may play a key role in glycemic control. Epigallocatechin gallate (EGCG) is a characteristic catechin derived from tea that possesses anti-diabetic properties. Nonetheless, its underlying mechanisms remain elusive. Herein, the protective role of EGCG on high glucose (33 mM)-induced pancreatic beta cell dysfunction and its possible molecular mechanisms were investigated. Briefly, MIN6 cells were treated with glucose and EGCG (10 µM, 20 µM, and 40 µM) for 48 h. Our results revealed that EGCG dose-dependently restored mitochondrial membrane potential and concomitantly alleviated cell apoptosis. Mechanistically, the expression level of apoptotic protein BAX and Dynamic related protein 1 (DRP1) was significantly downregulated following EGCG treatment, whereas that of the anti-apoptotic protein BCL-2 was significantly upregulated. Taken together, EGCG alleviated high glucose-induced pancreatic beta cell dysfunction by targeting the DRP1-related mitochondrial apoptosis pathway and thus can serve as a nutritional intervention for the preservation of beta cell dysfunction in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xu Jia
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Danting Mao
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Jianwei Guo
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Jiangyu Ke
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Yanlin Zhu
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoyang Zhao
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziren Luo
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Xinghai Liu
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Rui Tang
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Ruihan Hou
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Haitao Lan
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Zheng
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
4
|
Yang Y, Liu J, Shi Q, Guo B, Jia H, Yang Y, Fu S. Roles of Mitochondrial Dysfunction in Diabetic Kidney Disease: New Perspectives from Mechanism to Therapy. Biomolecules 2024; 14:733. [PMID: 38927136 PMCID: PMC11201432 DOI: 10.3390/biom14060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes and the main cause of end-stage renal disease around the world. Mitochondria are the main organelles responsible for producing energy in cells and are closely involved in maintaining normal organ function. Studies have found that a high-sugar environment can damage glomeruli and tubules and trigger mitochondrial dysfunction. Meanwhile, animal experiments have shown that DKD symptoms are alleviated when mitochondrial damage is targeted, suggesting that mitochondrial dysfunction is inextricably linked to the development of DKD. This article describes the mechanisms of mitochondrial dysfunction and the progression and onset of DKD. The relationship between DKD and mitochondrial dysfunction is discussed. At the same time, the progress of DKD treatment targeting mitochondrial dysfunction is summarized. We hope to provide new insights into the progress and treatment of DKD.
Collapse
Affiliation(s)
- Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jiahui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiling Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hanbing Jia
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuxuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.Y.); (J.L.); (B.G.); (H.J.); (Y.Y.)
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Songbo Fu
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Provincial Endocrine Disease Clinical Medicine Research Center, Lanzhou 730000, China
| |
Collapse
|
5
|
Ye B, Chen B, Guo C, Xiong N, Huang Y, Li M, Lai Y, Li J, Zhou M, Wang S, Wang S, Yang N, Zhang H. C5a-C5aR1 axis controls mitochondrial fission to promote podocyte injury in lupus nephritis. Mol Ther 2024; 32:1540-1560. [PMID: 38449312 PMCID: PMC11081871 DOI: 10.1016/j.ymthe.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Podocytes are essential to maintaining the integrity of the glomerular filtration barrier, but they are frequently affected in lupus nephritis (LN). Here, we show that the significant upregulation of Drp1S616 phosphorylation in podocytes promotes mitochondrial fission, leading to mitochondrial dysfunction and podocyte injury in LN. Inhibition or knockdown of Drp1 promotes mitochondrial fusion and protects podocytes from injury induced by LN serum. In vivo, pharmacological inhibition of Drp1 reduces the phosphorylation of Drp1S616 in podocytes in lupus-prone mice. Podocyte injury is reversed when Drp1 is inhibited, resulting in the alleviation of proteinuria. Mechanistically, complement component C5a (C5a) upregulates the phosphorylation of Drp1S616 and promotes mitochondrial fission in podocytes. Moreover, the expression of C5a receptor 1 (C5aR1) is notably upregulated in podocytes in LN. C5a-C5aR1 axis-controlled phosphorylation of Drp1S616 and mitochondrial fission are substantially suppressed when C5aR1 is knocked down by siRNA. Moreover, lupus-prone mice treated with C5aR inhibitor show reduced phosphorylation of Drp1S616 in podocytes, resulting in significantly less podocyte damage. Together, this study uncovers a novel mechanism by which the C5a-C5aR1 axis promotes podocyte injury by enhancing Drp1-mediated mitochondrial fission, which could have significant implications for the treatment of LN.
