1
|
Zhang S, Tong X, Liu S, Huang J, Zhang L, Zhang T, Wang D, Fan H. AAV9-Tspyl2 gene therapy retards bleomycin-induced pulmonary fibrosis by modulating downstream TGF-β signaling in mice. Cell Death Dis 2023; 14:389. [PMID: 37391440 PMCID: PMC10313802 DOI: 10.1038/s41419-023-05889-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating fibrotic lung disease characterized by scarring and destruction of the lung architecture, with limited treatment options. Targeted gene therapy to restore cell division autoantigen-1 (CDA1) expression may be a potential treatment approach to delay the progression of pulmonary fibrosis (PF). Here, we focused on CDA1, which was significantly decreased in human IPF, in a mouse model of bleomycin (BLM)-induced PF, and in transforming growth factor (TGF-β)-challenged lung fibroblasts. In vitro, CDA1 overexpression by lentivirus infection in human embryonic lung fibroblasts (HFL1 cells) inhibited the production of pro-fibrotic and pro-inflammatory cytokines, lung fibroblast-to-myofibroblast transition, and extracellular matrix protein expression induced by exogenous TGF-β1 treatment, whereas CDA1 knockdown with small interfering RNA promoted this effect. CDA1 overexpression also inhibited cell proliferation and migration. In a mouse model of BLM-induced PF, we provided novel evidence that the intratracheal delivery of adeno-associated virus serotype 9 carrying the mouse Tspyl2 gene reduced lung tissue inflammation and fibrosis. Mechanistically, CDA1, as a transcription regulator, could repress the TGF-β signal transduction in vivo and in vitro. In conclusion, our results show that Tspyl2 gene therapy plays an antifibrotic role by inhibiting the lung fibroblast-to-myofibroblast transition and downstream TGF-β/Smad3 signaling transduction in BLM-induced PF in mice, suggesting that CDA1 is an appropriate and promising therapeutic target for PF.
Collapse
Affiliation(s)
- Shijie Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Sitong Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Jizhen Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Tianli Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
The Role of Cell Division Autoantigen 1 (CDA1) in Renal Fibrosis of Diabetic Nephropathy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6651075. [PMID: 33997036 PMCID: PMC8102118 DOI: 10.1155/2021/6651075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
The common kidney disease diabetic nephropathy (DN) accounts for significant morbidity and mortality in patients with diabetes, and its effective diagnosis in incipient stages is still lacking. Renal fibrosis is the main pathological feature of DN. Cell division autoantigen 1 (CDA1), a phosphorylated protein encoded by TSPYL2 on the X chromosome, plays a fibrogenic role by modulating the transforming growth factor-β (TGF-β) signaling, but the exact mechanism remains unclear. TGF-β signaling has been recognized as the key factor in promoting the development and progression of DN. At present, strict control of blood sugar and blood pressure can significantly lower the development and progression of DN in the early stages, and many studies have shown that blocking TGF-β signaling can delay the progress of DN. However, TGF-β is a multifunctional cytokine. Its direct intervention may result in increased side effects. Therefore, the targeted intervention of CDA1 not only can block the TGF-β signaling pathway but also can reduce these side effects. In this article, we review the main physiological roles of CDA1, with particular attention to its effect and potential mechanism in the renal fibrosis of DN.
Collapse
|
3
|
Kido T, Li Y, Tanaka Y, Dahiya R, Chris Lau YF. The X-linked tumor suppressor TSPX downregulates cancer-drivers/oncogenes in prostate cancer in a C-terminal acidic domain dependent manner. Oncotarget 2019; 10:1491-1506. [PMID: 30863497 PMCID: PMC6407674 DOI: 10.18632/oncotarget.26673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/31/2019] [Indexed: 01/02/2023] Open
Abstract
TSPX is a tumor suppressor gene located at Xp11.22, a prostate cancer susceptibility locus. It is ubiquitously expressed in most tissues but frequently downregulated in various cancers, including lung, brain, liver and prostate cancers. The C-terminal acidic domain (CAD) of TSPX is crucial for the tumor suppressor functions, such as inhibition of cyclin B/CDK1 phosphorylation and androgen receptor transactivation. Currently, the exact role of the TSPX CAD in transcriptional regulation of downstream genes is still uncertain. Using different variants of TSPX, we showed that overexpression of either TSPX, that harbors a CAD, or a CAD-truncated variant (TSPX[∆C]) drastically retarded cell proliferation in a prostate cancer cell line LNCaP, but cell death was induced only by overexpression of TSPX. Transcriptome analyses showed that TSPX or TSPX[∆C] overexpression downregulated multiple cancer-drivers/oncogenes, including MYC and MYB, in a CAD-dependent manner and upregulated various tumor suppressors in a CAD-independent manner. Datamining of transcriptomes of prostate cancer specimens in the Cancer Genome Atlas (TCGA) dataset confirmed the negative correlation between the expression level of TSPX and those of MYC and MYB in clinical prostate cancer, thereby supporting the hypothesis that the CAD of TSPX plays an important role in suppression of cancer-drivers/oncogenes in prostatic oncogenesis.