Collapse
Affiliation(s)
- Baokui Ye
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Binfeng Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaohuan Guo
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ningjing Xiong
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuefang Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengyuan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yimei Lai
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mianjing Zhou
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuang Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuyi Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hui Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
6
|
Khaled M, Salama RAM, Aboughalia A, Tarek M, Mohamed Fawzy N. Apigenin ameliorates genitourinary dysfunction in a type 1 diabetic rat model via Drp1 modulation. Sci Rep 2024; 14:5754. [PMID: 38459102 PMCID: PMC10924091 DOI: 10.1038/s41598-024-56395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
The present study aimed to explore the potential ameliorative effect of apigenin (APG) against diabetes-associated genitourinary complications in rats. A diabetic rat model was induced by the intraperitoneal injection of streptozotocin (STZ). All experimental animals were treated with vehicle or vehicle plus APG at a dose of 0.78 mg/kg/day for 10 days, either once diabetes was confirmed or at the end of the 3rd week after confirmation of diabetes. Rats were sacrificed at the end of the fifth week. In addition to the histological assessment, an analysis of kidney function tests and serum testosterone was performed to assess diabetic genitourinary complications. Gene expression of the mitochondrial fission protein, dynamin related protein 1 (Drp1), was measured in renal and testicular tissues using qRT PCR. APG can increase body weight, reduce blood glucose levels, and improve renal and testicular functions in diabetic rats. APG decreased Drp1 overexpression in diabetic animals' kidneys and testes. In summary, our current work discloses that APG attenuates diabetic genitourinary lesions in rats via suppressing Drp1 overexpression.
Collapse
Affiliation(s)
- Mai Khaled
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Raghda A M Salama
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Azza Aboughalia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mai Tarek
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Mohamed Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Liu Y, Xu K, Xiang Y, Ma B, Li H, Li Y, Shi Y, Li S, Bai Y. Role of MCP-1 as an inflammatory biomarker in nephropathy. Front Immunol 2024; 14:1303076. [PMID: 38239353 PMCID: PMC10794684 DOI: 10.3389/fimmu.2023.1303076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
The Monocyte chemoattractant protein-1 (MCP-1), also referred to as chemokine ligand 2 (CCL2), belongs to the extensive chemokine family and serves as a crucial mediator of innate immunity and tissue inflammation. It has a notable impact on inflammatory conditions affecting the kidneys. Upon binding to its receptor, MCP-1 can induce lymphocytes and NK cells' homing, migration, activation, differentiation, and development while promoting monocytes' and macrophages' infiltration, thereby facilitating kidney disease-related inflammation. As a biomarker for kidney disease, MCP-1 has made notable advancements in primary kidney diseases such as crescentic glomerulonephritis, chronic glomerulonephritis, primary glomerulopathy, idiopathic proteinuria glomerulopathy, acute kidney injury; secondary kidney diseases like diabetic nephropathy and lupus nephritis; hereditary kidney diseases including autosomal dominant polycystic kidney disease and sickle cell kidney disease. MCP-1 not only predicts the occurrence, progression, prognosis of the disease but is also closely associated with the severity and stage of nephropathy. When renal tissue is stimulated or experiences significant damage, the expression of MCP-1 increases, demonstrating a direct correlation with the severity of renal injury.
Collapse
Affiliation(s)
- Yanlong Liu
- Heilongjiang Provincial Health Commission, Harbin, China
| | - Ke Xu
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Yuhua Xiang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Boyan Ma
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Hailong Li
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yuan Li
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Shi
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Shuju Li
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yan Bai
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Ning Y, Zhou X, Wang G, Zhang L, Wang J. Exosome miR-30a-5p Regulates Glomerular Endothelial Cells' EndMT and Angiogenesis by Modulating Notch1/VEGF Signaling Pathway. Curr Gene Ther 2024; 24:159-177. [PMID: 37767799 DOI: 10.2174/0115665232258527230919071328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the microvascular complications of diabetes. Endothelial-mesenchymal transition (EndMT) and endothelial damage lead to abnormal angiogenesis in DN. OBJECTIVES This study aimed to investigate the role of exosome miR-30a-5p in high glucose (HG)-induced glomerular endothelial cells (GECs) dysfunction and explore the underlying mechanisms. METHODS GECs were cultured in normal glucose (5.5 mM) and HG (30 mM) conditions. The recipient GECs were transfected with exosome or miR-30a-5p mimic/inhibitor and then detected by using CCK-8 and flow cytometry assay. Luciferase analysis was used to verify miR-30a-5p acted on notch homolog protein 1 (Notch1). RT-qPCR and Western blot were used to detect the expression of VE-cadherin, α-SMA, vascular endothelial growth factor (VEGF) and Notch1. In vivo, exosome miR-30a-5p was administered to DN mice, and periodic acid-Schiff (PAS) staining, UTP levels, and HbA1c levels were measured. RESULTS The expression of miR-30a-5p was downregulated in HG-treated GECs. Exosome miR-30a-5p significantly promoted cell proliferation, and migration and reduced apoptosis of GECs under HG conditions. MiR-30a-5p directly targeted the 3-UTR region of Notch1. Exosome miR-30a-5p reduced the expression levels of Notch1 and VEGF, both at mRNA and protein levels. Furthermore, exosome miR-30a-5p inhibited HG-induced EndMT, as evidenced by increased VE-cadherin and reduced α-SMA. In vivo studies demonstrated that exosome miR-30a-5p reduced serum HbA1c levels and 24-hour urine protein quantification. CONCLUSION This study provides evidence that exosome miR-30a-5p suppresses EndMT and abnormal angiogenesis of GECs by modulating the Notch1/VEGF signaling pathway. These findings suggest that exosome miR-30a-5p could be a potential therapeutic strategy for the treatment of DN.
Collapse
Affiliation(s)
- Yaxian Ning
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Xiaochun Zhou
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Gouqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Lili Zhang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Jianqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| |
Collapse
|
9
|
Machin DR, Sabouri M, Zheng X, Donato AJ. Therapeutic strategies targeting the endothelial glycocalyx. Curr Opin Clin Nutr Metab Care 2023; 26:543-550. [PMID: 37555800 PMCID: PMC10592259 DOI: 10.1097/mco.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
PURPOSE OF REVIEW This review will highlight recent studies that have examined the endothelial glycocalyx in a variety of health conditions, as well as potential glycocalyx-targeted therapies. RECENT FINDINGS A degraded glycocalyx is present in individuals that consume high sodium diet or have kidney disease, diabetes, preeclampsia, coronavirus disease 2019 (COVID-19), or sepsis. Specifically, these conditions are accompanied by elevated glycocalyx components in the blood, such as syndecan-1, syndecans-4, heparin sulfate, and enhanced heparinase activity. Impaired glycocalyx barrier function is accompanied by decreased nitric oxide bioavailability, increased leukocyte adhesion to endothelial cells, and vascular permeability. Glycocalyx degradation appears to play a key role in the progression of cardiovascular complications. However, studies that have used glycocalyx-targeted therapies to treat these conditions are scarce. Various therapeutics can restore the glycocalyx in kidney disease, diabetes, COVID-19, and sepsis. Exposing endothelial cells to glycocalyx components, such as heparin sulfate and hyaluronan protects the glycocalyx. SUMMARY We conclude that the glycocalyx is degraded in a variety of health conditions, although it remains to be determined whether glycocalyx degradation plays a causal role in disease progression and severity, and whether glycocalyx-targeted therapies improve patient health outcomes. Future studies are warranted to investigate therapeutic strategies that target the endothelial glycocalyx.