Collapse
Affiliation(s)
- Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Yunmin Li
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| |
Collapse
|
4
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
5
|
TSPYL2 is a novel regulator of SIRT1 and p300 activity in response to DNA damage. Cell Death Differ 2018; 26:918-931. [PMID: 30050056 DOI: 10.1038/s41418-018-0168-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/13/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023] Open
Abstract
Protein acetylation and deacetylation events are finely regulated by lysine-acetyl-transferases and lysine-deacetylases and constitute an important tool for the activation or inhibition of specific cellular pathways. One of the most important lysine-acetyl-transferases is p300, which is involved in the regulation of gene expression, cell growth, DNA repair, differentiation, apoptosis, and tumorigenesis. A well-known target of p300 is constituted by the tumor suppressor protein p53, which plays a critical role in the maintenance of genomic stability and whose activity is known to be controlled by post-translational modifications, among which acetylation. p300 activity toward p53 is negatively regulated by the NAD-dependent deacetylase SIRT1, which deacetylates p53 preventing its transcriptional activation and the induction of p53-dependent apoptosis. However, the mechanisms responsible for p53 regulation by p300 and SIRT1 are still poorly understood. Here we identify the nucleosome assembly protein TSPY-Like 2 (TSPYL2, also known as TSPX, DENTT, and CDA1) as a novel regulator of SIRT1 and p300 function. We demonstrate that, upon DNA damage, TSPYL2 inhibits SIRT1, disrupting its association with target proteins, and promotes p300 acetylation and activation, finally stimulating p53 acetylation and p53-dependent cell death. Indeed, in response to DNA damage, cells silenced for TSPYL2 were found to be defective in p53 activation and apoptosis induction and these events were shown to be dependent on SIRT1 and p300 function. Collectively, our results shed new light on the regulation of p53 acetylation and activation and reveal a novel TSPYL2 function with important implications in cancerogenesis.
Collapse
|
6
|
Epping MT, Lunardi A, Nachmani D, Castillo-Martin M, Thin TH, Cordon-Cardo C, Pandolfi PP. TSPYL2 is an essential component of the REST/NRSF transcriptional complex for TGFβ signaling activation. Cell Death Differ 2015; 22:1353-62. [PMID: 25613376 DOI: 10.1038/cdd.2014.226] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/02/2014] [Accepted: 11/19/2014] [Indexed: 11/09/2022] Open
Abstract
REST/NRSF is a transcriptional repressor of neuronal genes that has been implicated in development and cancer. In epithelial tissues, REST acts as a tumor suppressor and in breast cancer, loss of REST is associated with disease recurrence and poor prognosis. Here, we identify TSPYL2 (also known as CDA1 and DENTT) as a novel component of the REST protein complex. We show that REST and TSPYL2 are regulators of TGFβ signaling and that cell-cycle arrest induced by TGFβ requires both REST and TSPYL2. Importantly, knockdown of REST or TSPYL2 resulted in transformation of human mammary epithelial cells. Mechanistically, we demonstrate that the TSPYL2/REST complex promotes TGFβ signaling by repressing the expression of genes, such as the proto-oncogene neurotrophic tyrosine kinase receptor C (TrkC). These data provide insight into the role of REST as a tumor suppressor in epithelial tissues through the regulation of the TGFβ pathway.