Collapse
Affiliation(s)
- Daniel R Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Mostafa Sabouri
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Utah
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, VA SLC
- Department of Nutrition and Integrative Physiology
- Department of Biochemistry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Barbero NM, Oller J, Sanz AB, Ramos AM, Ortiz A, Ruiz-Ortega M, Rayego-Mateos S. Mitochondrial Dysfunction in the Cardio-Renal Axis. Int J Mol Sci 2023; 24:ijms24098209. [PMID: 37175915 PMCID: PMC10179675 DOI: 10.3390/ijms24098209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cardiovascular disease (CVD) frequently complicates chronic kidney disease (CKD). The risk of all-cause mortality increases from 20% to 500% in patients who suffer both conditions; this is referred to as the so-called cardio-renal syndrome (CRS). Preclinical studies have described the key role of mitochondrial dysfunction in cardiovascular and renal diseases, suggesting that maintaining mitochondrial homeostasis is a promising therapeutic strategy for CRS. In this review, we explore the malfunction of mitochondrial homeostasis (mitochondrial biogenesis, dynamics, oxidative stress, and mitophagy) and how it contributes to the development and progression of the main vascular pathologies that could be affected by kidney injury and vice versa, and how this knowledge may guide the development of novel therapeutic strategies in CRS.
Collapse
Affiliation(s)
- Nerea Mendez Barbero
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, 28037 Madrid, Spain
| | - Jorge Oller
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, 28037 Madrid, Spain
| | - Ana B Sanz
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Adrian M Ramos
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Marta Ruiz-Ortega
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| | - Sandra Rayego-Mateos
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| |
Collapse
|
11
|
Guo Y, Wang M, Liu Y, Pang Y, Tian L, Zhao J, Liu M, Shen C, Meng Y, Wang Y, Cai Z, Zhao W. BaoShenTongLuo formula protects against podocyte injury by regulating AMPK-mediated mitochondrial biogenesis in diabetic kidney disease. Chin Med 2023; 18:32. [PMID: 36967383 PMCID: PMC10040124 DOI: 10.1186/s13020-023-00738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction is considered to be an important contributor in podocyte injury under diabetic conditions. The BaoShenTongLuo (BSTL) formula has been shown to reduce podocyte damage and postpone the progression of diabetic kidney disease (DKD). The potential mechanisms underlying the effects of BSTL, however, have yet to be elucidated. In this study, we aimed to investigate whether the effects of BSTL are related to the regulation of mitochondrial biogenesis via the adenosine monophosphate-activated protein kinase (AMPK) pathway. METHODS High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometer (HPLC-ESI-MS) analysis was performed to investigate the characteristics of pure compounds in BSTL. db/db mice and mouse podocyte clone-5 (MPC5) cells were exposed to high glucose (HG) to induce DKD and podocyte damage. Body weight, random blood glucose, urinary albumin/creatinine ratio (UACR), indicators of renal function and renal histological lesions were measured. Markers of podocyte injury, mitochondrial morphology, mitochondrial deoxyribonucleic acid (mtDNA) content, mitochondrial respiratory chain complexes activities, reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) levels were assessed. Protein expressions of AMPK, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), transcription factor A (TFAM), mitochondrial fusion protein 2 (MFN2) and dynamin-related protein 1 (DRP1) were also detected. MPC5 cells were transfected with AMPKα small interfering RNA (AMPKα siRNA) to determine the underlying mechanisms of BSTL improvement of mitochondrial function under diabetic conditions. RESULTS In vivo, treatment with BSTL reduced the UACR levels, reversed the histopathological changes in renal tissues, and alleviated the podocyte injury observed in db/db mice. After BSTL treatment, the decreased mtDNA content and mitochondrial respiratory chain complex I, III, and IV activities were significantly improved, and these effects were accompanied by maintenance of the protein expression of p-AMPKαT172, PGC-1α, TFAM and MFN2. The in vitro experiments also showed that BSTL reduced podocyte apoptosis, suppressed excessive cellular ROS production, and reversed the decreased in MMP that were observed under HG conditions. More importantly, the effects of BSTL in enhancing mitochondrial biogenesis and reducing podocyte apoptosis were inhibited in AMPKα siRNA-treated podocytes. CONCLUSION BSTL plays a crucial role in protecting against podocyte injury by regulating the AMPK-mediated mitochondrial biogenesis in DKD.