Collapse
Affiliation(s)
- M T Epping
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - A Lunardi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D Nachmani
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Castillo-Martin
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | - T H Thin
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | - C Cordon-Cardo
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | - P P Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Kido T, Ou JHJ, Lau YFC. The X-linked tumor suppressor TSPX interacts and promotes degradation of the hepatitis B viral protein HBx via the proteasome pathway. PLoS One 2011; 6:e22979. [PMID: 21829568 PMCID: PMC3146538 DOI: 10.1371/journal.pone.0022979] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/08/2011] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk for hepatocellular carcinoma (HCC), and it is a serious global health problem with two billion people exposed to it worldwide. HBx, an essential factor for viral replication and a putative oncoprotein encoded by the HBV genome, has been shown to promote oncogenic properties at multiple sites in HBV-infected liver cells. The expression level of HBx closely associates with the development and progression of HCC, therefore the mechanism(s) regulating the stability of HBx is important in oncogenesis of HBV-infected cells. We demonstrate that the X-linked tumor suppressor TSPX enhances the degradation of HBx through the ubiquitin-proteasome pathway. TSPX interacts with both HBx and a proteasome 19S lid subunit RPN3 via its C-terminal acidic tail. Most importantly, over-expression of RPN3 protects HBx from, and hence acts as a negative regulator for, proteasome-dependent degradation. TSPX abrogates the RPN3-depedent stabilization of HBx, suggesting that TSPX and RPN3 act competitively in regulation of HBx stability. Since mutation and/or epigenetic repression of X-located tumor suppressor gene(s) could significantly predispose males to human cancers, our data suggest that TSPX-induced HBx degradation could play key role(s) in hepatocarcinogenesis among HBV-infected HCC patients.
Collapse
Affiliation(s)
- Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, United States of America
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Kido T, Schubert S, Schmidtke J, Chris Lau YF. Expression of the human TSPY gene in the brains of transgenic mice suggests a potential role of this Y chromosome gene in neural functions. J Genet Genomics 2011; 38:181-91. [PMID: 21621739 DOI: 10.1016/j.jgg.2011.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/09/2011] [Accepted: 03/28/2011] [Indexed: 01/13/2023]
Abstract
The testis specific protein Y-encoded (TSPY) is a member of TSPY/SET/NAP1 superfamily, encoded within the gonadoblastoma locus on the Y chromosome. TSPY shares a highly conserved SET/NAP-domain responsible for protein--protein interaction among TSPY/SET/NAP1 proteins. Accumulating data, so far, support the role of TSPY as the gonadoblastoma gene, involved in germ cell tumorigenesis. The X-chromosome homolog of TSPY, TSPX is expressed in various tissues at both fetal and adult stages, including the brain, and is capable of interacting with the multi-domain adapter protein CASK, thereby influencing the synaptic and transcriptional functions and developmental regulation of CASK in the brain and other neural tissues. Similar to TSPX, we demonstrated that TSPY could interact with CASK at its SET/NAP-domain in cultured cells. Transgenic mice harboring a human TSPY gene and flanking sequences showed specific expression of the human TSPY transgene in both testis and brain. The neural expression pattern of the human TSPY gene overlapped with those of the endogenous mouse Cask and Tspx gene. Similarly with TSPX, TSPY was co-localized with CASK in neuronal axon fibers in the brain, suggesting a potential role(s) of TSPY in development and/or physiology of the nervous system.
Collapse
Affiliation(s)
- Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center, and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
9
|
Toh BH, Tu Y, Cao Z, Cooper ME, Chai Z. Role of Cell Division Autoantigen 1 (CDA1) in Cell Proliferation and Fibrosis. Genes (Basel) 2010; 1:335-48. [PMID: 24710090 PMCID: PMC3966230 DOI: 10.3390/genes1030335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/03/2010] [Accepted: 09/17/2010] [Indexed: 12/12/2022] Open
Abstract
Cell Division Autoantigen 1 (CDA1) was discovered following screening a human expression library with serum from a patient with Discoid Lupus Erythematosus. CDA1, encoded by TSPYL2 on the X chromosome, shares anti-proliferative, pro‑fibrotic properties with TGF-β. It inhibits cell growth through p53, pERK1/2, p21‑mediated pathways, is implicated in tumorigenesis, the DNA damage response. Its pro-fibrotic property is mediated through cross-talk with TGF-β that results in upregulation of extracellular matrix proteins. The latter properties have identified a key role for CDA1 in diabetes associated atherosclerosis. These dual properties place CDA1 as an attractive molecular target for treating tumors, vascular fibrosis including atherosclerosis, other vascular disorders associated with enhanced TGF-β action, tissue scarring.