Collapse
Affiliation(s)
- Yifan Guo
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mengdi Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yufei Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanyu Pang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lei Tian
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jingwen Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mengchao Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Cun Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yuan Meng
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yuefen Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhen Cai
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Wenjing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
12
|
Cleveland KH, Schnellmann RG. Pharmacological Targeting of Mitochondria in Diabetic Kidney Disease. Pharmacol Rev 2023; 75:250-262. [PMID: 36781216 DOI: 10.1124/pharmrev.122.000560] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) in the United States and many other countries. DKD occurs through a variety of pathogenic processes that are in part driven by hyperglycemia and glomerular hypertension, leading to gradual loss of kidney function and eventually progressing to ESRD. In type 2 diabetes, chronic hyperglycemia and glomerular hyperfiltration leads to glomerular and proximal tubular dysfunction. Simultaneously, mitochondrial dysfunction occurs in the early stages of hyperglycemia and has been identified as a key event in the development of DKD. Clinical management for DKD relies primarily on blood pressure and glycemic control through the use of numerous therapeutics that slow disease progression. Because mitochondrial function is key for renal health over time, therapeutics that improve mitochondrial function could be of value in different renal diseases. Increasing evidence supports the idea that targeting aspects of mitochondrial dysfunction, such as mitochondrial biogenesis and dynamics, restores mitochondrial function and improves renal function in DKD. We will review mitochondrial function in DKD and the effects of current and experimental therapeutics on mitochondrial biogenesis and homeostasis in DKD over time. SIGNIFICANCE STATEMENT: Diabetic kidney disease (DKD) affects 20% to 40% of patients with diabetes and has limited treatment options. Mitochondrial dysfunction has been identified as a key event in the progression of DKD, and pharmacologically restoring mitochondrial function in the early stages of DKD may be a potential therapeutic strategy in preventing disease progression.
Collapse
Affiliation(s)
- Kristan H Cleveland
- Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (K.H.C., R.G.S.) and Southern VA Healthcare System, Tucson, Arizona (R.G.S.)
| | - Rick G Schnellmann
- Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (K.H.C., R.G.S.) and Southern VA Healthcare System, Tucson, Arizona (R.G.S.)
| |
Collapse
|
13
|
Tanriover C, Copur S, Ucku D, Cakir AB, Hasbal NB, Soler MJ, Kanbay M. The Mitochondrion: A Promising Target for Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15020570. [PMID: 36839892 PMCID: PMC9960839 DOI: 10.3390/pharmaceutics15020570] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Mitochondrial dysfunction is important in the pathogenesis of various kidney diseases and the mitochondria potentially serve as therapeutic targets necessitating further investigation. Alterations in mitochondrial biogenesis, imbalance between fusion and fission processes leading to mitochondrial fragmentation, oxidative stress, release of cytochrome c and mitochondrial DNA resulting in apoptosis, mitophagy, and defects in energy metabolism are the key pathophysiological mechanisms underlying the role of mitochondrial dysfunction in kidney diseases. Currently, various strategies target the mitochondria to improve kidney function and kidney treatment. The agents used in these strategies can be classified as biogenesis activators, fission inhibitors, antioxidants, mPTP inhibitors, and agents which enhance mitophagy and cardiolipin-protective drugs. Several glucose-lowering drugs, such as glucagon-like peptide-1 receptor agonists (GLP-1-RA) and sodium glucose co-transporter-2 (SGLT-2) inhibitors are also known to have influences on these mechanisms. In this review, we delineate the role of mitochondrial dysfunction in kidney disease, the current mitochondria-targeting treatment options affecting the kidneys and the future role of mitochondria in kidney pathology.