Collapse
Affiliation(s)
- Ban-Hock Toh
- Autoimmunity Laboratory, Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia.
| | - Yugang Tu
- Diabetes and Metabolism Division, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria 3004, Australia.
| | - Zemin Cao
- Diabetes and Metabolism Division, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria 3004, Australia.
| | - Mark E Cooper
- Diabetes and Metabolism Division, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria 3004, Australia.
| | - Zhonglin Chai
- Diabetes and Metabolism Division, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
10
|
Tang Y, Urs S, Boucher J, Bernaiche T, Venkatesh D, Spicer DB, Vary CPH, Liaw L. Notch and transforming growth factor-beta (TGFbeta) signaling pathways cooperatively regulate vascular smooth muscle cell differentiation. J Biol Chem 2010; 285:17556-63. [PMID: 20368328 PMCID: PMC2878520 DOI: 10.1074/jbc.m109.076414] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 03/05/2010] [Indexed: 12/29/2022] Open
Abstract
Notch and transforming growth factor-beta (TGFbeta) play pivotal roles during vascular development and the pathogenesis of vascular disease. The interaction of these two pathways is not fully understood. The present study utilized primary human smooth muscle cells (SMC) to examine molecular cross-talk between TGFbeta1 and Notch signaling on contractile gene expression. Activation of Notch signaling using Notch intracellular domain or Jagged1 ligand induced smooth muscle alpha-actin (SM actin), smooth muscle myosin heavy chain, and calponin1, and the expression of Notch downstream effectors hairy-related transcription factors. Similarly, TGFbeta1 treatment of human aortic smooth muscle cells induced SM actin, calponin1, and smooth muscle protein 22-alpha (SM22alpha) in a dose- and time-dependent manner. Hairy-related transcription factor proteins, which antagonize Notch activity, also suppressed the TGFbeta1-induced increase in SMC markers, suggesting a general mechanism of inhibition. We found that Notch and TGFbeta1 cooperatively activate SMC marker transcripts and protein through parallel signaling axes. Although the intracellular domain of Notch4 interacted with phosphoSmad2/3 in SMC, this interaction was not observed with Notch1 or Notch2. However, we found that CBF1 co-immunoprecipitated with phosphoSmad2/3, suggesting a mechanism to link canonical Notch signaling to phosphoSmad activity. Indeed, the combination of Notch activation and TGFbeta1 treatment led to synergistic activation of a TGFbeta-responsive promoter. This increase corresponded to increased levels of phosphoSmad2/3 interaction at Smad consensus binding sites within the SM actin, calponin1, and SM22alpha promoters. Thus, Notch and TGFbeta coordinately induce a molecular and functional contractile phenotype by co-regulation of Smad activity at SMC promoters.
Collapse
Affiliation(s)
- Yuefeng Tang
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Sumithra Urs
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Joshua Boucher
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Tyler Bernaiche
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Deepak Venkatesh
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Douglas B. Spicer
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Calvin P. H. Vary
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Lucy Liaw
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
11
|
Pham Y, Tu Y, Wu T, Allen TJ, Calkin AC, Watson AM, Li J, Jandeleit-Dahm KA, Toh BH, Cao Z, Cooper ME, Chai Z. Cell division autoantigen 1 plays a profibrotic role by modulating downstream signalling of TGF-beta in a murine diabetic model of atherosclerosis. Diabetologia 2010; 53:170-9. [PMID: 19847393 DOI: 10.1007/s00125-009-1555-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/27/2009] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Excess accumulation of vascular extracellular matrix (ECM) is an important pathological process in cardiovascular diseases including diabetes-associated atherosclerosis. We explored how a recently identified molecule, cell division autoantigen 1 (CDA1), influences the profibrotic TGF-beta pathway leading to vascular ECM accumulation. METHODS Expression levels of genes encoding for CDA1, TGF-beta and connective tissue growth factor (CTGF) were examined in aorta from Apoe(-/-) mice with or without diabetes. We used retroviral and adenoviral constructs to knockdown or overexpress Tspyl2, the gene encoding CDA1, in mouse vascular smooth muscle cells (VSMCs) with or without TGF-beta treatment in order to demonstrate the role of CDA1 in TGF-beta signalling. RESULTS In vivo studies indicated that the mRNA levels of CDA1-encoding gene Tspyl2 and protein levels of CDA1 were elevated in the aorta of diabetic Apoe(-/-) mice, accompanied by increased levels of Tgf-beta (also known as Tgfb1), Ctgf and ECM accumulation. In vitro studies in vascular cells showed that TGF-beta treatment rapidly increased CDA1 protein levels, which then amplified TGF-beta signalling leading to upregulation of ECM genes. Knockdown of CDA1-encoding gene Tspyl2 to reduce cellular CDA1 level markedly attenuated TGF-beta-stimulated MAD homologue 3 (drosophila; SMAD3) phosphorylation and transcriptional activities. CDA1 overproduction increased and Tspyl2 knockdown decreased expression of TGF-beta receptor type I, TbetarI (also known as Tgfbr1), but not TGF-beta receptor type II, TbetarII (also known as Tgfbr2), providing a mechanism for CDA1's action in modulating TGF-beta signalling. Knockdown of CDA1-encoding gene Tspyl2 also blocked the profibrotic effect of TGF-beta in VSMCs. CONCLUSIONS/INTERPRETATION CDA1 plays an important role in vascular ECM accumulation by amplifying TGF-beta signalling. This is critical for the profibrotic effect of TGF-beta in the vasculature. CDA1 is therefore a potential target for attenuating vascular ECM accumulation caused by enhanced TGF-beta action, as seen in diabetic atherosclerosis.
Collapse
Affiliation(s)
- Y Pham
- Diabetes and Metabolism Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hersmus R, de Leeuw BHCGM, Wolffenbuttel KP, Drop SLS, Oosterhuis JW, Cools M, Looijenga LHJ. New insights into type II germ cell tumor pathogenesis based on studies of patients with various forms of disorders of sex development (DSD). Mol Cell Endocrinol 2008; 291:1-10. [PMID: 18403106 DOI: 10.1016/j.mce.2008.02.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 02/26/2008] [Indexed: 11/18/2022]
Abstract
Disorders of sex development (DSD), previously known as intersex, refer to congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. Patients with specific variants of this disorder have an elevated risk for the development of so-called type II germ cell cancers, i.e., the seminomatous and nonseminatous tumors, referred to as germ cell tumors (GCTs). Specifically DSD patients with gonadal dysgenesis or hypovirilization are at risk. A prerequisite for type II GCT formation is the presence of a specific part of the Y chromosome (referred to as the GBY region), with the TSPY gene being the most likely candidate. Also the octamer binding transcription factor OCT3/4 is consistently expressed in all type II GCTs with pluripotent potential, as well as in the precursor lesions carcinoma in situ (CIS) in case of a testis and gonadoblastoma (GB) in the DSD gonad. The actual risk for malignant transformation in individual DSD patients is hard to predict, because of confusing terminology referring to the different forms of DSD, and unclear criteria for identification of the presence of malignant germ cells, especially in young patients. This is specifically due to the phenomenon of delay of germ cell maturation, which might result in over diagnosis. This review will give novel insight into the pathogenesis of the type II GCTs through the study of patients with various forms of DSD for which the underlying molecular defect is known. To allow optimal understanding of the pathogenesis of this type of cancers, first normal gonadal development, especially regarding the germ cell lineage, will be discussed, after which type II GCTs will be introduced. Subsequently, the relationship between type II GCTs and DSD will be described, resulting in a number of new insights into the development of the precursor lesions of these tumors.