Collapse
Affiliation(s)
- Cem Tanriover
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Duygu Ucku
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Ahmet B. Cakir
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Nuri B. Hasbal
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Maria Jose Soler
- Nephrology and Kidney Transplant Research Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, 34010 Istanbul, Turkey
- Correspondence: or ; Tel.: +90-212-2508250
| |
Collapse
|
14
|
Qin L, Xi S. The role of Mitochondrial Fission Proteins in Mitochondrial Dynamics in Kidney Disease. Int J Mol Sci 2022; 23:ijms232314725. [PMID: 36499050 PMCID: PMC9736104 DOI: 10.3390/ijms232314725] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Mitochondria have many forms and can change their shape through fusion and fission of the outer and inner membranes, called "mitochondrial dynamics". Mitochondrial outer membrane proteins, such as mitochondrial fission protein 1 (FIS1), mitochondrial fission factor (MFF), mitochondrial 98 dynamics proteins of 49 kDa (MiD49), and mitochondrial dynamics proteins of 51 kDa (MiD51), can aggregate at the outer mitochondrial membrane and thus attract Dynamin-related protein 1 (DRP1) from the cytoplasm to the outer mitochondrial membrane, where DRP1 can perform a scissor-like function to cut a complete mitochondrion into two separate mitochondria. Other organelles can promote mitochondrial fission alongside mitochondria. FIS1 plays an important role in mitochondrial-lysosomal contacts, differentiating itself from other mitochondrial-fission-associated proteins. The contact between the two can also induce asymmetric mitochondrial fission. The kidney is a mitochondria-rich organ, requiring large amounts of mitochondria to produce energy for blood circulation and waste elimination. Pathological increases in mitochondrial fission can lead to kidney damage that can be ameliorated by suppressing their excessive fission. This article reviews the current knowledge on the key role of mitochondrial-fission-associated proteins in the pathogenesis of kidney injury and the role of their various post-translational modifications in activation or degradation of fission-associated proteins and targeted drug therapy.
Collapse
|
15
|
Chen Z, Liang W, Hu J, Zhu Z, Feng J, Ma Y, Yang Q, Ding G. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Prolif 2022; 55:e13296. [PMID: 35842903 PMCID: PMC9528772 DOI: 10.1111/cpr.13296] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Increasing evidence suggests that mitochondrial dysfunction is the key driver of angiotensin II (Ang II)-induced kidney injury. This study was designed to investigate whether Sirtuin 6 (Sirt6) could affect Ang II-induced mitochondrial damage and the potential mechanisms. MATERIALS AND METHODS Podocyte-specific Sirt6 knockout mice were infused with Ang II and cultured podocytes were stimulated with Ang II to evaluate the effects of Sirt6 on mitochondrial structure and function in podocytes. Immunofluorescence staining was used to detect protein expression and mitochondrial morphology in vitro. Electron microscopy was used to assess mitochondrial morphology in mice. Western blotting was used to quantify protein expression. RESULTS Mitochondrial fission and decreased Sirt6 expression were observed in podocytes from Ang II-infused mice. In Sirt6-deficient mice, Ang II infusion induced increased apoptosis and mitochondrial fragmentation in podocytes than that in Ang II-infused wild-type mice. In cultured human podocytes, Sirt6 knockdown exacerbated Ang II-induced mitochondrial fission, whereas Sirt6 overexpression ameliorated the Ang II-induced changes in the balance between mitochondrial fusion and fission. Functional studies revealed that Sirt6 deficiency exacerbated mitochondrial fission by promoting dynamin-related protein 1 (Drp1) phosphorylation. Furthermore, Sirt6 mediated Drp1 phosphorylation by promoting Rho-associated coiled coil-containing protein kinase 1 (ROCK1) expression. CONCLUSION Our study has identified Sirt6 as a vital factor that protects against Ang II-induced mitochondrial fission and apoptosis in podocytes via the ROCK1-Drp1 signalling pathway.
Collapse
Affiliation(s)
- Zhaowei Chen
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Wei Liang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Jijia Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Zijing Zhu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Jun Feng
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Yiqiong Ma
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Qian Yang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Guohua Ding
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|