Collapse
Affiliation(s)
- Remko Hersmus
- Department of Pathology, Erasmus MC-University Medical Center Rotterdam, Daniel den Hoed Cancer Center, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
TSPY and its X-encoded homologue interact with cyclin B but exert contrasting functions on cyclin-dependent kinase 1 activities. Oncogene 2008; 27:6141-50. [DOI: 10.1038/onc.2008.206] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Kandalaft LE, Zudaire E, Portal-Núñez S, Cuttitta F, Jakowlew SB. Differentially expressed nucleolar transforming growth factor-beta1 target (DENTT) exhibits an inhibitory role on tumorigenesis. Carcinogenesis 2008; 29:1282-9. [PMID: 18381359 DOI: 10.1093/carcin/bgn087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Differentially expressed nucleolar transforming growth factor-beta1 target (DENTT), also known as testis-specific protein Y-encoded-like (TSPYL-2) and cell division autoantigen-1, is a member of the testis-specific protein Y-encoded (TSPY)/TSPY-L/SET/nucleosome assembly protein-1 superfamily. DENTT is expressed in various tissues including normal human lung. Here, we investigate the involvement of DENTT in cancer promotion and progression. DENTT messenger RNA (mRNA) and protein levels were shown to be markedly downregulated in human and mouse primary tumors and in human tumor cell lines. Overexpression of DENTT in human lung (A549-DENTT) and breast (MCF-7-DENTT) cancer cells resulted in diminished growth potential in anchorage-dependent growth assays and reduced capacity to form colonies under anchorage-independent culture conditions. The migratory potential of A549-DENTT and MCF-7-DENTT cells was reduced when compared with empty vector control cells. Treating human lung cell lines with demethylating agents increased DENTT expression significantly. DENTT expression pattern paralleled that of transforming growth factor-beta1 (TGF-beta1) in normal and malignant tissue and ectopic expression or treatment with TGF-beta1 in lung cancer cells was followed by increased DENTT mRNA and protein levels. Collectively, our results suggest a role for DENTT as a suppressor of the tumorigenic phenotype.
Collapse
Affiliation(s)
- Lana E Kandalaft
- Cell and Cancer Biology Branch, National Cancer Institute, Advanced Technology Center, Gaithersburg, MD 20877, USA.
| | | | | | | | | |
Collapse
|
15
|
Vodicka R, Vrtel R, Dusek L, Singh AR, Krizova K, Svacinova V, Horinova V, Dostal J, Oborna I, Brezinova J, Sobek A, Santavy J. TSPY gene copy number as a potential new risk factor for male infertility. Reprod Biomed Online 2007; 14:579-87. [PMID: 17509197 DOI: 10.1016/s1472-6483(10)61049-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human TSPY (testis-specific protein, Y-linked) gene family (30-60 copies) is situated in the MSY (male-specific) region of the Y chromosome. Testis-specific expression indicates that the gene plays a role in spermatogenesis. Refined quantitative fluorescence PCR (polymerase chain reaction) was applied to evaluate the relative number of TSPY copies compared with AMELY/X (amelogenin gene, Y-linked) genes in 84 stratified infertile men and in 40 controls. A significantly higher number of TSPY copies was found in infertile men compared with the controls (P = 0.002). The diagnostic discrimination potential of the relative number of TSPY copies was evaluated by receiver operating characteristic curve analysis. TSPY/AMELY was unambiguously found to be powerful in the diagnostic separation of both the control samples and the infertile men, reaching a good level of specificity (0.642) and sensitivity (0.732) at a cut-off point of 0.46. The findings were supported by independently repeated studies of randomly selected positive samples and controls. Evaluation of the TSPY copy number offers a completely new diagnostic approach in relation to the genetic cause of male infertility. The possible effect of the copy number of TSPY genes on spermatogenesis may explain indiscrete pathological alterations of spermatid quality and quantity.
Collapse
Affiliation(s)
- Radek Vodicka
- Department of Medical Genetics and Fetal Medicine, University Hospital Olomouc, IP Pavlova 6, 775 20 Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tu Y, Wu W, Wu T, Cao Z, Wilkins R, Toh BH, Cooper ME, Chai Z. Antiproliferative autoantigen CDA1 transcriptionally up-regulates p21(Waf1/Cip1) by activating p53 and MEK/ERK1/2 MAPK pathways. J Biol Chem 2007; 282:11722-31. [PMID: 17317670 DOI: 10.1074/jbc.m609623200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously reported that overexpression of cell division autoantigen 1 (CDA1) in HeLa cells arrests cell growth and inhibits DNA synthesis at S-phase. Here we show that CDA1-induced arrest of cell growth is accompanied by increases in protein and mRNA levels of the cyclin-dependent kinase (Cdk) inhibitor protein, p21(Waf1/Cip1) (p21). Both p21 induction and cell growth arrest are reversed when CDA1 expression is inhibited. CDA1 also increases p53 protein, but not its mRNA, in a time- and dose-dependent manner. MDM2, a ubiquitin ligase regulating p53 degradation, is inactivated by CDA1, suggesting that p53 protein accumulation is due to decreased protein degradation. Knockdown of p53, using siRNA targeting two sites of p53 mRNA, abrogates transcriptional induction of p21 by CDA1. Deletion of the p53 responsive element in the distal region of p21 promoter attenuates promoter activity in response to CDA1. DNA damage caused by camptothecin treatment increases mRNA and protein levels of CDA1, accompanied by induction of p53. The DNA damage-induced p53 induction is markedly attenuated by CDA1 knockdown. CDA1 induces phosphorylation of ERK1/2(p44/42), an activity blocked by PD98059 and U0126, inhibitors of the upstream kinase MEK1/2. The MEK inhibitors also block induction of p21 mRNA and abrogate p21 promoter activity stimulated by CDA1. Cell cycle kinases, Cdk1, -2, -4, and -6 are inhibited by CDA1 overexpression. We conclude that CDA1 induces p53- and MEK/ERK1/2 MAPK-dependent expression of p21 by acting through the p53 responsive element in the p21 promoter and that this contributes to its antiproliferative activity.
Collapse
Affiliation(s)
- Yugang Tu
- Diabetes and Metabolism Division, Baker Heart Research Institute, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Oram SW, Liu XX, Lee TL, Chan WY, Lau YFC. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer 2006; 6:154. [PMID: 16762081 PMCID: PMC1526451 DOI: 10.1186/1471-2407-6-154] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 06/09/2006] [Indexed: 01/09/2023] Open
Abstract
Background TSPY is a repeated gene mapped to the critical region harboring the gonadoblastoma locus on the Y chromosome (GBY), the only oncogenic locus on this male-specific chromosome. Elevated levels of TSPY have been observed in gonadoblastoma specimens and a variety of other tumor tissues, including testicular germ cell tumors, prostate cancer, melanoma, and liver cancer. TSPY contains a SET/NAP domain that is present in a family of cyclin B and/or histone binding proteins represented by the oncoprotein SET and the nucleosome assembly protein 1 (NAP1), involved in cell cycle regulation and replication. Methods To determine a possible cellular function for TSPY, we manipulated the TSPY expression in HeLa and NIH3T3 cells using the Tet-off system. Cell proliferation, colony formation assays and tumor growth in nude mice were utilized to determine the TSPY effects on cell growth and tumorigenesis. Cell cycle analysis and cell synchronization techniques were used to determine cell cycle profiles. Microarray and RT-PCR were used to investigate gene expression in TSPY expressing cells. Results Our findings suggest that TSPY expression increases cell proliferation in vitro and tumorigenesis in vivo. Ectopic expression of TSPY results in a smaller population of the host cells in the G2/M phase of the cell cycle. Using cell synchronization techniques, we show that TSPY is capable of mediating a rapid transition of the cells through the G2/M phase. Microarray analysis demonstrates that numerous genes involved in the cell cycle and apoptosis are affected by TSPY expression in the HeLa cells. Conclusion These data, taken together, have provided important insights on the probable functions of TSPY in cell cycle progression, cell proliferation, and tumorigenesis.
Collapse
Affiliation(s)
- Shane W Oram
- Department of Medicine, VA Medical Center, University of California, San Francisco, USA
| | - Xing Xing Liu
- Department of Medicine, VA Medical Center, University of California, San Francisco, USA
| | - Tin-Lap Lee
- Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Wai-Yee Chan
- Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Fai Chris Lau
- Department of Medicine, VA Medical Center, University of California, San Francisco, USA
- Laboratory of Cell and Developmental Genetics, Department of Medicine, VA Medical Center, 111C5, 4150 Clement St, San Francisco, CA 94121, USA
| |
Collapse
|